ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

Tamanho: px
Começar a partir da página:

Download "ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:"

Transcrição

1 Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas por Newton, para descrever os fenômenos físicos. O uso do cálculo é fundamental no tratamento de vários problemas na mecânica newtoniana, na eletricidade e no magnetismo. Nesta nota de aula, enunciamos simplesmente algumas propriedades básicas e regras práticas que devem ser uma revisão útil para o estudante. Inicialmente, é necessário especificar uma função que relaciona uma variável a outra variável (por exemplo, uma coordenada como função do tempo). Suponha que uma das variáveis seja chamada y (a variável dependente) e a outra, x (a variável independente). Poderíamos ter uma relação funcional como Se a, b, c e d são constantes especificadas, então y pode ser calculado para qualquer valor de x. Lidamos geralmente com funções contínuas, isto é, aquelas para as quais y varia suavemente com x. A derivada de y em relação a x é definida como o limite das inclinações das cordas traçadas entre dois pontos na curva y contra x, quando x se aproxima de zero. Matematicamente, escrevemos essa definição como em que y e x são definidos como x = x 2 x 1 e y = y 2 y 1 (conforme a figura abaixo). É importante observar que dy/dx não significa dy dividido por dx, mas é simplesmente uma notação para o processo-limite da derivada como definida pela equação acima. Uma expressão útil para lembrar quando y(x) = ax n, em que a é uma constante e n é qualquer número positivo ou negativo (inteiro ou fracionário), é Se y(x) é uma função polinomial ou algébrica de x, aplicamos a equação anterior para cada termo no polinômio e tomamos d[constante]/dx = 0. Nos exemplos 1 a 4, calculamos as derivadas de várias funções. -Exemplo 1: Suponha que y(x) seja dada por Em que a e b são constantes. Segue-se então que de forma que

2 Substituindo isso na equação que traduz a definição de derivada, obtém-se - Exemplo 2: Encontre a derivada de Solução: Aplicando a equação na qual está contida a definição de derivada a cada termo independentemente, e lembrando que d/dx (constante) = 0, temos: 2. Propriedades especiais da derivada - A derivada do produto de duas funções. Se uma função f(x) é dada pelo produto de duas funções, digamos, g(x) e h(x), então a derivada de f(x) é definida como: - A derivada da soma de duas funções. Se uma função f(x) é dada pela soma de duas funções, digamos, g(x) e h(x), então a derivada de f(x) é definida como: - A regra da cadeia do cálculo diferencial. Se y = f(x) e x = g(z), então dy/dz pode ser escrita como o produto de duas derivadas: - A derivada segunda. A derivada segunda de y em relação a x é definida como a derivada da função dy/dx (a derivada da derivada). È escrita geralmente como: - Exemplo 3: Encontre a derivada em relação a x da função Solução: Podemos reescrever a função da seguinte forma e aplicando a propriedade da derivada do produto, temos: 2

3 - Exemplo 4: Uma fórmula útil a partir da derivada do produto é a derivada do quociente de duas funções. Mostre que: Solução: Podemos escrever o quociente entre as duas funções com sendo gh -1 e aplicando as propriedades já conhecidas, temos: 3. Tabela de derivadas Algumas das derivadas de funções utilizadas mais comumente estão listadas na tabela abaixo. 3

4 4. Cálculo integral Pensamos na integração como o inverso da derivação. Como um exemplo, considere a expressão: que foi o resultado da diferenciação da função no exemplo 1. Podemos escrever a expressão inicial da seguinte forma e obter y(x) pelo somatório de todos os valores de x. Matematicamente, escrevemos essa operação inversa como: Para a nossa função analisada, temos que: em que c é uma constante de integração. Esse tipo de integral é chamado de integral indefinida porque seu valor depende da escolha de c. Uma integral indefinida geral I(x) é definida como: em que f(x) é chamado de integrando e f(x) = di(x)/dx. Para uma função contínua geral f(x), a integral pode ser descrita como a área sob a curva limitada por f(x) e pelo eixo x, entre dois valores especificados de x, digamos, x 1 e x 2, como na figura a seguir. A área do elemento sombreado mais escuro é de aproximadamente f(x i ) x i. Se somamos todos esses elementos de área de x 1 até x 2 e tomamos o limite dessa soma quando x i 0, obtemos a área exata sob a curva limitada por f(x) e pelo eixo x, entre os limites x 1 e x 2 : Integrais do tipo definido por essa equação são chamadas integrais definidas. Uma integral comum que surge em várias situações práticas possui a forma 4

5 Esse resultado é óbvio, pois a diferenciação do lado direito em relação a x fornece f(x) = x n diretamente. Se os limites de integração são conhecidos, essa integral torna-se uma integral definida e é escrita como: Exemplos: 5. Integração parcial Algumas vezes é útil aplicar o método de integração parcial (também chamado de integração por partes ) para calcular certas integrais. O método utiliza a propriedade que: em que u e v são escolhidas cuidadosamente de forma a reduzir uma integral complexa em uma mais simples. Em muitos casos, várias reduções têm de ser feitas. Considere a função Ela pode ser calculada integrando duas vezes por partes. Primeiro, se escolhermos u = x 2, v = e x, obtemos: Agora, no segundo termos, escolhendo u = x, v = e x, obtém-se: 6. A diferencial exata Outro método útil para lembrar é a utilização da diferencial exata, na qual procuramos uma mudança de variável tal que a diferencial da função seja a diferencial da variável independente aparecendo no integrando. Por exemplo, considere a integral Esta se torna fácil de calcular se escrevemos a diferencial como d(cos x) = - (sen x) dx. A integral torna-se então: Se mudarmos agora de variável, fazendo y = cos x, obtemos: 5

6 7. Tabela de Integrais A tabela a seguir lista algumas integrais indefinidas úteis. Logo desta tabela está sendo fornecida uma tabela de integrais das probabilidades de Gauss muitos utilizadas no tratamento estatístico da termodinâmica e da mecânica quântica, e outras integrais definidas. 6

7 8. Aplicações do cálculo diferencial e integral na Física A seguir resolveremos alguns problemas bem simples de Física que envolvem cálculo diferencial e integral. É ideal que você acompanhe passo a passo os problemas, desde a escolha do elemento diferencial até o método de integração utilizado. - Problema 1: Uma caixa de areia inicialmente em repouso, é puxada pelo chão por uma corda onde a tensão não pode ultrapassar 1100N. O coeficiente de atrito estático entre o chão e a caixa é 0,35. Qual deverá ser o ângulo da corda em relação à horizontal, de forma a permitir puxar a maior quantidade de areia possível? Solução: A maior dificuldade será colocar a caixa em movimento. Devemos encontrar o ângulo adequado para que a força externa seja suficiente para equilibrar a força de atrito estático máximo. Quando a caixa estiver prestes a se mover, a força resultante ainda será nula, logo: 7

8 Note que a força peso é uma função do ângulo θ e o nosso problema pede o valor desse ângulo para que o peso seja máximo. Uma função possui um valor máximo quando a derivada neste ponto de máximo é nula (ou seja, quando a inclinação da reta tangente é nula). Logo o peso será máximo quando sua derivada em relação a θ for nula, logo temos: - Problema 2: Calcule o centro de massa de uma haste com uma distribuição uniforme de massa, de comprimento L e massa M. Observação: O centro de massa de um sistema de partículas, por definição é dado por: Solução: Vamos considerar um elemento de massa dm de largura dx localizado na posição x. Como a distribuição de massa é uniforme, podemos dizer que: - Problema 3: Calcule o centro de massa de um fio em forma de arco de raio R, ângulo θ 0 e massa M. Solução: Como definido no problema anterior, temos: 8

9 Considerando que a distribuição de massa no fio é uniforme, podemos encontrar uma relação entre a quantidade infinitesimal de massa dm e o ângulo dθ que delimita essa massa, usando a proporção a seguir: A posição ( x, y ) de um elemento de massa genérico dm é pode ser expressa como: Desse modo termos: e de modo equivalente: A partir desses resultados podemos o centro de massa de outras figuras semelhantes: i. Um quarto de círculo θ 0 = π/2. ii. Um semicírculo θ 0 = π. iii. Um círculo θ 0 = 2 π. - Problema 4: Observa-se no dia-a-dia que objetos quentes e frios se esfriam o aquecem até a temperatura do ambiente ao seu redor. Se a diferença de temperatura T ente um objeto e o seu ambiente ( T = T Obj T Amb ) não 9

10 for muito grande, a taxa de resfriamento ou de aquecimento de um objeto é proporcional, aproximadamente, a essa diferença de temperatura; ou seja: onde A é constante. O sinal negativo aparece porque T diminui com o tempo se T for positivo e aumenta com o tempo se T for negativo. Essa equação é conhecida como a Lei de resfriamento de Newton. a) De que fatores depende A? Qual é a sua unidade? b) Se em algum instante t = 0 a diferença de temperatura for T 0, mostre que em um instante posterior ela será Solução: a) A constante A depende principalmente da condutividade térmica do objeto. O lado esquerdo da equação tem unidades de temperatura sobre tempo, e desse modo, a unidade de A é o inverso de tempo: s -1. b) Da equação diferencial, encontramos que: e quando integramos: ou seja Considerando as condições iniciais: chegamos a: - Problema 5: Vamos considerar uma haste de largura desprezível e massa M distribuída uniformemente ao longo do seu comprimento L. Uma partícula de massa m está colocada a uma distância s da haste, como mostra a figura a seguir. Calcule a força de interação gravitacional entre a haste e a massa pontual. Solução: Devemos calcular a força que um elemento de massa dm da haste exerce sobre a partícula. Essa força é dirigida para a haste e tem módulo: A força total que a haste exercerá sobre a partícula será a soma de todas as contribuições das massas elementares que compõe a haste. Por outro lado existe uma relação entre o elemento de massa dm e o espaço dx que ele ocupa na haste. Como a haste tem a massa distribuída uniformemente, temos a proporção: Desse modo, a força total tem a forma: Fazendo a mudança de variáveis u = L + d - x, encontramos: 10

11 ou seja - Problema 6 ( Vocês terão uma semana para resolver esse problema. No final da semana colocarei a solução completa do mesmo no click-professor, ok! Boa sorte e trabalho.) Vamos considerar uma haste de largura desprezível e massa M distribuída uniformemente ao longo do seu comprimento L. Uma partícula de massa m está colocada a uma distância s da haste, como mostra a figura abaixo. Utilizando cálculo diferencial e integral, encontre a força de interação gravitacional entre a haste e a massa pontual. 11

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Tópico 4. Derivadas (Parte 1)

Tópico 4. Derivadas (Parte 1) Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura

Leia mais

As Primitivas de f'(x) são o conjunto: { f(x): f(x)=2x + K, K real }= {..2x + 1.., 2x + 1/2,..2x + 0..,2x + 1/3,..2x }

As Primitivas de f'(x) são o conjunto: { f(x): f(x)=2x + K, K real }= {..2x + 1.., 2x + 1/2,..2x + 0..,2x + 1/3,..2x } 1 of 6 27/11/2006 00:48 Derivada Origem: Wikipédia, a enciclopédia livre. Na matemática, a derivada de uma função é o conceito central do cálculo diferencial. A derivada pode ser usada para determinar

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas

Leia mais

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014. a) (1,0) Massa e Peso são a mesma coisa? Justifique sua resposta.

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014. a) (1,0) Massa e Peso são a mesma coisa? Justifique sua resposta. UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes

Leia mais

Algumas Regras para Diferenciação

Algumas Regras para Diferenciação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

DIFERENCIAIS E O CÁLCULO APROXIMADO

DIFERENCIAIS E O CÁLCULO APROXIMADO BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG

Leia mais

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016 1 - Revisão a) Nomenclatura da derivada Sendo uma função dada da seguinte forma: y=f(x) a derivada desta função pode ser referenciada das seguintes maneiras: (deve ser lida como efe linha de f(x) ) ou

Leia mais

Quarta lista de exercícios da disciplina SMA0353- Cálculo I

Quarta lista de exercícios da disciplina SMA0353- Cálculo I Quarta lista de exercícios da disciplina SMA0353- Cálculo I Exercícios da Seção 2.7 1. Uma curva tem por equação y = f(x). (a) Escreva uma expressão para a inclinação da reta secante pelos pontos P (3,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

MOVIMENTO EM DUAS E TRÊS DIMENSÕES

MOVIMENTO EM DUAS E TRÊS DIMENSÕES CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

(1) O vetor posição de uma partícula que se move no plano XY é dado por:

(1) O vetor posição de uma partícula que se move no plano XY é dado por: 4320195-Física Geral e Exp. para a Engenharia I - 1 a Prova - 12/04/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

A partir dessas definições, podemos afirmar que se a força resultante F R 3 SEGUNDA LEI DE NEWTON: PRINCÍPIO FUNDAMENTAL DA DINÂMICA

A partir dessas definições, podemos afirmar que se a força resultante F R 3 SEGUNDA LEI DE NEWTON: PRINCÍPIO FUNDAMENTAL DA DINÂMICA 1 INTRODUÇÃO À Quando falamos de Cinemática, nosso interesse é em entender os movimentos, mas sem levar em conta a causa, lembra? Bom, agora é a hora de falarmos sobre as causas, ou seja, a relação entre

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC.

Ismael Rodrigues Silva Física-Matemática - UFSC. Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 0 Aula 0 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Introdução Apesar

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)?

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)? Potencial Elétrico O que é diferença de potencial (ddp)? A diferença de potencial entre dois pontos e num campo elétrico, seja ele uniforme ou não, é, por definição, o trabalho por unidade de carga (J/C

Leia mais

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

Gabarito da Prova P1 - Física 1

Gabarito da Prova P1 - Física 1 Gabarito da Prova P1 - Física 1 1. Duas partículas (1 e 2) se movem ao longo do eixo x e y, respectivamente, com velocidades constantes v 1 = 2ˆx cm/s e v 2 = 3ŷ cm/s. Em t = 0 s elas estão nas posições:

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 8 e 1 o semestre letivo de 9 CURSO de FÍSICA - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém: PROVA DE REDAÇÃO enunciada

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO Prof. Bruno Farias Campo Elétrico A força elétrica exercida por uma carga

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO Prof. Bruno Farias Introdução A partir de agora vamos estudar o movimento

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

Substituição Simples.

Substituição Simples. MÓDULO - AULA 17 Aula 17 Técnicas de Integração Substituição Simples. Objetivo Mostrar como usar a técnica de integração chamada substituição simples. Motivação - O Teorema Fundamental, mais uma vez...

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Física III IQ 2014 ( )

Física III IQ 2014 ( ) Atividade de treinamento - Introdução: Esta atividade tem dois objetivos: 1) Apresentar os conceitos de distribuições contínuas de carga e momento de dipolo ) Revisar técnicas de cálculo e sistemas de

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014 UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

Resultante Centrípeta

Resultante Centrípeta Questão 01) Uma criança está em um carrossel em um parque de diversões. Este brinquedo descreve um movimento circular com intervalo de tempo regular. A força resultante que atua sobre a criança a) é nula.

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia)

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia) 8. Derivada da Função Composta (Regra da Cadeia) Regra da Cadeia (primeira notação): Se e são funções diferenciáveis e = é a função composta definida por )=), então é diferenciável e é dada por )=) = ).

Leia mais

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g.

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g. Uma máquina de Atwood possui massas m A e m B, onde a massa B é maior que a massa A, ligadas por uma corda ideal, inextensível e de massa desprezível, através de uma polia de massa M e raio R. Determinar

Leia mais