Capítulo 4. Coordenadas Curvilíneas. 4.1 Introdução. Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca

Tamanho: px
Começar a partir da página:

Download "Capítulo 4. Coordenadas Curvilíneas. 4.1 Introdução. Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca"

Transcrição

1 Capítulo 4 Coordenadas Curvilíneas 4.1 Introdução Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca Φ : E 3 D = D x D y D z R 3,P E 3 7 Φ (P )=(x, y, z) R Se Φ (P )=(x, y, z),x,ye z são as coordenadas de P no sistema Φ. 2. O ponto O E 3 tal que Φ (O) =(0, 0, 0) é chamado origem do sistema. 3. Se a, b R são constantes, os conjuntos C 1 = {P E 3 : Φ (P )=(x, a, b),x D x }, C 2 = {P E 3 : Φ (P )=(a, y, b),y D y }, C 3 = {P E 3 : Φ (P )=(a, b, z),z D z }, são chamados de curvas coordenadas. Quando a = b = 0 são denominados eixos coordenados. 4. Se a R é constante, os conjuntos S 1 = {P E 3 : Φ (P )=(a, y, z),y,z D y D z }, S 2 = {P E 3 : Φ (P )=(x, a, z),x,z D x D z }, S 3 = {P E 3 : Φ (P )=(x, y, a),x,y D x D y }, são chamados superfícies coordenadas. 5. Quando as curvas coordenadas são retas, dizemos que o sistema é um sistema de coordenadas cartesianas. 6. Quando as curvas coordenadas se cruzam ortogonalmente, dizemos que o sistema é um sistema ortogonal. 181

2 182 CAPÍTULO 4. COORDENADAS CURVILÍNEAS Dadosossistemasdecoordenadas aaplicação Φ 1 : E 3 R 3, Φ 1 (P )=(u 1,u 2,u 3 ), Φ 2 : E 3 R 3, Φ 2 (P )=(x 1,x 2,x 3 ), Ψ = Φ 2 Φ 1 1 : Φ 1 E 3 R 3, (u 1,u 2,u 3 ) 7 (x 1 (u 1,u 2,u 3 ),x 2 (u 1,u 2,u 3 ),x 3 (u 1,u 2,u 3 )), é chamada aplicação mudança de coordenadas. Supondo que Ψ édeclassec 1 eque, a menos de um conjunto de medida nula se tem (x 1,x 2,x 3 ) (u 1,u 2,u 3 ) 6=0, obtemos pelo Teorema da função inversa que Ψ é localmente inversível e sua inversa é de classe C Coordenadas cartesianas ortogonais Consideramos no espaço euclidiano E 3, tres retas orientadas, os eixos, que se cruzam ortogonalmente no ponto O E 3. Um ponto P E 3 é projetado ortogonalmente sobre oseixosobtendo-seospontosp 1 sobre Ox, P 2 sobre Oy e P 3 sobre Oz. Exemplo 4.2 As coordenadas x, y e z de P são dadas, respectivamente, pelos comprimentos dos segmentos OP 1,OP 2 e OP 3 com sinal ± conforme P 1,P 2 e P 3 esteja à dieirta ou à esquerda de O.

3 4.1. INTRODUÇÃO Coordenadas cilíndricas Consideramos tres retas orientadas que se cruzam ortogonalmente em O E 3. Um ponto P E 3 é projetado ortogonalmente no plano xoy obtendo-se o ponto Q, as coordenadas cilíndricas de P são (ρ, θ, z) onde ρ = koqk,ρ [0, ), θ = (Ox, OQ),θ [0, 2π], z = ±kpqk,z R. Mudança de coordenadas cilíndricas para cartesianas: Admitindo que os dois sistemas tenham a mesma origem, temos Ψ : D R 3, onde D = R + [0, 2π] R e Ψ (ρ, θ, z) = (x ((ρ, θ, z)),y(ρ, θ, z),z(ρ, θ, z)), com O jacobiano desta transformação é x = ρ cos θ, y = ρ sen θ, z = z. (x, y, z) (ρ, θ, z) =ρ, (ρ, θ, z) que se anula apenas num conjunto de medida nula, o eixo Oz.

4 184 CAPÍTULO 4. COORDENADAS CURVILÍNEAS Coordenadas esféricas Consideramos tres retas orientadas que se cruzam ortogonalmente em O E 3. Um ponto P E 3 é projetado ortogonalmente no plano xoy obtendo-se o ponto Q, as coordenadas esféricas de P são (ρ, ϕ, θ) onde ρ = koqk,ρ [0, ), θ = (Ox, OQ),θ [0, 2π], ϕ = (Oz, OP),ϕ [0,π]. Mudança de coordenadas esféricas para cartesianas: Admitindo que os dois sistemas tenham a mesma origem, temos Ψ : D R 3, onde D = R + [0,π] [0, 2π) e Ψ (ρ, ϕ, θ) = (x ((ρ, ϕ, θ)),y(ρ, θ, ϕ),z(ρ, ϕ, θ)), com x = ρ cos θ sen ϕ, y = ρ sen θ sen ϕ, z = ρ cos ϕ. O jacobiano desta transformação é (x, y, z) (ρ, θ, ϕ) (ρ, θ, ϕ) =ρ2 sen ϕ, que se anula apenas num conjunto de medida nula,o eixo Oz.

5 4.2. FATORES DE PROPORCIONALIDADE E VERSORES Fatores de proporcionalidade e versores Por (x 1,x 2,x 3 ) denotaremos as coordenadas cartesianas de um ponto P e (u 1,u 2,u 3 ) as coordenadas de P num sistema qualquer. Sejam i, j, k os versores da base canônica, o vetor r (x 1,x 2,x 3 )=x 1 i + x 2 j + x 3 k, éovetor posição de P.Se Ψ (u 1,u 2,u 3 )=(x 1 (u 1,u 2,u 3 ),x 2 (u 1,u 2,u 3 ),x 3 (u 1,u 2,u 3 )), é uma mudança de coordenadas, escrevemos r (u 1,u 2,u 3 )=x 1 (u 1,u 2,u 3 ) i + x 2 (u 1,u 2,u 3 ) j + x 3 (u 1,u 2,u 3 ) k. Os vetores (u 1,u 2,u 3 ), (u 1,u 2,u 3 ), (u 1,u 2,u 3 ), u 1 u 2 u 3 são vetores tangentes às curvas coordenadas C 1,C 2 e C 3 respectivamente. Os escalares h 1 = (u 1,u 2,u 3 ) u 1,h 2 = (u 1,u 2,u 3 ) u 2,h 3 = (u 1,u 2,u 3 ) u 3, são chamados fatores de proporcionalidade e os vetores e 1 = 1,e 2 = 1,e 3 = 1, h 1 u 1 h 2 u 2 h 3 u 3 são os vetorestangentesunitáriosàscurvascoordenadasc 1,C 2 e C 3 respectivamente. Os vetores E 1 = u 1 k u 1 k,e 2 = u 2 k u 2 k,e 3 = u 3 k u 3 k, são os vetores normais unitários às superfícies coordenadas S 1,S 2 e S 3 respectivamente. Os conjuntos {e 1,e 2,e 3 }, {E 1,E 2,E 3 } forma uma base do R 3 e dado um vetor u qualquer podemos escrever u = c 1 + c 2 + c 3 = d 1 u 1 + d 2 u 2 + d 3 u 3, u 1 u 2 u 3 os escalares c l são chamados componentes contravariantes de u, e os escalares d l são chamados componentes covariantes de u. Nota 4.3 Quando o sistema (u 1,u 2,u 3 ) éortogonaltemose l = E l para l =1, 2, 3. Exemplo 4.4 Sejam (x, y, z) as coordenadas cartesianas de P e (ρ, θ, z) suas coordenadas cilíndricas. Temos r (ρ, θ, z) =ρ cos θi+ ρ sen θj+ zk.

6 186 CAPÍTULO 4. COORDENADAS CURVILÍNEAS 1. Na curva C ρ consideremos θ e z constantes, o vetor tangente é (ρ, θ, z) =cosθi+senθj, ρ o fator de proporcionalidade h ρ é h ρ = (ρ, θ, z) ρ =1, e o versor e ρ é e ρ =cosθi+senθj. 2. Na curva C θ consideremos ρ e z constantes, o vetor tangente é (ρ, θ, z) = ρ sen θi+ ρ cos θj, θ o fator de proporcionalidade h θ é h θ = (ρ, θ, z) θ = ρ, e o versor e θ é e θ = sen θi+cosθj. 3. Na curva C z consideremos θ e ρ constantes, o vetor tangente é (ρ, θ, z) =k, z o fator de proporcionalidade h z é h z = (ρ, θ, z) z =1, e o versor e z é e z = k. 4. Na superfície S ρ consideramos ρ constante, temos ρ (x, y, z) = p x 2 + y 2, logo Assim E ρ = ρ (x, y, z) = ρ k ρk = x p x2 + y i + y p 2 x2 + y j. 2 x p x2 + y 2 i + y p x2 + y 2 j = e ρ.

7 4.2. FATORES DE PROPORCIONALIDADE E VERSORES Na superfície S θ consideramos θ constante, temos θ (x, y, z) = arctan y x, logo Assim E θ = θ (x, y, z) = θ k θk = y x 2 + y i + x 2 x 2 + y j. 2 y p x2 + y 2 i + x p x2 + y 2 j = e θ. 6. Na superfície S z consideramos z constante, temos θ (x, y, z) =z, logo Assim E z = z (x, y, z) =k. z k zk = k = e z. Observamos que e ρ.e θ = e ρ.e z = e θ.e z =0, portanto o sistema de coordenadas cilíndricas é um sistema ortogonal Comprimento de arco num sistema ortogonal Seja γ :[a, b] R 3 uma curva regular dada por ou, ainda γ (t) =x 1 (t) i + x 2 (t) j + x 3 (t) k, γ (t) =x 1 (u 1 (t),u 2 (t),u 3 (t)) i + x 2 (u 1 (t),u 2 (t),u 3 (t)) j + x 3 (u 1 (t),u 2 (t),u 3 (t)) k. Temos pelo Teorema da função composta que x1 γ 0 (t) = u 0 1 (t)+ x 1 u 0 2 (t)+ x 1 u 0 3 (t) i+ u 1 u 2 u 3 x2 + u 0 1 (t)+ x 2 u 0 2 (t)+ x 2 u 0 3 (t) j+ u 1 u 2 u 3 x3 + u 0 1 (t)+ x 3 u 0 2 (t)+ x 3 u 0 3 (t) k, u 1 u 2 u 3 logo γ 0 (t) =u 0 1 (t) + u 0 2 (t) + u 0 3 (t), u 1 u 2 u 3

8 188 CAPÍTULO 4. COORDENADAS CURVILÍNEAS ou ainda γ 0 (t) =u 0 1 (t) h 1 e 1 + u 0 2 (t) h 2 e 2 + u 0 3 (t) h 3 e 3 (4.1) Se o sistema (u 1,u 2,u 3 ) é ortogonal segue que kγ 0 (t)k = Ocomprimento4s do arco γ\ t γ t+4t étalque q (u 0 1 (t) h 1 ) 2 +(u 0 2 (t) h 2 ) 2 +(u 0 3 (t) h 3 ) 2. 4s e= kγ 0 (t)k 4t. Concluimos que q 4s e= (u 0 1 (t) 4th 1 ) 2 +(u 0 2 (t) 4th 2 ) 2 +(u 0 3 (t) 4th 3 ) 2 q = (4u 1 h 1 ) 2 +(4u 2 h 2 ) 2 +(4u 3 h 3 ) 2 ou usando a notação de Leibinitz q ds = (du 1 h 1 ) 2 +(du 2 h 2 ) 2 +(du 3 h 3 ) 2. Exemplo 4.5 No sistema de coordenadas cilíndricas (ρ, θ, z) consideremos a curva γ : [a, b] R 3 tal que ρ (t) =cost, θ (t) =t, z (t) =1, 0 t 2π. Logo ρ 0 (t) = sen t, θ 0 (t) =1,z 0 (t) =0, como h ρ =1,h θ = ρ, h z =1, temos de (4.1) que q γ 0 (t) = sen te ρ +coste θ e kγ 0 2 (t)k = sen t +cos 2 t =1. Observemos que x (t) =ρ (t)cosθ (t),y(t) =ρ (t)senθ (t),z(t) =z (t), então γ é dada por Assim γ (t) =cos 2 ti+cost sen tj+ k. γ 0 (t) = 2cost sen ti+ ³ sen 2 t +cos 2 t j. (4.2)

9 4.2. FATORES DE PROPORCIONALIDADE E VERSORES 189 Vimos que logo Substituindo estes dados em (4.2) segue e ρ =cosθi+senθj, e θ = sen θi+cosθj, e z = k, i =cosθe ρ sen θe θ, j =senθe ρ +cosθe θ, k = e z. γ 0 (t) = sen te ρ +coste θ Elemento de volume num sistema ortogonal Consideremos o volume 4V determinado pelos deslocamentos 4u 1, 4u 2 e 4u 3 ao longo das curvas coordenadas. A curva coordenada C 1 tem como parametrização γ (t) =x 1 (u 1 (t),u 2,u 3 ) i + x 2 (u 1 (t),u 2,u 3 ) j + x 3 (u 1 (t),u 2,u 3 ) k, logo por (4.1) temos γ 0 (t) =u 0 1 (t) h 1 e 1, então o deslocamento 4u 1 é dado aproximadamente por u 0 1 (t) h 1 4te 1. Procedendo de modo análogo com as curvas C 2 e C 3, vemos que os deslocamentos 4u 2 e 4u 3 podem ser dados aproximadamente por u 0 2 (t) h 2 4te 2 e u 0 3 (t) h 3 4te 3.

10 190 CAPÍTULO 4. COORDENADAS CURVILÍNEAS Concluimos que 4V e= u 0 1 (t) h 1 4te 1.u 0 2 (t) h 2 4te 2 u 0 3 (t) h 3 4te 3. Se o sistema é ortogonal segue 4V e= u 0 1 (t) 4t u 0 2 (t) 4t u 0 3 (t) 4t h 1 h 2 h 3, ou usando a notação de Leibinitz dv = du 1 du 2 du 3 h 1 h 2 h 3. Exemplo 4.6 O elemento de volume no sistema de coordenadas cilíndricas (ρ, θ, z) é dv = ρdρdθdz.

3.6 O Teorema de Stokes

3.6 O Teorema de Stokes 18 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.6 O Teorema de tokes Definição 3.41 eja K R um conjunto fechado e limitado, com interior não vazio, cuja fronteira K é uma curva fechada, simples e regular ou regular

Leia mais

1.3 Comprimento de arco

1.3 Comprimento de arco 0 CAPÍTULO. CURVAS NO E ENOE 3.3 Comprimento de arco Seja γ :[a, b] V uma curva não necessariamente regular. Consideremos P ([a, b]) o conjunto de todas as partições de [a, b]. Uma partição P = a = t 0

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Capítulo 6: Transformações Lineares e Matrizes

Capítulo 6: Transformações Lineares e Matrizes 6 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 6: Transformações Lineares e Matrizes Sumário 1 Matriz de uma Transformação Linear....... 151 2 Operações

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais

Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais MA33 - Introdução à Álgebra Linear Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT -

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de coordenadas

ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de coordenadas 1 SISTEMAS DE COORDENADAS CURVILÍNEAS ORTOGONAIS ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de coordenadas retangulares, também denominado de cartesiano. O sistema

Leia mais

Marcelo M. Santos DM-IMECC-UNICAMP msantos/

Marcelo M. Santos DM-IMECC-UNICAMP  msantos/ Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas

Leia mais

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier Provas de Cálculo II 0/008 Professor Rudolf R. Maier UNIVERSIDADE DE BRASÍLIA Brasília, 5 de setembro de 008. a prova em CALCULO II ) Determinar as retas normais da curva y = + x que passam pela origem.

Leia mais

Integral Triplo. Seja M um subconjunto limitado de 3.

Integral Triplo. Seja M um subconjunto limitado de 3. Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies

Leia mais

2.4 Interpretação vetorial do Teorema de Green

2.4 Interpretação vetorial do Teorema de Green 2.4. INTERPRETAÇÃO VETORIAL DO TEOREMA DE GREEN 55 2.4 Interpretação vetorial do Teorema de Green Para vermos a interpretação vetorial do Teorema de Green e algumas aplicações, precisamos definir os operadores

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

Capítulo 19. Coordenadas polares

Capítulo 19. Coordenadas polares Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

raio do hemisfério: a; intensidade do campo elétrico: E. (II) (III)

raio do hemisfério: a; intensidade do campo elétrico: E. (II) (III) Calcule o fluxo elétrico através de um hemisfério de raio a imerso num campo elétrico de intensidade E. Dados do problema raio do hemisfério: a; intensidade do campo elétrico: E. Solução O fluxo elétrico

Leia mais

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques CINEMÁTICA VETORIAL5 Gil da Costa Marques 5.1 Referenciais 5. Vetores e Referenciais Cartesianos 5.3 Referenciais Gerais 5.4 Vetores em Coordenadas Polares 5.5 Vetores Velocidade e Aceleração em coordenadas

Leia mais

Transformações geométricas planas

Transformações geométricas planas 9 Transformações geométricas planas Sumário 9.1 Introdução....................... 2 9.2 Transformações no plano............... 2 9.3 Transformações lineares................ 5 9.4 Operações com transformações...........

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

Parametrização de algumas curvas planas

Parametrização de algumas curvas planas Aula 3 Parametrização de algumas curvas planas Nesta aula veremos como obter equações paramétricas de algumas curvas planas, usando relações trigonométricas básicas e observando as condições que um ponto

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

1 R n, propriedades, topologia

1 R n, propriedades, topologia 1 R n, propriedades, topologia Lembrete: Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Em particular, R R = R 2 = {(x, y) : x, y R}: podemos representar

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de

ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de SISTEMAS DE COORDENADAS CURVILÍNEAS ORTOGONAIS ATÉ ESTE PONTO, todas as expressões foram desenvolvidas utilizando-se um sistema de coordenadas retangulares, também denominado de Cartesiano. O sistema Cartesiano

Leia mais

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017 9 de Outubro de 2017 Vetores Ferramenta matemática que é utilizada nas seguintes disciplinas dos cursos de Engenharia: Física; Mecânica Resistência dos materiais Fenômenos do transporte Consideremos um

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

Resumo dos resumos de CDI-II

Resumo dos resumos de CDI-II Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto

Leia mais

CÁLCULO E ANÁLISE VETORIAL E TENSORIAL

CÁLCULO E ANÁLISE VETORIAL E TENSORIAL CÁLCULO E ANÁLISE VETORIAL E TENSORIAL José Vasconcelos Doutor em Ciências Licenciado em Música 2 Prefácio do Autor O grande mérito do presente livro, acreditamos, está em apresentar de maneira clara e

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0 Solução dos Exercícios Capítulo 6 Exercício 6.1: Seja γ: [, + [ R 3 definida por γ(t) = (e t cos t, e t sen t, e t ). Mostre que γ é retificável e calcule seu comprimento. Solução: γ é curva de classe

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

APONTAMENTOS DE CINEMÁTICA

APONTAMENTOS DE CINEMÁTICA DEPARTAMENTO DE FÍSICA APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS João Fonseca Cinemática. 1 - Referencial. Coordenadas. Para localizarmos uma partícula (um ponto material) no espaço

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

Álgebra Linear I - Aula 8. Roteiro

Álgebra Linear I - Aula 8. Roteiro Álgebra Linear I - Aula 8 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. 5. Distância entre duas retas.

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometria Analítica e Álgebra Linear por PAULO XAVIER PAMPLONA UFCG-UATA 2011 Conteúdo 1 Vetores 4 1.1 Introdução..................................... 4 1.2 Vetores no Plano.................................

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo

Leia mais

Eletromagnetismo. Eletrostática: O campo elétrico

Eletromagnetismo. Eletrostática: O campo elétrico Eletromagnetismo Eletrostática: O campo elétrico Eletromagnetismo» Eletrostática: O campo elétrico Introdução A eletrostática é a área do eletromagnetismo na qual se estuda o comportamento e as consequências

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

Geometria Analítica II - Aula 7 178

Geometria Analítica II - Aula 7 178 Geometria Analítica II - Aula 7 178 Aula 8 Superfícies Regradas Dizemos que uma superfície S é regrada quando por todo ponto P pertencente a S passa pelo menos uma reta r P inteiramente contida em S. Fig.

Leia mais

Aula 4. Coordenadas polares. Definição 1. Observação 1

Aula 4. Coordenadas polares. Definição 1. Observação 1 Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas

Leia mais

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A Primeira avaliação - MAT1168 - MATEMÁTICA APLICADA II - Turma A Nome: Cartao: Regras a observar: eja sucinto porém completo. Justifique todo procedimento usado. Use notação matemática consistente. Ao usar

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x

Leia mais

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1 Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

(b) a quantidade de cloro no tanque no instante t;

(b) a quantidade de cloro no tanque no instante t; NOME: Universidade Federal do Rio de Janeiro Instituto de Matemtica Departamento de Mtodos Matemticos Gabarito da a Prova de Cálculo II - 06//0 a QUESTÃO : Um tanque possui 0 litros de solução com cloro

Leia mais

Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto

Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto Resumos de CD- 1. Topologia e Continuidade de Funções em R n 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto B r (a) = {x R n : x a < r}. 2. Seja A R n um conjunto. m ponto a A diz-se: (i)

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Geometria Diferencial Superfícies no espaço tridimensional

Geometria Diferencial Superfícies no espaço tridimensional Geometria Diferencial Superfícies no espaço tridimensional Prof. Ulysses Sodré Londrina-PR, 20 de Setembro de 2007. Conteúdo 1 Topologia de Rn 3 1.1 Bola aberta em Rn................................. 3

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas

Leia mais

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,

Leia mais

MAT Geometria Diferencial 1 - Lista 2

MAT Geometria Diferencial 1 - Lista 2 MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Equações Parciais Em Coordenadas Esféricas

Equações Parciais Em Coordenadas Esféricas Equações Parciais Em Coordenadas Esféricas Lucas Nobrega Natã Gomes David de Mattos Pereira João Paulo Carvalho Corrêa Ricardo Wertes Motta UFF Depto. de Matemática Aplicada Métodos Matemáticos Aplicados

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

1 Diferenciabilidade e derivadas direcionais

1 Diferenciabilidade e derivadas direcionais UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados

Leia mais

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 VETOR POSIÇÃO r = xi + yj + zk VETOR DESLOCAMENTO Se uma partícula se move de uma posição r 1 para outra r 2 : r = r 2 r 1 r = x 2 x 1 i + y 2 y 1 j + z 2 z 1 k VETORES VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA

Leia mais