Resumo dos resumos de CDI-II

Tamanho: px
Começar a partir da página:

Download "Resumo dos resumos de CDI-II"

Transcrição

1 Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto de uma função limitada por um infinitésimo: porque y 0 e lim (x,y) (0,0) x 2 y x 2 + y 2 = 0 x 2 x 2 + y Teorema Weierstrass: Se R n é compacto e f : R é contínua então f tem máximo e mínimo em 2 álculo Diferencial em R n 1 Derivada de f : R n R m segundo o vector v R n no ponto a R n : 2 Derivada parcial: f (a) = lim v h 0 3 f : R n R m é diferenciável em a se onde Df(a) é a matriz Jacobiana: f(a + hv) f(a) h f (a) = f (a) x i e i f(a + h) f(a) Df(a) h lim = 0, h 0 h Df(a) = f 1 f 1 f m f m 1

2 4 f diferenciável em a f contínua em a 5 f diferenciável em a f v (a) = Df(a) v 6 f : R n R m é de classe 1 se todas as suas derivadas parciais f i x j são funções contínuas 7 f 1 f diferenciável 8 Derivada da composta: D(g f)(a) = Dg(f(a))Df(a) 9 Regra da cadeia: 10 Gradiente: (g i f) x j = grad f f = m k=1 g i y k f k x j ( f,, f ) 3 Fórmula de Taylor e Extremos 1 Lema de Schwarz: Se f : R n R é de classe 2 então x i x j = 2 f x j x i, ou seja, a matriz Hessiana Hf = 2 2 é simétrica 2 Se f : R n R tem um extremo local em a R n então Df(a) = 0 (a é um ponto crítico, ou ponto de estacionaridade) 3 f : R n R de classe 2, a R n um ponto crítico de f Se Hf(a) é: (i) definida positiva (todos os vp > 0) então a é um ponto de mínimo local; (ii) definida negativa (todos os vp < 0) então a é um ponto de máximo local; (iii) indefinida (existem vp > 0 e vp < 0) então a é um ponto de sela 4 álculo Integral em R n 1 Teorema de Fubini: ( f = I J I J ) ( ) f(x, y) dv m (y) dv n (x) = f(x, y) dv n (x) dv m (y) J I 2

3 2 Teorema de mudança de variáveis: g() f = 3 oordenadas polares: g : ]0, + [ ]0, 2π[ R 2 { x = r cos θ y = r sen θ (f g) Jg, Jg(r, θ) = r 4 oordenadas ciĺındricas: g : ]0, + [ ]0, 2π[ R R 3 x = ρ cos ϕ y = ρ sen ϕ z = z, Jg(ρ, ϕ, z) = ρ 5 oordenadas esféricas: g : ]0, + [ ]0, π[ ]0, 2π[ R 3 x = r sen θ cos ϕ y = r sen θ sen ϕ z = r cos θ, Jg(r, θ, ϕ) = r 2 sen θ 6 Dada uma função densidade de massa ρ : R 3 R + define-se: (i) O volume de : (ii) massa de : V 3 () = M = (iii) coordenada x do centro de massa de : x = 1 M (analogamente para ȳ, z; fazendo ρ = 1 obtém-se o centróide) (iv) O momento de inércia de em relação ao eixo dos zz: I z = ρ (x 2 + y 2 ) (analogamente para I x, I y ) 7 Regra de Leibnitz: ρ 1 ρ x d f f(x, t) dv n (x) = dt I I t (x, t) dv n(x) 3

4 5 Função Inversa e Função Impĺıcita 1 Teorema da Função Inversa: f : R n R n 1, Jf(a) 0 Então f é invertível numa vizinhança de a, com inversa 1 lém disso, nessa vizinhança Df 1 (f(x)) = [Df(x)] 1 2 Teorema da Função Impĺıcita: F : R n+m R m 1, F(a, b) = 0, det F y (a, b) 0 Então existe uma função f : R n R m tal que F(x, y) = 0 y = f(x) numa vizinhança de (a, b) lém disso, [ ] F 1 F Df(a) = (a, b) (a, b) y x 6 Variedades Diferenciáveis e Extremos ondicionados 1 Se M = {x R n : F(x) = 0} e car DF(x) = n m para todo o x M então M é uma variedade diferenciável de dimensão m 2 O espaço normal a M em x é T x M = L{ F 1 (x),, F n m (x)} O espaço tangente a M em x é T x M = ( T x M) 3 Regra dos Multiplicadores de Lagrange: Os extremos de f : R n R restrita a M são soluções do sistema { (f + λ 1 F λ n m F n m )(x) = 0 7 Integrais em Variedades F(x) = 0 1 Se é uma curva parametrizada por g : [a, b] R então f = b a f(g(t)) dg dt (t) dt 2 Se S é uma superfície parametrizada por g : R 2 M então f = f(g(u, v)) g S u g v du dv = f(g(u, v)) det(dg t Dg) du dv 4

5 8 Integrais de Linha, ampos Gradientes e ampos Fechados 1 Integral de linha de F ao longo da curva (depende do sentido): b F, dg = F(g(t)), dg dt (t) dt 2 Teorema Fundamental do álculo para Integrais de Linha: φ, dg = φ(g(b)) φ(g(a)) 3 F é gradiente sse a F, dg = 0 para qualquer curva fechada 4 F é fechado se F i = F j (ou seja, se DF é simétrica) x j x i 5 F gradiente F fechado 6 Duas curvas fechadas dizem-se homotópicas se podem ser continuamente deformadas uma na outra 7 F fechado, 1, 2 homotópicas F, dg = 1 F, dg 2 8 R n é simplesmente conexo se qualquer curva fechada em é homotópica em a um ponto 9 F fechado, domínio simplesmente conexo F gradiente 9 Teorema de Green, Teorema da Divergência e Teorema de Stokes 1 Teorema de Green: F, dg S P dx + Qdy = ( Q x P ) dx dy y 2 Fluxo de F através da superfície S (depende do sentido): F, n = F(g(u, v)), g u g du dv v 3 Divergência: 4 Teorema da Divergência: onde n é a normal unitária exterior div F F = F F n div F = 5 Rotacional: e 1 e 2 e 3 rot F F = = x y z F 1 F 2 F 3 F, n, ( F3 y F 2 z, F 1 z F 3 x, F 2 x F ) 1 y 5

6 6 Teorema de Stokes: S rot F, n = S F, dg, onde S deve ser percorrido no sentido indicado por n através da regra da mão direita 7 F rotacional div F = 0 8 R n é em estrela se existe um ponto a tal que [a, x] para todo o x, onde [a, x] é segmento de recta de extremos a e x 9 div F = 0, domínio em estrela F rotacional 6

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π MAT 2455 álculo Diferencial e Integral para Engenharia III Prova 2 14/5/213 Turma A Questão 1. a) 1, ponto) Um o tem o formato da curva {x, y) R 2 : x 2) 2 + y 2 = 4, y }. Se sua densidade de massa é dada

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

CDI-II. Trabalho. Teorema Fundamental do Cálculo

CDI-II. Trabalho. Teorema Fundamental do Cálculo Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Trabalho. Teorema Fundamental do Cálculo 1 Trabalho. Potencial Escalar Uma das noções mais importantes

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n. Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos

Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n. Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos Exercícios de Cálculo Diferencial e Integral de Funções Definidas em R n Diogo Aguiar Gomes, João Palhoto Matos e João Paulo Santos 24 de Janeiro de 2000 2 Conteúdo 1 Introdução 5 1.1 Explicação.........................................

Leia mais

Resumo de Aulas Teóricas de Análise Matemática II. Rui Albuquerque Universidade de Évora 2011/2012

Resumo de Aulas Teóricas de Análise Matemática II. Rui Albuquerque Universidade de Évora 2011/2012 1 Resumo de Aulas Teóricas de Análise Matemática II Rui Albuquerque Universidade de Évora 2011/2012 Aula 1 O espaço euclideano R n : Espaço vectorial, espaço de pontos, vectores a = (a 1,..., a n ), x

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Lista 7.2 Optimização Livre

Lista 7.2 Optimização Livre Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II 1. Extremante local de uma função escalar f: Ponto do domínio de f cuja imagem é não superior ou não inferior às imagens de

Leia mais

Lições de Análise Matemática 2. Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto

Lições de Análise Matemática 2. Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto Julho de 008 Conteúdo Prefácio vii 1 Breves Noções de Topologia em R n 1 Funções Diferenciáveis

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n.

CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Pro. Gabriel Pires CDI-II Derivadas de Ordem Superior. Extremos 1 Derivadas de Ordem Superior Seja : D R n R, deinida num

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

CAMPOS CONSERVATIVOS NO PLANO

CAMPOS CONSERVATIVOS NO PLANO CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercícios Resolvidos Integral de Linha de um Campo Vectorial Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ercícios Resolvidos Integral de inha de um ampo Vectorial ercício onsidere o campo vectorial F,, z =,, z. alcule o integral

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Aulas Práticas de Matemática II

Aulas Práticas de Matemática II Aulas Práticas de Matemática II Curso de Arquitectura Resumo da Matéria com exercícios propostos e resolvidos Henrique Oliveira e João Ferreira Alves Conteúdo 1 Derivadas parciais 4 Polinómios de Taylor

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

O Cálculo λ sem Tipos

O Cálculo λ sem Tipos Capítulo 2 O Cálculo λ sem Tipos 21 Síntaxe e Redução Por volta de 1930 o cálculo lambda sem tipos foi introduzido como uma fundação para a lógica e a matemática Embora este objectivo não tenha sido cumprido

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Funções reais de variável real

Funções reais de variável real Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.

Leia mais

Teorema da Mudança de Coordenadas

Teorema da Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Prof. Gabriel Pires eorema da Mudança de Coordenadas 1 Mudança de Coordenadas Definição 1 eja n um aberto. Diz-se que uma

Leia mais

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciabilidade 2 1.1 Noções Topológicas no R n.............................

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Diferenciais inexatas e o fator integrante

Diferenciais inexatas e o fator integrante Métodos Matemáticos 202 Notas de Aula Equações Diferenciais Ordinárias III A C Tort 2 de outubro de 202 Diferenciais inexatas e o fator integrante imos que a EDO implícita: é exata se e apenas se: M(x,

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

1 Transformada de Laplace

1 Transformada de Laplace Dep. de Matemática da F..T.U.. - Análise Matemática IV - 5/6. Transformada de Laplace. Usando a definição de Transformada de Lapace, mostre que a) L{} = s, s>; b) L{e kt } = s k, s>k; c) L{t n } = n!,

Leia mais

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima Cálculo Diferencial e Integral III - EAD Professor Paulo Cupertino de Lima Sumário Sumário i 0.1 Apresentação do livro............................. v 1 Revisão: retas, planos, superfícies cilíndricas

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

Universidade Federal de Goiás. Plano de Ensino

Universidade Federal de Goiás. Plano de Ensino 01: Dados de Identificação da Disciplina: Plano de Ensino Disciplina: Cálculo Diferencial e Integral 3 Cod. da Disciplina: 60P2MB Curso: Engenharia de Computação Cod. do Curso: Turma: Cálculo Diferencial

Leia mais

Cálculo diferencial em IR n

Cálculo diferencial em IR n Cálculo diferencial em IR n (Eercícios) DMAT Abril 2003 1 Eercícios propostos 1.1 Funções de IR n em IR m Eercício 1 Determine os domínios das funções seguintes e represente-os graficamente. 2 + 2 9 ;

Leia mais

Funções de Várias Variáveis por Milton Procópio de Borba

Funções de Várias Variáveis por Milton Procópio de Borba Funções de Várias Variáveis por Milton Procópio de Borba Neste capítulo, iremos ampliar os conhecimentos de ites, derivadas, diferenciais e estudo da variação das funções que dependem de mais que uma variável.

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

EEE 335 Eletromagnetismo II

EEE 335 Eletromagnetismo II 0.6 J 0 J 1 0.4 J 2 J 3 0.2 0 0.2 0 2 4 6 8 10 Universidade Federal do Rio de Janeiro EEE 335 Eletromagnetismo II Prof. Antonio Carlos Siqueira de Lima Sobre as notações Vetores em negrito nos slides!

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 005/006 Estas notas constituem um material

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Teorema da Mudança de Variáveis

Teorema da Mudança de Variáveis Instituto Superior écnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires eorema da Mudança de Variáveis 1 Mudança de Variáveis Definição 1 Seja R n um aberto. Di-se que uma

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

EDITAL Nº 103, de 2016 Processo Seletivo para os cursos de Pós-Graduação em Matemática 2016/2

EDITAL Nº 103, de 2016 Processo Seletivo para os cursos de Pós-Graduação em Matemática 2016/2 Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Instituto de Matemática EDITAL Nº 103, de 2016 Processo Seletivo para os cursos de Pós-Graduação em Matemática 2016/2

Leia mais

Análise Matemática III - Turma Especial

Análise Matemática III - Turma Especial Análise Matemática III - Turma Especial Ficha Extra 6 - Equações de Maxwell Não precisam de entregar esta ficha omo com todas as equações básicas da Física, não é possível deduzir as equações de Maxwell;

Leia mais

CAMPOS DE VETORES. Capítulo 4. 4.1 Introdução. Definição 4.1. Umcampo devetores em A R n é umafunção. F : A R n R n.

CAMPOS DE VETORES. Capítulo 4. 4.1 Introdução. Definição 4.1. Umcampo devetores em A R n é umafunção. F : A R n R n. Capítulo 4 CAMPOS DE VETORES 4.1 Introdução Definição 4.1. Umcampo devetores em A R n é umafunção F : A R n R n. Seja A R n um conjunto aberto. O campo de vetores F : A R n R n é dito contínuo, diferenciável

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 4: Campos Escalares e Vetoriais Campo Escalar: Seja D uma região no espaço tridimensional e seja

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Apostila de Cálculo Vetorial

Apostila de Cálculo Vetorial PET-EM Apostila de álculo Vetorial Iury de Araujo umário 1 Unidade I 5 1.1 Operações Vetoriais........................ 5 1.1.1 Adição e subtração.................... 5 1.1.2 Multiplicações Vetoriais.................

Leia mais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

Funções de varias variáveis ou Funções reais de variável vetorial

Funções de varias variáveis ou Funções reais de variável vetorial Funções de varias variáveis ou Funções reais de variável vetorial F : R n R (1,,..., n ) w F( 1,,.., 3 ) n R Dom( F) S S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.):

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Da Eq. 13: UNIVERSIDADE DE SÃO PAULO Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Para fluido Newtoniano, a tensão viscosa é proporcional à taxa de deformação angular);

Leia mais

Mecânica. Forças Conservativas e a Energia Mecânica

Mecânica. Forças Conservativas e a Energia Mecânica Mecânica Forças Conservativas e a Energia Mecânica Mecânica» Forças Conservativas e a Energia Mecânica 1 Forças Conservativas O trabalho realizado por uma força, quando do deslocamento de uma partícula

Leia mais

Introdução à Topologia Algébrica

Introdução à Topologia Algébrica Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Algébrica Autor: Wagner Carvalho Sgobbi Orientador: Alexandre Paiva Barreto

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais