Cap. 6 Variáveis aleatórias contínuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cap. 6 Variáveis aleatórias contínuas"

Transcrição

1 Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) Departamento de Informática e Estatística UFSC (INE/CTC/UFSC)

2 Variável aleatória discreta variável aleatória contínua os possíveis resultados estão contidos em um conjunto finito ou enumerável E. os possíveis resultados abrangem todo um intervalo de números reais E número de defeitos em... 0 tempo de resposta de...

3 Variáveis aleatórias contínuas tempo de resposta de um sistema computacional; rendimento de um processo químico; tempo de vida de um componente eletrônico; resistência de um material; etc. Variáveis aleatórias discretas com grande número de possíveis resultados (podem ser aproimadas para contínuas): número de transações por segundo de uma CPU; número de defeitos numa amostra de itens; etc.

4 Variável aleatória: discreta contínua Discreta 1 ½ p() 1 ½ f() área total = setores 3 1 f()

5 Variável aleatória: discreta contínua Contínua II III 0 0 I III f() área total =

6 Variável aleatória contínua II 0 0 I 0 0 III III f() área = P( 0 X < 90) 70 0 f() área total = evento {0 X < 90}

7 Variável aleatória contínua As probabilidades de eventos associados a uma variável aleatória contínua X podem ser calculadas através de uma função densidade de probabilidade f, que deve satisfazer: f ( ) 0, R e + f ( ) d( ) = 1 f() Se A = [a, b], então P ( A) f ( ) d( ) = b a a b

8 Eemplo 6.3 Variável aleatória contínua f ( t) e = 0, t, para para t 0 t < 0 f(t) 3 t P( T 3 + > 3) = f ( t) dt = 3 + e t dt = 1 e t + 3 = 0 + e (3) = e 6

9 Variável aleatória contínua Função de distribuição acumulada F( ) = P( X ) = f ( s) ds, R Eemplo 6.3 F( t) = 1 0, e t, para para t 0 t < 0 1 F(t) t

10 Variável aleatória contínua Valor esperado e variância + µ = E ( X ) = f ( ) d σ + = V ( X ) = ( µ ) f ( ) d ou ) V ( X ) = E( X µ onde: + E ( X ) = f ( ) d

11 Principais Modelos Contínuos Distribuição uniforme f ( ) = 1, β α 0, para para [ α, β ] [ α, β ] Eemplo: II III 0 0 I III f() área total =

12 Principais Modelos Contínuos Distribuição uniforme f ( ) = 1, β α 0, para para [ α, β ] [ α, β ] F( ) = 0, α, β α 1, para < α para α para β < β 1 β α f() F() 0 α β 0 α β α + β ( X ) = E ( β α ) V ( X ) = 1

13 Principais Modelos Contínuos Distribuição eponencial Eemplos: tempo (em minutos) até a próima consulta a uma base de dados; tempo (em segundos) entre pedidos a um servidor; distância (em m) entre defeitos de uma fita. 0 t Número X de ocorrências do evento em [0, t) Tempo T até a ocorrência do evento Poisson Eponencial

14 Principais Modelos Contínuos Distribuição eponencial λt f ( t) = λe, t > 0 F( t) = P( T t) = 1 e λt E( T) = V ( T ) = 1 λ 1 λ λ f ( t) = t λe λ P ( T > t 0 ) = e λt 0 t 0 t

15 Principais Modelos Contínuos Distribuição eponencial Eemplo 6.3 f ( t) e = 0, t, para para t 0 t < 0 f(t) P( T 3) =? Resp. 3 t P 3 t ( T 3) = e dt ou P( T 3) = P( T ) P( T > 3) = e () e (3) = e 4 e 6 = 0,0158

16 Principais Modelos Contínuos Distribuição normal f ( ) = 1 e σ π 1 µ σ, < < + E(X ) = µ f() V ( X ) = σ área total = 1 σ σ µ -σ µ + σ µ

17 Principais Modelos Contínuos Distribuição normal µ e σ 1 = σ 1 µ µ 3 = µ 4 e σ 3 < σ 4

18 Principais Modelos Contínuos Distribuição normal padrão Distribuição de X: normal com µ = 170 e σ = 10 Distribuição de Z: normal padrão P(X > 180) = P(Z > 1) z µ = = σ = 1

19 Principais Modelos Contínuos Tabela da distribuição normal padrão segunda decimal de z z 0,00 0,01 0,0... 0,09 0,0 0,1 0,... 0,4168 (área na cauda superior ) (pela tabela)

20 Principais Modelos Contínuos Tabela da distribuição normal padrão P(-0,4 < Z < 0,4) =? = - Então, P(-0,4 < Z < 0,4) = 1 (0,337) = 0,356

21 A normal como limite de outras distribuições Aproimação normal à binomial Condição: n grande e p não muito próimo de 0 (zero) ou de 1 (um). Parâmetros: µ = np σ = np( 1 p)

22 Aproimação normal à binomial

23 Aproimação normal à binomial E. Qual é a probabilidade de mais de 6 caras em 10 lançamentos de uma moeda honesta? Pela binomial: 0,05 0,46 0,05 P(X > 6) = p(7) + p(8) + p(9) + p(10) = 0,17 0,117 0,117 p( ) 10 =. ( ) 10 0,5.( 0,5) 0,001 0,01 0,044 0,044 0,01 0,

24 Aproimação normal à binomial E. Qual é a probabilidade de mais de 6 caras em 10 lançamentos de uma moeda honesta? Pela normal: P(X > 6,5)

25 Aproimação normal à binomial E. Qual é a probabilidade de mais de 6 caras em 10 lançamentos de uma moeda honesta? Pela normal: P(X > 6,5) 0, ,5 0 0,95 z µ z = = σ 6,5 5,5 = 0,95

26 A normal como limite de outras distribuições Aproimação normal à Poisson Aproimação válida quando λ for grande λ =1 λ =5 λ =0 0,4 p() 0,3 0, 0,1 0,15 p() 0,10 0,05 0,08 p() 0,04 0, , , Parâmetros da normal: µ = λ σ = λ

27 Gráfico de probabilidade normal E. Dados:74,0; 74,4; 74,7; 74,8; 75,9 1,4 1,0 valor esperadopela normal 0,6 0, -0, -0,6-1,0-1,4 73,6 74,0 74,4 74,8 75, 75,6 76,0 valor observado

28 Gráfico de probabilidade normal Dados com distribuição normal,5 valores esperados pela normal 1,5 0,5-0,5-1,5 -,5 7,5 73,5 74,5 75,5 76,5 77,5 78,5 valores observados

29 Gráfico de probabilidade normal Dados com distribuição normal, mas com um ponto discrepante,5 valores esperados pela normal 1,5 0,5-0,5-1,5 valor discrepante -, valores observados

30 Gráfico de probabilidade normal Dados com distribuição assimétrica f() valores esperados pela normal valores observados

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL Introdução Variável aleatória Discreta: assume um número finito ou infinito numerável de valores Contínua: assume todos os valores

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA Conceitos sob a ótica de Avaliação de Desempenho de Sistemas Marcos Portnoi Edição 26.6.2010 Universidade Salvador

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná Quinto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Título PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Código da disciplina SIA CCE0292 16 Número de semanas de aula 4 Número

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Distribuições de Probabilidade Distribuição Poisson

Distribuições de Probabilidade Distribuição Poisson PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem

23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais índice MENSAGEM DO AUTOR 11 AGRADECIMENTOS 13 Capítulo 1 Introdução Importância da estatística 17 O que é a Estatística? Escalas de medida Escala de medida qualitativa Escalas Nominais Escalas Ordinais

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná 1º Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este relatório apresenta uma análise estatística

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 2 1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA... 3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)... 4 1.3.1.

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA IDENTIFICAÇÃO (20140195) CURSOS A QUE ATENDE ADMINISTRACAO,

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL E. F. S. PEREIRA e L. M. N de Gois Universidade Federal da Bahia, Escola Politécnica, Departamento de Engenharia

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Aula 1 Estatística e Probabilidade

Aula 1 Estatística e Probabilidade Aula 1 Estatística e Probabilidade Anamaria Teodora Coelho Rios da Silva Aula 1 Plano de ensino Planejamento das aulas Referências Bibliográficas Atividades de Aprendizagem Orientadas Sistema de Avaliação

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial

Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto

Leia mais

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira Revisão estatística e probabilidade Prof. Anderson Almeida Ferreira População População é o conjunto de elementos (indivíduos, objetos, etc.) que formam o universo de nosso estudo e que são passíveis de

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade statística para Cursos de ngenharia e Informática edro lberto Barbetta / Marcelo Menezes Reis / ntonio Cezar Bornia São aulo: tlas, 2004 Cap. 4 - robabilidade OIO: undação de Ciência e Tecnologia de Santa

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Lista 5 - Introdução à Probabilidade e Estatística

Lista 5 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Métodos Estatísticos. 6 - Amostragem. Referencia: Estatística Aplicada às Ciências Sociais, Cap. 3 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002.

Métodos Estatísticos. 6 - Amostragem. Referencia: Estatística Aplicada às Ciências Sociais, Cap. 3 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Métodos Estatísticos 6 - Amostragem Referencia: Estatística Aplicada às Ciências Sociais, Cap. 3 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. População x Amostra População - conjunto dos elementos

Leia mais

Modelo Binomial. 1º semestre de 2009- Gabarito 2. Distribuição Binomial ME323

Modelo Binomial. 1º semestre de 2009- Gabarito 2. Distribuição Binomial ME323 Exercício 01 Acredita-se que 20% dos moradores das proximidades de uma grande indústria siderúrgica tem alergia aos poluentes lançados ao ar. Admitindo que este percentual de alérgicos é real (correto),

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Unidade 3 DISTRIBUIÇÕES DE PROBABILIDADE

Unidade 3 DISTRIBUIÇÕES DE PROBABILIDADE Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 006/ Unidade 3 DISTRIBUIÇÕES DE PROBABILIDADE Conceitos básicos

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Introdução à Informática

Introdução à Informática Introdução à Informática Alexandre Meslin (meslin@nce.ufrj.br) Objetivo do Curso Apresentar os conceitos básicos de informática, de software e de hardware. Introduzir os conceitos relativos à representação

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Autenticação em aplicações web

Autenticação em aplicações web Autenticação em aplicações web Notas para a UC de Segurança Informática Inverno de 11/12 Pedro Félix (pedrofelix em cc.isel.ipl.pt) Instituto Superior de Engenharia de Lisboa Limitações práticas Deployability

Leia mais

AEP FISCAL CURSO DE ESTATÍSTICA

AEP FISCAL CURSO DE ESTATÍSTICA AEP FISCAL CURSO DE ESTATÍSTICA Auditor Fiscal da Receita Federal do Brasil, Analista Tributário da Receita Federal do Brasil e Auditor Fiscal do Trabalho. Prof. Weber Campos webercampos@gmail.com AUDITOR-FISCAL

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:

Leia mais