Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua."

Transcrição

1 Prof. Lorí Viali, Dr. s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada variável aleatória. O conjunto formado por todos os valores, isto é, a imagem da variável aleatória X, é denominado de conjunto de valores de X. X(S) { R / X(s) } Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

2 Se o conjunto de valores for finito ou então infinito enumerável a variável é dita discreta. Se o conjunto de valores for infinito não enumerável então a variável é dita contínua. A função de probabilidade (fp) de uma VAD é a função que associa a cada i X(S) o número f( i ) P(X i ) que satisfaz as seguintes propriedades: f( i ), para todo i f( i ) A coleção dos pares [ i, f( i )] para i,,,... é denominada de distribuição de probabilidade da VAD X.

3 Suponha que uma moeda equilibrada é lançada três vezes. Seja X número de caras. Então a distribuição de probabilidade de X é: KKK CKK KKC KCK CCK CKC KCC R S f () CCC X f [;] KKK CKK /8 KKC /8 KCK /8 CCK CKC /8 KCC R S f () CCC X f [;] Suponha que um par de dados é lançado. Então X soma do par é uma variável aleatória discreta com o seguinte conjunto de valores: Como X((a, b)) a + b, o conjunto de valores de X é dado por: X(S) {,, 4, 5, 6, 7, 8, 9,,, } A função de probabilidade f() P(X ), associa a cada X(S), um número no intervalo [; ] dado por: f() P(X ) P(X(s) ) P([ X(S) / X(s) })

4 Desta forma: f() P(X ) P{(,)} / f() P(X ) P{(,), (, )} /... f() P(X) P{(6, 5), (5, 6)} / f() P(X ) P{(6, 6)} / A distribuição de probabilidade será: f() A distribuição de probabilidade de X será então: Σ Através de: uma tabela uma epressão analítica (fórmula) um diagrama Seja X número de caras, obtidas no lançamento de 4 moedas honestas. Então a distribuição de X é a dada ao lado. 4 Σ f() /6 4/6 6/6 4/6 /6 Considere X soma do par, no lançamento de dois dados equilibrados, então: f : X(S) R ( - )/ se 7 ( - -)/ se > 7,8,6,4,,,8,6,4,,

5 (a) Epectância, valor esperado µ E(X).f ().P(X ) (b) Desvio padrão σ f ()( µ) f () µ Calcular o valor esperado e a variabilidade da variável X número de caras no lançamento de quatro moedas honestas. 4 Σ f() /6 4/6 6/6 4/6 /6.f() 4/6 /6 /6 4/6 /6 f() 4/6 4/6 /6 6/6 8/6 (a) Epectância ou valor esperado µ E (X).f () caras 6 (b) Desvio padrão 8 σ f () µ (c) Moda m o caras (d) Mediana m e caras Bernoulli Binomial Geométrica Hipergeométrica Binomial Negativa Uniforme Poisson 5

6 EXPERIMENTO Qualquer um que corresponda a apenas dois resultados. Estes resultados são anotados por ou fracasso e ou sucesso. A probabilidade de ocorrência de sucesso é representada por p e a de insucesso por q p. Conjunto de Valores X(S) {, } A Função de Probabilidade (fp) A Função de Probabilidade (fp),,8,6 p f () P(X ) p se se,4,, A Função de Distribuição (FD) Função de Distribuição F() P(X ) q se < se < se q p 6

7 Características Epectância ou Valor Esperado E(X).f ().q +.p p Variância V ( X ) ( p.q p + E ( X.p ) p ( ) - E(X) p ) pq p Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em um teste. Determine a distribuição de X. Como se trata de um único teste, a variável X é Bernoulli com p %, assim a distribuição é:,9 f () P(X ), se se EXPERIMENTO Como eistem apenas duas situações: A ocorre e A não ocorre, pode-se determinar a probabilidade de A não ocorrer como sendo q p. A VAD definida por X número de vezes que A ocorreu nas n repetições de E é denominada BINOMIAL. Conjunto de Valores X(S) {,,,,..., n} A Função de Probabilidade (fp) n f () P(X ) p q n 7

8 A Função de Probabilidade (fp) A Função de Distribuição (FD),8,6,4,,,8,6,4,, n k F() P(X ) p q k k n-k se < se n se > n,,9,8,7,6,5,4,,,, Função de Distribuição Características Epectância ou Valor Esperado n n E(X).f (). p q np Variância V(X) E(X ) - E(X) n n E(X ). p q n(n -) p + np V(X) E(X n p ) - E(X) n(n ) p + np (np) Assim: + np np( p) npq E (X) σx np npq Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em testes. Determine a distribuição de X. 8

9 Como se tratam de testes a variável X é Binomial com p %, assim a distribuição é: f () P(X ) (,).(,9) para,,,..., EXPERIMENTO A distribuição Geométrica, também, está relacionada com o eperimento de Bernoulli. A diferença é que, agora, o que é fiado é o primeiro sucesso e não o número de tentativas, isto é, X número de tentativas realizadas até se conseguir o primeiro sucesso. Conjunto de Valores X(S) {,,,,...} A Função de Probabilidade (fp) f () P(X ) p q,4 A Representação Gráfica A Função de Distribuição (FD), F() P(X ) - q se < se, A distribuição G(,4) 9

10 A Função de Distribuição (FD),,8,6,4,, A distribuição acumulada da G(,4) Características Epectância ou Valor Esperado E(X).f ().p q p Variância V(X) E(X ) - E(X) q V(X).p q p p Suponha que um jogador de futebol converta de cada 4 penalidades cobradas. Determine a probabilidade de ele errar 4 penalidades antes de converter a primeira? Neste caso, tem-se: p (/4) 75% e q (/4) 5% X Número de tentativas antes do primeiro sucesso, é, então, uma G(,75) f() P(X ),75.,5 - para,,, Portanto: f(4) P(X 4),75.,5,7%

11 EXPERIMENTO A distribuição binomial negativa é também conhecida como de Pascal ou de Pólya. Ela fornece o número de falhas até um número fio de sucessos. Um eperimento que apresenta uma distribuição binomial negativa satisfaz as seguintes condições: CONDIÇÕES Cada tentativa apresenta apenas dois resultados: sucesso ou fracasso; O eperimento consiste de uma seqüência de tentativas independentes; A probabilidade de sucesso permanece constante em todas as tentativas; O eperimento continua até que um total de r sucessos sejam observados, onde r é um valor inteiro maior do que um, fiado de antemão. Conjunto de Valores X(S) {r, r +, r +,...} A Função de Probabilidade (fp) f () P(X ) p r r q r,6,4,, A Representação Gráfica A distribuição BN(,4) A Função de Distribuição (FD) F() k - r p q k r r - k r se < r se r

12 A Função de Distribuição (FD),,8,6,4,, A distribuição acumulada da BN(,4) Características Epectância ou Valor Esperado r r r E(X).f (). p q r r r p Variância V(X) E(X ) - E(X) r r r rq V(X). p q r r p p Suponha que um jogador de basquete acerte 4 a cada 5 lances livres. Seja X o número de erros antes do terceiro acerto. Determine a probabilidade que ele precise fazer 6 lances, isto é, P(X 6). Neste caso, tem-se: r, p (4/5) 8% e q % X Número de tentativas antes do terceiro acerto é, então, uma BN(;,8) f () P(X ),8 r onde, 4, 5, 6,, 7, f (6), 6 6 P(X 6),8., 5,8.,,4 4,% OBSERVAÇÕES: Eiste uma relação entre a Binomial e a Pascal (Binomial Negativa). Na Binomial fia-se o tamanho da amostra (número de provas de Bernoulli) e observa-se o número de sucessos.

13 Na Binomial Negativa fia-se o número de sucessos e observa-se o tamanho da amostra (número de provas de Bernoulli) necessário para obter o número fiado de sucessos. EXPERIMENTO A distribuição Binomial é deduzida com base em n repetições de um eperimento de maneira independente (isto é, p constante), ou retiradas com reposição de uma população finita. EXPERIMENTO Se a eperiência consistir na seleção de objetos, sem reposição, de uma população finita, de tamanho N, onde r apresentam uma característica N r não apresentam esta característica, então eistirá dependência entre as repetições. EXPERIMENTO Neste caso a variável aleatória X número de objetos com a característica r em uma amostra de tamanho n, terá uma distribuição denominada de Hipergeométrica. Conjunto de Valores : má{, n N+r)},..., mín{r, n} A Função de Probabilidade (fp) r N r n r f () P(X ) N n

14 A Função de Probabilidade (fp) H(; 5; 5),,,,,, onde A Função de Distribuição (FD) se < j r N r k n F ( ) P (X ) se j N n j k se > k j má{, k mín{r, n - N + r} n},,9,8,7,6,5,4,,,, Função de Distribuição H(; 5; 5) σ X Características Epectância ou Valor Esperado E (X) npq np Desvio Padrão N n N Onde p r N Uma fábrica recebe um lote de peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as peças se não houver nenhuma defeituosa em uma amostra aleatória de peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito. Pela Hipergeométrica: N, r 5, n f () P(X ) 58,8% 4

15 Pela Binomial: n e p 5/ 5% f() P(X ).(,5) 59,87%.(,95) EXPERIMENTO A distribuição uniforme é a mais simples das variáveis discretas. A variável assume os valores:,,..., n sempre com igual probabilidade. DEFINIÇÃO Uma variável aleatória X que assume os valores,,..., n é dita uniforme discreta se todos os valores ocorrem com a mesma probabilidade, isto é, f( i ) /n. Conjunto de Valores X(S) {,,..., n } A Função de Probabilidade (fp) A Representação Gráfica,,5 f ( i ) P(X i) / n, A distribuição U() 5

16 A Função de Distribuição (FD) A Função de Distribuição (FD), F(i) P( i) i n se se < i,8,6,4,, A distribuição acumulada da U() Características Epectância ou Valor Esperado n n E(X) i.f ( i) i i n i Variância V(X) E(X ) - E(X) (X) [ n ( ) ] V i i n Suponha que um dado honesto é lançado. Seja X valor da face voltada para cima. Determinar a distribuição de X Σ f() /6 /6 /6 /6 /6 /6 6

17 EXPERIMENTO Na Binomial a variável que interessa é o número de sucessos em um intervalo discreto (n repetições de um eperimento). Muitas vezes, entretanto, o interesse é o número de sucessos em um intervalo contínuo, como o tempo, área, superfície, etc. EXPERIMENTO Para determinar a f() de uma distribuição deste tipo, será suposto que: (i) Eventos definidos em intervalos não sobrepostos são independentes; (ii) Em intervalos de mesmo tamanho as probabilidades de um mesmo número de sucessos são iguais EXPERIMENTO (iii) Em intervalos muito pequenos a probabilidade de mais de um sucesso é desprezível; (iv) Em intervalos muito pequenos a probabilidade de um sucesso é proporcional ao tamanho do intervalo. Definição: Se uma variável satisfaz estas quatro propriedades ela é dita VAD de POISSON. Se X é uma VAD de POISSON, então a função de probabilidade de X é dada por: A Função de Probabilidade (fp) λ e. λ f () P(X )! para,,,... λ é denominada de taa de sucessos A Função de Probabilidade (fp) P(),5,,9,6,,

18 A Função de Distribuição (FD) Função de Distribuição P(), F() P(X ) k -λ e. λ k! k se < se,9,8,7,6,5,4,,,, Características Epectância ou Valor Esperado Desvio Padrão E(X) λ σx λ O número de consultas a uma base de dados computacional é uma VAD de Poisson com λ 6 em um intervalo de dez segundos. Qual é a probabilidade de que num intervalo de 5 segundos nenhum acesso se verifique? A taa de consultas é de seis em dez segundos em cinco segundos teremos uma taa de λ consultas. Então: e. f () P(X )! e - 4,98% - Considerando o eemplo dado na Hipergeométrica, que foi resolvido, também, pela Binomial, é possível ainda utilizar a Poisson. Para isto deve-se fazer λ np. 8

19 Então: λ.,5,5. f () P(X ) e -,5!. e -,5 6,65% 9

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9 SUMÁRIO 1. INTRODUÇÃO...2 1.1. MODELOS...2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...2 1.3. O ESPAÇO AMOSTRAL...3 1.4. EVENTOS...4 1.5. COMBINAÇÃO DE EVENTOS...4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...5

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

I NTRODUÇÃO. SÉRIE: Probabilidade

I NTRODUÇÃO. SÉRIE: Probabilidade SUMÁRIO 1. COMBINATÓRIA... 5 1.1. CONJUNTOS... 5 1.2. OPERAÇÕES COM CONJUNTOS... 5 1.3. APLICAÇÕES DOS DIAGRAMAS DE VENN... 6 1.4. FATORIAL... 6 1.5. PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PRINCÍPIO MULTIPLICATIVO)...

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA. Camila Macedo Lima

UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA. Camila Macedo Lima UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS ESPERANÇA MATEMÁTICA Camila Macedo Lima Ilhéus, Bahia 2003 ESPERANÇA MATEMÁTICA Monografia apresentada à Disciplina Seminário

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Distribuições Binomiais Negativas, Geométricas e Hipergeométricas

Distribuições Binomiais Negativas, Geométricas e Hipergeométricas Distribuições Binomiais Negativas, Geométricas e Hipergeométricas Distribuição geométrica Suponhamos que temos uma série de amostragens de Bernoulli (amostragens independentes com probabilidade constante

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL Introdução Variável aleatória Discreta: assume um número finito ou infinito numerável de valores Contínua: assume todos os valores

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,

Leia mais

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR Estatística Biologia Ano lectivo: 2011 /2012 Docentes Responsável Júri Vogal Vogal Responsável pela pauta Docentes que leccionam a UC Ana Maria Caeiro Lebre

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Lógica de Programação. Profas. Simone Campos Camargo e Janete Ferreira Biazotto

Lógica de Programação. Profas. Simone Campos Camargo e Janete Ferreira Biazotto Lógica de Programação Profas. Simone Campos Camargo e Janete Ferreira Biazotto O curso Técnico em Informática É o profissional que desenvolve e opera sistemas, aplicações, interfaces gráficas; monta estruturas

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FACULDADE DE CIÊNCIAS E TECNOLOGIA Redes de Telecomunicações (2006/2007) Engª de Sistemas e Informática Trabalho nº4 (1ª aula) Título: Modelação de tráfego utilizando o modelo de Poisson Fundamentos teóricos

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira Revisão estatística e probabilidade Prof. Anderson Almeida Ferreira População População é o conjunto de elementos (indivíduos, objetos, etc.) que formam o universo de nosso estudo e que são passíveis de

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Aula 03. Processadores. Prof. Ricardo Palma

Aula 03. Processadores. Prof. Ricardo Palma Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine

Leia mais

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo

Leia mais

O Cálculo λ sem Tipos

O Cálculo λ sem Tipos Capítulo 2 O Cálculo λ sem Tipos 21 Síntaxe e Redução Por volta de 1930 o cálculo lambda sem tipos foi introduzido como uma fundação para a lógica e a matemática Embora este objectivo não tenha sido cumprido

Leia mais

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7 AEDB - 2ª BI Probabilidade e Estatística - 2 o Ano 2011 - Prof: Roberto Campos Leoni Simulado 1. Em um arquivo há 4 balancetes de orçamento e 3 balancetes de custos. Em uma auditoria, o auditor seleciona

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Emparelhamentos Bilineares Sobre Curvas

Emparelhamentos Bilineares Sobre Curvas Emparelhamentos Bilineares Sobre Curvas Eĺıpticas Leandro Aparecido Sangalli sangalli@dca.fee.unicamp.br Universidade Estadual de Campinas - UNICAMP FEEC - Faculdade de Engenharia Elétrica e de Computação

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total.

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. Probabilidade e Estatística 2008/2 Prof. Fernando Deeke Sasse Problemas Resolvidos Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. 1. Um fabricante de lâmpadas para faróis

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos 1º) Para o circuito abaixo, calcular a tensão sobre R3. a) O Teorema de Thévenin estabelece que qualquer circuito linear visto de

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

Ano: 8 Turmas: 8.1 e 8.2

Ano: 8 Turmas: 8.1 e 8.2 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação 2ª Etapa 2013 Disciplina: Matemática Professora: Valeria Ano: 8 Turmas: 8.1 e 8.2 Caro aluno, você está recebendo o conteúdo de recuperação. Faça

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

Aula 1 Estatística e Probabilidade

Aula 1 Estatística e Probabilidade Aula 1 Estatística e Probabilidade Anamaria Teodora Coelho Rios da Silva Aula 1 Plano de ensino Planejamento das aulas Referências Bibliográficas Atividades de Aprendizagem Orientadas Sistema de Avaliação

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

QUESTIONAMENTO ACERCA DO EDITAL DO PREGÃO ELETRÔNICO AA Nº 03/2014 - BNDES

QUESTIONAMENTO ACERCA DO EDITAL DO PREGÃO ELETRÔNICO AA Nº 03/2014 - BNDES QUESTIONAMENTO ACERCA DO EDITAL DO PREGÃO ELETRÔNICO AA Nº 03/2014 - BNDES Item 1.2 Grupo 1 do termo de referencia No grupo 1 o órgão solicita protocolo ISDN. Solicitamos que seja permitido o protocolo

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais