Introdução à probabilidade e estatística I

Tamanho: px
Começar a partir da página:

Download "Introdução à probabilidade e estatística I"

Transcrição

1 Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Site: patriota

2 Probabilidade Daqui por diante utilizaremos a seguinte definição de probabilidade. Seja (Ω, A, P) um espaço de probabilidade. Então, 1. P( ) = 0, P(Ω) = 1 2. Se A 1, A 2,... A são conjuntos (mensuráveis tais que a união também é mensurável) disjuntos então ( ) P A i = P(A i ) i 1 i 1

3 Funções do espaço amostral Seja (Ω, A, P) um espaço de probabilidade e X : Ω R uma função real. A fim de introduzir os conceitos, considere que Ω é enumerável e A = 2 Ω (o conjunto das partes de Ω) Sejam A A e B R, então definimos X (A) = {X (ω) R : ω A} e X 1 (B) = {ω Ω : X (ω) B}. O conjunto de valores que X pode assumir (conjunto imagem) é definido por X = X (Ω).

4 Exemplos Seja Ω um conjunto de pessoas, então para cada ω Ω, temos as seguintes funções: 1. X (ω) = peso do indivíduo ω 2. Y (ω) = número de filhos de ω 3. W (ω) = salário do indivíduo ω

5 Variável aleatória Seja (Ω, A, P) um modelo de probabilidade e X : Ω R uma função real de Ω. A função X será uma variável aleatória sempre que existir uma medida de probabilidade para o evento X 1( (, a] ) para todo a R. Lembre que: X 1 (A) = {ω Ω : X (ω) A}. e que P : A [0, 1], portanto verificar se existe uma probabilidade para um evento X 1 (A) é equivalente a verificar se X 1 (A) A.

6 Probabilidade para a Variável aleatória Seja B um subconjunto dos reais, denotaremos a probabilidade de X B por P X (X B) P(X 1 (B)) = P({ω Ω : X (ω) B}) sempre que existir tal probabilidade (ou seja, sempre B for mensurável). quando B = {b} denotaremos por P X (X = b) P(X 1 ({b})) = P({ω Ω : X (ω) = b}). Quando não houver conflitos de notação utilizaremos P X P

7 Exemplo 1 Seja Ω = {(c, c), (c, k), (k, c), (k, k)} com P({ω}) = 1 4 para ω Ω (ou seja, todos os elementos de A = 2 Ω tem probabilidades bem definidas). Definimos X (ω) = 1 se ω {(c, c), (c, k)} e zero caso contrário. Quais os possíveis valores que X pode assumir? A função X é uma variável aleatória?

8 Verificando se X é uma v.a. Para os conjuntos da forma A = (, a] temos que: 1. se a < 0, 2. se 0 a < 1 então X 1 (A) = e P(X 1 (A)) = 0. X 1 (A) = {(k, c), (k, k)} e P(X 1 (A)) = 1/2. 3. se a 1 então X 1 (A) = Ω e P(X 1 (A)) = 1. Portanto: X é de fato uma variável aleatória e note que P(X = 0) = 1 2 e P(X = 1) = 1 2.

9 Exemplo 2 Seja Ω = {(c, c), (c, k), (k, c), (k, k)} com P({ω}) = 1 4 para ω Ω (ou seja, todos os elementos de A = 2 Ω tem probabilidades bem definidas). Definimos Y (ω) = número de caras de ω. Quais os valores possíveis para Y? Y é uma variável aleatória?

10 Verificando se Y é uma v.a. Para os conjuntos da forma A = (, a] temos que: 1. se a < 0, então Y 1 (A) = e P(Y 1 (A)) = se 0 a < 1, então Y 1 (A) = {(k, k)} e P(Y 1 (A)) = 1/4. 3. se 1 a < 2, então Y 1 (A) = {(c, k), (k, c), (k, k)} e P(Y 1 (A)) = 3/4. 4. se a 2 então Y 1 (A) = Ω e P(Y 1 (A)) = 1. Portanto Y é uma variável aleatória

11 Suporte de uma variável aleatória Seja (Ω, A, P) um espaço de probabilidade e X uma variável aleatória. Definimos o suporte de uma variável aleatória X como o menor conjunto S X R tal que P(X S X ) = 1.

12 Tipos de variáveis aleatórias Variáveis aleatórias discretas: Uma variável aleatória X : Ω R cujo suporte S X é um conjunto enumerável é dita ser discreta (ex: S X = {0, 1}, S X = {1, 2, 3}). Variáveis aleatórias contínuas: Uma variável aleatória X : Ω R cujo suporte S X é um conjunto não-enumerável é dita ser contínua (ex: S X = (0, 1), S X = (3, 5), S X = (0, ), S X = R).

13 Exemplos Seja Ω um conjunto de pessoas, então para cada ω Ω, temos as seguintes funções: Variáveis contínuas: X (ω) = peso do indivíduo ω W (ω) = salário do indivíduo ω M(ω) = tempo de vida do indivíduo ω Variáveis discretas: Y (ω) = número de filhos de ω Z(ω) = número de irmãos de ω K(ω) = número de empregos de ω

14 Variáveis aleatórias discretas Seja (Ω, A, P) um espaço de probabilide e X uma variável aleatória. Se S X é enumerável então podemos escrevê-lo da seguinte forma S X = {x 1, x 2,...} tal que P(X = k) > 0 se k S X, Note também que: P(X = k) = 0 se k S X Observe que {x 1 }, {x 2 },... formam uma partição de S X.

15 Variáveis aleatórias discretas Como {x 1 }, {x 2 },... formam uma partição de S X, temos que: P(X = x i ) = 1 i=1 A probabilidade de X B com B S X é calculada por P(X B) = k B P(X = k) O conjunto S X e a medida de probabilidade P nos dão toda a informação sobre a variável X. Podemos, neste caso, esquecer do espaço original (Ω, A, P) e trabalhar apenas com S X e P.

16 Esperança Seja X uma variável aleatória discreta com suporte S X e medida de probabilidade P. A Esperança matemática de X é definida por E(X ) = k S X kp(x = k) Seja g uma função real, a Esperança matemática de g(x ) é definida por E(g(X )) = k S X g(k)p(x = k) A esperança matemática nos informa o valor central dos valores de X utilizando a ponderação de suas respectivas probabildiades.

17 Esperança - Propriedades Seja X uma v.a. discreta com suporte S X e função de probabilidade P. Se a R é uma constante, então E(a) = a; Se a R é uma constante, então E(aX ) = ae(x ); Se a, b R são constantes, então E(aX + b) = ae(x ) + b; Prove as propriedades acima. Calcule a esperança matemática para alguns dos exemplos estudados em sala.

18 Variância Seja X uma v.a. discreta com suporte S X e função de probabilidade P. A variância de X é definida por VAR(X ) = k S X [k E(X )] 2 P(X = k) A variância nos informa o grau de variabilidade de X.

19 Variância - Propriedades Seja X uma v.a. discreta com função de probabilidade P. Se a R é uma constante, então Var(a) = 0; Se a R é uma constante, então Var(aX ) = a 2 Var(X ); Se a, b R são constantes, então Var(aX + b) = a 2 Var(X ); Var(X ) = E(X 2 ) [E(X )] 2. Prove as propriedades acima. Calcule a variância para os exemplos estudados em sala.

20 Função de distribuição acumulada Seja X uma v.a. discreta com suporte S X e função de probabilidade P. A distribuição acumulada de X é definida por F (t) = P(X t) para t R. Calcule a função de distribuição para todos os exemplos dados em sala. Observe que: se F é uma função de distribuição acumulada então F é não decrescente e: lim F (x) = 0, lim x F (x) = 1. x + Além disso: P(X = x) = F (x + ) F (x ), em que F (x + ) = lim y x + F (y) e F (x ) = lim y x F (y)

21 Exemplo Considere X uma variável discreta com suporte S X = {1, 2, 3} e P(X = i) = p i para i = 1, 2, 3. Seja B = {2, 3}. Considere p 1 = p 2 = p 3 = 1 3 pontos abaixo e depois faça para o caso geral os Calcule P(X B), Calcule E(X ) e E( X ), Calcule VAR(X ), Calcule a função de distribuição acumulada F (t) para todo t R.

22 Representação em tabelas Seja X uma variável aleatória, S X = {x 1, x 2,..., x n } seu suporte com medida de probabilidade defrinida por P(X = x i ) = p i para i = 1, 2,..., n. Um representação para a distribuição de probabilidades de X pode ser X x 1 x 2... x n P p 1 p 2... p n

23 Principais variáveis aleatórias discretas Variável Uniforme Variável de Bernoulli Variável Binomial Variável geométrica Variável de Poisson Variável hipergeométrica

24 Variável Uniforme Seja X uma variável aleatória discreta com suporte S X = {x 1,..., x n }. Dizemos que X é uma variável uniforme quando P(X = k) = 1 n para todo o k S X sempre que n <. Exemplo: seja X uma v.a. discreta com S X = {1, 2, 3, 4} e P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 1 4 Calcule a esperança, variância e função distribuição acumulada. Ver exemplo da Mega-Sena.

25 Variável de Bernoulli Suponha que um experimento cujo resultado pode ser classificado como sucesso ou fracasso é executado (experimento de Bernoulli). Seja X = 1 se o resultado for sucesso e X = 0 se for fracasso. Dizemos que X é uma variável aleatória de Bernoulli e sua função de probabilidade é definida por P(X = 1) = p, P(X = 0) = 1 p e P(X {0, 1}) = 0 em que p (0, 1) é um valor fixo e conhecido. Mostre que E(X ) = p, VAR(X ) = p(1 p) e calcule F (t) para todo o t R. Utilizaremos a notação X B(p) para denotar que X é uma variável de Bernoulli.

26 Variável de Bernoulli Note que a variável de Bernoulli é discreta pois o suporte S X = {0, 1} é enumerável. O experimento lançar uma moeda e verificar se a face voltada para cima é cara é um experimento de Bernoulli. A variável X, tal que X = 1 se o lado voltado para cima for cara e X = 0 caso contrário, é uma variável aleatória de Bernoulli. Ver exemplo da Mega-Sena: defina X = 1 se o número apostado na megasena é o número sorteado e zero caso contrário. Qual a esperança e variância de X?

27 Variável Binomial Suponha que n experimentos independentes de Bernoulli são executados (probabilidade de sucesso igual a p). Seja X o número de sucessos que ocorrem nos n experimentos, então X é dita ser uma variável aleatória binomial. Notação: X Bin(n, p). Pode-se mostrar que sua função de probabilidade é dada por ( ) n P(X = k) = p k (1 p) n k k para k = 0, 1, 2,..., n e P(X = k) = 0 para k {0, 1, 2,..., n}. O suporte é S X = {0, 1, 2,..., n}.

28 Variável Binomial Seja X Bin(n, p). Mostre que a esperança é E(X ) = np e a variância é VAR(X) = np(1 p). Calcule a função distribuição acumulada. Dica: use o binômio de Newton (a + b) n = n i=0 ( n i ) a i b n i. Derive em relação a a.

29 Variável Binomial Exemplo Um gerente de banco autorizou um empréstimo para 10 pessoas cujos perfis indicam que a probabilidade de pagar o empréstimo é 95% para cada uma. Assuma que os pagamentos ocorrem de maneira independente. Defina X como o número de pessoas que efetuará o pagamento. Calcule as probabilidades P(X = k) para k = 0, 1, 2,..., 10 e a esperança de X. Suponha que o empréstimo para cada pessoa foi de 10 mil reais e os juros na data do vencimento é de 2%. Assuma que os caloteiros não retornarão o pagamento em nenhuma data futura e desconsidere a inflação do período. Qual o lucro esperado que o gerente proporcionou ao banco? Qual o valor mínimo dos juros para que o lucro esperado seja positivo? Qual deveria ser a probabilidade mínima de pagar o empréstimo para que o Lucro seja positivo (usando um juros de 2%)?

30 Variável Geométrica Considere ensaios de Bernoulli. Seja X o número de ensaios de Bernoulli s até que ocorra o primeiro sucesso. Dizemos que X tem distribuição geométrica. Notação X Geo(p). Pode-se mostrar que as probabilidades são dadas por P(X = k) = p(1 p) k 1 para k = 1, 2,... e P(X = k) = 0 caso contrário. O suporte então é dado por S X = {1, 2, 3,...}. Mostre que E(X ) = 1 (1 p) p, VAR(X ) = p 2 o t R. e calcule F (t) para todo

31 Variável Geométrica Exemplo Seja X o número de ligações recebidas por uma central telefônica até que ocorra a primeira reclamação. Assuma que a probabilidade de ocorrer uma ligação com reclamação é p = 0,1. Calcule: O número esperado de ligações até receber a primeira reclamação. A probabilidade de que a primeira reclamação ocorra após a quinta ligação.

32 Variável de Poisson Seja X o número de eventos que ocorreram de um certo tipo que ocorreram num intervalo de tempo (ou superfície ou volume) utilizamos a distribuição de Poisson. Dizemos que X tem distribuição de Poisson quando P(X = k) = e λ λ k k! para k = 0, 1, 2,... e P(X = k) = 0 caso contrário. O suporte é dado por S X = {0, 1, 2,...} Aqui, λ é a taxa média de ocorrência do evento no intervalo de tempo (ou superfície ou volume) especificado. Notação X Pois(λ).

33 Variável de Poisson Seja X Pois(λ). Mostre que E(X ) = λ, VAR(X ) = λ e calcule a função acumulada F (t) para todo o t R Note que: O evento X = k significa que o evento de interesse ocorreu k vezes no intervalo de tempo (ou superfície ou volume) especificado. Assume-se que a probabilidade de ocorrer o evento de interesse mais de uma vez num intervalo muito pequeno é desprezível.

34 Exemplo Poisson Estamos interessados em estudar a variável X : o número de falhas de um computador numa semana de operação (contínua). Assuma que X Pois(λ) Considere que a taxa média de falhas por dia é de 0,5 falhas. Calcule: A probabilidade de ocorrer mais de 3 falhas em uma semana de operação. A média. A variância.

35 Variável Hipergeométrica Suponha que estamos interessados em estudar dois atributos A e B de uma população com N elementos, sendo r com o atributo A e N r com o atributo B. Retiramos uma amostra de n elementos da população. A variável hipergeométrica é o número de elementos que contém o atributo A. Temos que P(X = k) = ( r N r ) k)( n k ( N n) para max(0, n N + r) k min(r, n). Pode-se mostrar que E(X ) = np, VAR(X ) = np(1 p) N n N 1 em que p = r N.

36 Exemplo Hipergeométrica Bussab e Morretin, Estatística Básica. Em problemas de controle de qualidade, lotes com N itens são examinados. O número de itens com defeito (atributo A), r, é desconhecido. Colhemos uma amostra de n itens e determinamos k. Somente para ilustrar, suponha que num lote de N = 100 peças, r = 10 sejam defeituosas. Escolhendo n = 5 peças sem reposição. Calcule: a probabilidade de não se obter peças defeituosas, a probabilidade de obter exatamente 3 peças defeituosas, a probabilidade de obter pelo menos duas peças defeituosas a esperança matemática a variância a função de distribuição acumulada

37 Principais distribuições discretas Fonte: Bussab, W.O. e Morettin, P.A. (2012). Estatística Básica.

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A Site:

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A   Site: Introdução à probabilidade e à estatística II Revisão Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Estatística Estatística: É uma ciência que se dedica

Leia mais

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60 INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

PARTE 2. Profª. Drª. Alessandra de Ávila Montini

PARTE 2. Profª. Drª. Alessandra de Ávila Montini PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

DISTRIBUIÇÕES BERNOULLI E BINOMIAL

DISTRIBUIÇÕES BERNOULLI E BINOMIAL DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Distribuições Bernoulli e Binomial

Distribuições Bernoulli e Binomial Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2017/2

Estatística (MAD231) Turma: IGA. Período: 2017/2 Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real

Leia mais

AULA 16 - Distribuição de Poisson e Geométrica

AULA 16 - Distribuição de Poisson e Geométrica AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Estatística Planejamento das Aulas

Estatística Planejamento das Aulas 29 de outubro de 2018 Distribuição Discreta Uniforme No experimento estatístico, os eventos são equiprováveis. A v.a. discreta X assume n valores discretos tem função de probabilidade: { 1 se x f x = i

Leia mais

PRINCIPAIS MODELOS DISCRETOS

PRINCIPAIS MODELOS DISCRETOS PRINCIPAIS MODELOS DISCRETOS 2012 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2010 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 3. Uma peça é classificada como defeituosa

Leia mais

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G. EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5: Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Bioestatística F. Modelo Binomial. Enrico A. Colosimo

Bioestatística F. Modelo Binomial. Enrico A. Colosimo Bioestatística F Modelo Binomial Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 1 Variável aleatória discreta Definição Uma

Leia mais

Estatística Básica. Variáveis Aleatórias Discretas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Variáveis Aleatórias Discretas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Variáveis Aleatórias Discretas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Variável Aleatória Uma quantidade X, associada a cada possível

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço

Leia mais

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas 1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma

Leia mais

Cap. 5 Variáveis aleatórias discretas

Cap. 5 Variáveis aleatórias discretas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2019 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Distribuições Bernoulli, Binomial e Poisson

Distribuições Bernoulli, Binomial e Poisson Distribuições Bernoulli, Binomial e Poisson Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 06 de junho de 2018 Londrina 1 / 18 Nos experimentos de Bernoulli,

Leia mais

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação Essa variabilidade

Leia mais

Introdução à Probabilidade e Estatística I

Introdução à Probabilidade e Estatística I Introdução à Probabilidade e Estatística I População e Amostra Medidas resumo Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Passos iniciais O primeiro

Leia mais

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada

Leia mais

Distribuições Geométrica e Hipergeométrica

Distribuições Geométrica e Hipergeométrica Distribuições Geométrica e Hipergeométrica Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 06 de junho de 2018 Londrina 1 / 15 Distribuição Geométrica Em algumas

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

HIPERGEOMÉTRICA. Lucas Santana da Cunha Universidade Estadual de Londrina

HIPERGEOMÉTRICA. Lucas Santana da Cunha    Universidade Estadual de Londrina DISTRIBUIÇÕES GEOMÉTRICA E HIPERGEOMÉTRICA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 28 de junho de 2017 Distribuição Geométrica

Leia mais

AULA 15 - Distribuição de Bernoulli e Binomial

AULA 15 - Distribuição de Bernoulli e Binomial AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Aula 5. Variáveis Aleatórias Discretas

Aula 5. Variáveis Aleatórias Discretas Aula 5. Variáveis Aleatórias Discretas Definição formal : Variável aleatória é qualquer função definida em espaço Ω. Ω função é uma regra que para cada valor de domínio corresponde um valor de R R Definição

Leia mais

Distribuições amostrais

Distribuições amostrais Distribuições amostrais Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Distribuições Discretas de Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE Distribuições de Probabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Introdução à Bioestatística

Introdução à Bioestatística Instituto Nacional de Cardiologia February 22, 2016 1 2 3 4 Existem dois tipos de variáveis aleatórias Variáveis aleatórias discretas Variáveis aleatórias contínuas discreta Assume um número nito ou innito

Leia mais

Exemplo : Escolhendo as respostas ao acaso em prova de múltipla escolha Calculemos a probabilidade de Cesar ser bem sucedido em sua prova de Matemátic

Exemplo : Escolhendo as respostas ao acaso em prova de múltipla escolha Calculemos a probabilidade de Cesar ser bem sucedido em sua prova de Matemátic Exemplo : Escolhendo as respostas ao acaso em prova de múltipla escolha Calculemos a probabilidade de Cesar ser bem sucedido em sua prova de Matemática. Para cada questão representemos por A o fato de

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT) Distribuições de

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

NOTAS DA AULA DISTRIBUIÇÃO BINOMIAL E DE POISSON. Prof.: Idemauro Antonio Rodrigues de Lara

NOTAS DA AULA DISTRIBUIÇÃO BINOMIAL E DE POISSON. Prof.: Idemauro Antonio Rodrigues de Lara 1 NOTAS DA AULA DISTRIBUIÇÃO BINOMIAL E DE POISSON Prof.: Idemauro Antonio Rodrigues de Lara 2 Objetivo geral da aula Caracterizar os modelos de distribuição de variável aleatória discreta: binomial e

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

Avaliação e Desempenho Aula 5

Avaliação e Desempenho Aula 5 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada

Leia mais