Introdução à probabilidade e estatística I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução à probabilidade e estatística I"

Transcrição

1 Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Site: patriota

2 Probabilidade Daqui por diante utilizaremos a seguinte definição de probabilidade. Seja (Ω, A, P) um espaço de probabilidade. Então, 1. P( ) = 0, P(Ω) = 1 2. Se A 1, A 2,... A são conjuntos (mensuráveis tais que a união também é mensurável) disjuntos então ( ) P A i = P(A i ) i 1 i 1

3 Funções do espaço amostral Seja (Ω, A, P) um espaço de probabilidade e X : Ω R uma função real. A fim de introduzir os conceitos, considere que Ω é enumerável e A = 2 Ω (o conjunto das partes de Ω) Sejam A A e B R, então definimos X (A) = {X (ω) R : ω A} e X 1 (B) = {ω Ω : X (ω) B}. O conjunto de valores que X pode assumir (conjunto imagem) é definido por X = X (Ω).

4 Exemplos Seja Ω um conjunto de pessoas, então para cada ω Ω, temos as seguintes funções: 1. X (ω) = peso do indivíduo ω 2. Y (ω) = número de filhos de ω 3. W (ω) = salário do indivíduo ω

5 Variável aleatória Seja (Ω, A, P) um modelo de probabilidade e X : Ω R uma função real de Ω. A função X será uma variável aleatória sempre que existir uma medida de probabilidade para o evento X 1( (, a] ) para todo a R. Lembre que: X 1 (A) = {ω Ω : X (ω) A}. e que P : A [0, 1], portanto verificar se existe uma probabilidade para um evento X 1 (A) é equivalente a verificar se X 1 (A) A.

6 Probabilidade para a Variável aleatória Seja B um subconjunto dos reais, denotaremos a probabilidade de X B por P X (X B) P(X 1 (B)) = P({ω Ω : X (ω) B}) sempre que existir tal probabilidade (ou seja, sempre B for mensurável). quando B = {b} denotaremos por P X (X = b) P(X 1 ({b})) = P({ω Ω : X (ω) = b}). Quando não houver conflitos de notação utilizaremos P X P

7 Exemplo 1 Seja Ω = {(c, c), (c, k), (k, c), (k, k)} com P({ω}) = 1 4 para ω Ω (ou seja, todos os elementos de A = 2 Ω tem probabilidades bem definidas). Definimos X (ω) = 1 se ω {(c, c), (c, k)} e zero caso contrário. Quais os possíveis valores que X pode assumir? A função X é uma variável aleatória?

8 Verificando se X é uma v.a. Para os conjuntos da forma A = (, a] temos que: 1. se a < 0, 2. se 0 a < 1 então X 1 (A) = e P(X 1 (A)) = 0. X 1 (A) = {(k, c), (k, k)} e P(X 1 (A)) = 1/2. 3. se a 1 então X 1 (A) = Ω e P(X 1 (A)) = 1. Portanto: X é de fato uma variável aleatória e note que P(X = 0) = 1 2 e P(X = 1) = 1 2.

9 Exemplo 2 Seja Ω = {(c, c), (c, k), (k, c), (k, k)} com P({ω}) = 1 4 para ω Ω (ou seja, todos os elementos de A = 2 Ω tem probabilidades bem definidas). Definimos Y (ω) = número de caras de ω. Quais os valores possíveis para Y? Y é uma variável aleatória?

10 Verificando se Y é uma v.a. Para os conjuntos da forma A = (, a] temos que: 1. se a < 0, então Y 1 (A) = e P(Y 1 (A)) = se 0 a < 1, então Y 1 (A) = {(k, k)} e P(Y 1 (A)) = 1/4. 3. se 1 a < 2, então Y 1 (A) = {(c, k), (k, c), (k, k)} e P(Y 1 (A)) = 3/4. 4. se a 2 então Y 1 (A) = Ω e P(Y 1 (A)) = 1. Portanto Y é uma variável aleatória

11 Suporte de uma variável aleatória Seja (Ω, A, P) um espaço de probabilidade e X uma variável aleatória. Definimos o suporte de uma variável aleatória X como o menor conjunto S X R tal que P(X S X ) = 1.

12 Tipos de variáveis aleatórias Variáveis aleatórias discretas: Uma variável aleatória X : Ω R cujo suporte S X é um conjunto enumerável é dita ser discreta (ex: S X = {0, 1}, S X = {1, 2, 3}). Variáveis aleatórias contínuas: Uma variável aleatória X : Ω R cujo suporte S X é um conjunto não-enumerável é dita ser contínua (ex: S X = (0, 1), S X = (3, 5), S X = (0, ), S X = R).

13 Exemplos Seja Ω um conjunto de pessoas, então para cada ω Ω, temos as seguintes funções: Variáveis contínuas: X (ω) = peso do indivíduo ω W (ω) = salário do indivíduo ω M(ω) = tempo de vida do indivíduo ω Variáveis discretas: Y (ω) = número de filhos de ω Z(ω) = número de irmãos de ω K(ω) = número de empregos de ω

14 Variáveis aleatórias discretas Seja (Ω, A, P) um espaço de probabilide e X uma variável aleatória. Se S X é enumerável então podemos escrevê-lo da seguinte forma S X = {x 1, x 2,...} tal que P(X = k) > 0 se k S X, Note também que: P(X = k) = 0 se k S X Observe que {x 1 }, {x 2 },... formam uma partição de S X.

15 Variáveis aleatórias discretas Como {x 1 }, {x 2 },... formam uma partição de S X, temos que: P(X = x i ) = 1 i=1 A probabilidade de X B com B S X é calculada por P(X B) = k B P(X = k) O conjunto S X e a medida de probabilidade P nos dão toda a informação sobre a variável X. Podemos, neste caso, esquecer do espaço original (Ω, A, P) e trabalhar apenas com S X e P.

16 Esperança Seja X uma variável aleatória discreta com suporte S X e medida de probabilidade P. A Esperança matemática de X é definida por E(X ) = k S X kp(x = k) Seja g uma função real, a Esperança matemática de g(x ) é definida por E(g(X )) = k S X g(k)p(x = k) A esperança matemática nos informa o valor central dos valores de X utilizando a ponderação de suas respectivas probabildiades.

17 Esperança - Propriedades Seja X uma v.a. discreta com suporte S X e função de probabilidade P. Se a R é uma constante, então E(a) = a; Se a R é uma constante, então E(aX ) = ae(x ); Se a, b R são constantes, então E(aX + b) = ae(x ) + b; Prove as propriedades acima. Calcule a esperança matemática para alguns dos exemplos estudados em sala.

18 Variância Seja X uma v.a. discreta com suporte S X e função de probabilidade P. A variância de X é definida por VAR(X ) = k S X [k E(X )] 2 P(X = k) A variância nos informa o grau de variabilidade de X.

19 Variância - Propriedades Seja X uma v.a. discreta com função de probabilidade P. Se a R é uma constante, então Var(a) = 0; Se a R é uma constante, então Var(aX ) = a 2 Var(X ); Se a, b R são constantes, então Var(aX + b) = a 2 Var(X ); Var(X ) = E(X 2 ) [E(X )] 2. Prove as propriedades acima. Calcule a variância para os exemplos estudados em sala.

20 Função de distribuição acumulada Seja X uma v.a. discreta com suporte S X e função de probabilidade P. A distribuição acumulada de X é definida por F (t) = P(X t) para t R. Calcule a função de distribuição para todos os exemplos dados em sala. Observe que: se F é uma função de distribuição acumulada então F é não decrescente e: lim F (x) = 0, lim x F (x) = 1. x + Além disso: P(X = x) = F (x + ) F (x ), em que F (x + ) = lim y x + F (y) e F (x ) = lim y x F (y)

21 Exemplo Considere X uma variável discreta com suporte S X = {1, 2, 3} e P(X = i) = p i para i = 1, 2, 3. Seja B = {2, 3}. Considere p 1 = p 2 = p 3 = 1 3 pontos abaixo e depois faça para o caso geral os Calcule P(X B), Calcule E(X ) e E( X ), Calcule VAR(X ), Calcule a função de distribuição acumulada F (t) para todo t R.

22 Representação em tabelas Seja X uma variável aleatória, S X = {x 1, x 2,..., x n } seu suporte com medida de probabilidade defrinida por P(X = x i ) = p i para i = 1, 2,..., n. Um representação para a distribuição de probabilidades de X pode ser X x 1 x 2... x n P p 1 p 2... p n

23 Principais variáveis aleatórias discretas Variável Uniforme Variável de Bernoulli Variável Binomial Variável geométrica Variável de Poisson Variável hipergeométrica

24 Variável Uniforme Seja X uma variável aleatória discreta com suporte S X = {x 1,..., x n }. Dizemos que X é uma variável uniforme quando P(X = k) = 1 n para todo o k S X sempre que n <. Exemplo: seja X uma v.a. discreta com S X = {1, 2, 3, 4} e P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 1 4 Calcule a esperança, variância e função distribuição acumulada. Ver exemplo da Mega-Sena.

25 Variável de Bernoulli Suponha que um experimento cujo resultado pode ser classificado como sucesso ou fracasso é executado (experimento de Bernoulli). Seja X = 1 se o resultado for sucesso e X = 0 se for fracasso. Dizemos que X é uma variável aleatória de Bernoulli e sua função de probabilidade é definida por P(X = 1) = p, P(X = 0) = 1 p e P(X {0, 1}) = 0 em que p (0, 1) é um valor fixo e conhecido. Mostre que E(X ) = p, VAR(X ) = p(1 p) e calcule F (t) para todo o t R. Utilizaremos a notação X B(p) para denotar que X é uma variável de Bernoulli.

26 Variável de Bernoulli Note que a variável de Bernoulli é discreta pois o suporte S X = {0, 1} é enumerável. O experimento lançar uma moeda e verificar se a face voltada para cima é cara é um experimento de Bernoulli. A variável X, tal que X = 1 se o lado voltado para cima for cara e X = 0 caso contrário, é uma variável aleatória de Bernoulli. Ver exemplo da Mega-Sena: defina X = 1 se o número apostado na megasena é o número sorteado e zero caso contrário. Qual a esperança e variância de X?

27 Variável Binomial Suponha que n experimentos independentes de Bernoulli são executados (probabilidade de sucesso igual a p). Seja X o número de sucessos que ocorrem nos n experimentos, então X é dita ser uma variável aleatória binomial. Notação: X Bin(n, p). Pode-se mostrar que sua função de probabilidade é dada por ( ) n P(X = k) = p k (1 p) n k k para k = 0, 1, 2,..., n e P(X = k) = 0 para k {0, 1, 2,..., n}. O suporte é S X = {0, 1, 2,..., n}.

28 Variável Binomial Seja X Bin(n, p). Mostre que a esperança é E(X ) = np e a variância é VAR(X) = np(1 p). Calcule a função distribuição acumulada. Dica: use o binômio de Newton (a + b) n = n i=0 ( n i ) a i b n i. Derive em relação a a.

29 Variável Binomial Exemplo Um gerente de banco autorizou um empréstimo para 10 pessoas cujos perfis indicam que a probabilidade de pagar o empréstimo é 95% para cada uma. Assuma que os pagamentos ocorrem de maneira independente. Defina X como o número de pessoas que efetuará o pagamento. Calcule as probabilidades P(X = k) para k = 0, 1, 2,..., 10 e a esperança de X. Suponha que o empréstimo para cada pessoa foi de 10 mil reais e os juros na data do vencimento é de 2%. Assuma que os caloteiros não retornarão o pagamento em nenhuma data futura e desconsidere a inflação do período. Qual o lucro esperado que o gerente proporcionou ao banco? Qual o valor mínimo dos juros para que o lucro esperado seja positivo? Qual deveria ser a probabilidade mínima de pagar o empréstimo para que o Lucro seja positivo (usando um juros de 2%)?

30 Variável Geométrica Considere ensaios de Bernoulli. Seja X o número de ensaios de Bernoulli s até que ocorra o primeiro sucesso. Dizemos que X tem distribuição geométrica. Notação X Geo(p). Pode-se mostrar que as probabilidades são dadas por P(X = k) = p(1 p) k 1 para k = 1, 2,... e P(X = k) = 0 caso contrário. O suporte então é dado por S X = {1, 2, 3,...}. Mostre que E(X ) = 1 (1 p) p, VAR(X ) = p 2 o t R. e calcule F (t) para todo

31 Variável Geométrica Exemplo Seja X o número de ligações recebidas por uma central telefônica até que ocorra a primeira reclamação. Assuma que a probabilidade de ocorrer uma ligação com reclamação é p = 0,1. Calcule: O número esperado de ligações até receber a primeira reclamação. A probabilidade de que a primeira reclamação ocorra após a quinta ligação.

32 Variável de Poisson Seja X o número de eventos que ocorreram de um certo tipo que ocorreram num intervalo de tempo (ou superfície ou volume) utilizamos a distribuição de Poisson. Dizemos que X tem distribuição de Poisson quando P(X = k) = e λ λ k k! para k = 0, 1, 2,... e P(X = k) = 0 caso contrário. O suporte é dado por S X = {0, 1, 2,...} Aqui, λ é a taxa média de ocorrência do evento no intervalo de tempo (ou superfície ou volume) especificado. Notação X Pois(λ).

33 Variável de Poisson Seja X Pois(λ). Mostre que E(X ) = λ, VAR(X ) = λ e calcule a função acumulada F (t) para todo o t R Note que: O evento X = k significa que o evento de interesse ocorreu k vezes no intervalo de tempo (ou superfície ou volume) especificado. Assume-se que a probabilidade de ocorrer o evento de interesse mais de uma vez num intervalo muito pequeno é desprezível.

34 Exemplo Poisson Estamos interessados em estudar a variável X : o número de falhas de um computador numa semana de operação (contínua). Assuma que X Pois(λ) Considere que a taxa média de falhas por dia é de 0,5 falhas. Calcule: A probabilidade de ocorrer mais de 3 falhas em uma semana de operação. A média. A variância.

35 Variável Hipergeométrica Suponha que estamos interessados em estudar dois atributos A e B de uma população com N elementos, sendo r com o atributo A e N r com o atributo B. Retiramos uma amostra de n elementos da população. A variável hipergeométrica é o número de elementos que contém o atributo A. Temos que P(X = k) = ( r N r ) k)( n k ( N n) para max(0, n N + r) k min(r, n). Pode-se mostrar que E(X ) = np, VAR(X ) = np(1 p) N n N 1 em que p = r N.

36 Exemplo Hipergeométrica Bussab e Morretin, Estatística Básica. Em problemas de controle de qualidade, lotes com N itens são examinados. O número de itens com defeito (atributo A), r, é desconhecido. Colhemos uma amostra de n itens e determinamos k. Somente para ilustrar, suponha que num lote de N = 100 peças, r = 10 sejam defeituosas. Escolhendo n = 5 peças sem reposição. Calcule: a probabilidade de não se obter peças defeituosas, a probabilidade de obter exatamente 3 peças defeituosas, a probabilidade de obter pelo menos duas peças defeituosas a esperança matemática a variância a função de distribuição acumulada

37 Principais distribuições discretas Fonte: Bussab, W.O. e Morettin, P.A. (2012). Estatística Básica.

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Teoria das Desições Financeiras II p.1/15

Teoria das Desições Financeiras II p.1/15 Teoria das Desições Financeiras II José Fajardo Barbachan IBMEC Business School Rio de Janeiro Teoria das Desições Financeiras II p.1/15 Probabilidade para Finanças Teoria das Desições Financeiras II p.2/15

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

Variáveis aleatórias discretas

Variáveis aleatórias discretas Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

AULA 6 MODELOS PROBABILÍSTICOS

AULA 6 MODELOS PROBABILÍSTICOS UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos AULA 6 MODELOS PROBABILÍSTICOS Docente: Cira Souza

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso. Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Probabilidade e Estatística 2011/2

Probabilidade e Estatística 2011/2 Probabilidade e Estatística 2011/2 Prof. Fernando Deeke Sasse Exercícios resolvidos sobre distribuições discretas Distribuição Binomial 1. Lotes de 50 peças são examinados. O número médio de peças não-conformes

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@mat.ufrgs.br htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Variáveis Discretas e Distribuições de Probabilidade. Distribuição Binomial

Variáveis Discretas e Distribuições de Probabilidade. Distribuição Binomial Variáveis Discretas e Distribuições de Probabilidade Distribuição Binomial Experimentos aleatórios e variáveis aleatórias: 1. Jogue uma moeda ao ar 10 vezes. X é o número de caras obtidas. 2. Uma máquina

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais