CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES"

Transcrição

1 CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro? - Até que ponto estamos certos? Π P ±,96 P( n P) (com 95% de confiança) onde: n... tamanho da amostra P... proporção da amostra Eemplo: Em 972, pouco antes das eleições presidenciais nos Estados Unidos, uma pesquisa Gallup, feita junto a 2000 eleitores, acusou 760 favoráveis a McGovern e 240 favoráveis a Nion. Calcular o intervalo π de confiança de 95% em relação a proporção P, da população que votou em McGovern.

2 - Aumentando n, aumenta-se a confiança. Para 99% de confiança, tem-se: Π P ± 2,58 P( n P) 2. VARIABILIDADE Duas peças nunca serão eatamente iguais: variações podem ser mínimas. 3. TIPOS DE VARIAÇÃO A Dentro da própria peça B. Entre peças produzidas no mesmo período C. Entre peças produzidas em períodos diferentes

3 4. TIPOS DE CARACTERÍSTICAS DA QUALIDADE o Variável: quando se faz um registro de uma característica medida, através de uma dimensão. Uma variável pode ter todos os valores possíveis entre dois valores limite. o Atributo: quando se faz registros de um número de ítens que atendam ou não a qualquer requisito específico, dizemos que esses registros são feitos com base em atributos. o Variáveis tratadas como atributos: a qualidade medida de ítens é chamada de variável, e o grupamento de itens em função de suas dimensões é chamado de atributo. 5. CLASSIFICAÇÃO DOS DADOS - Discretos: assumem determinados valores sem valores intermediários.

4 - Contínuos: assumem qualquer valor dentro dos limites especificados. 6. DISTRIBUIÇÃO DE FREQUÊNCIAS Nenhum processo pode fornecer ítens eatamente iguais, sempre eistirá variação. Distribuição de freqüências é útil para entender e interpretar a natureza dos dados

5 6.. Diagrama de Freqüências Eemplo de distribuição de freqüências para dados contínuos. Peso de eio de transmissão de aço (em Kg) 2,559 2,570 2,560 2,546 2,568 2,56 2,55 2,556 2,559 2,550 2,534 2,544 2,564 2,552 2,539 2,532 2,547 2,57 2,55 2,567 2,570 2,546 2,556 2,546 2,560 2,555 2,572 2,560 2,562 2,550 2,557 2,559 2,547 2,550 2,553 2,543 2,569 2,552 2,537 2,545 2,569 2,572 2,542 2,53 2,566 2,565 2,545 2,55 2,550 2,564 2,542 2,56 2,532 2,565 2,569 2,552 2,558 2,562 2,552 2,575 2,547 2,545 2,559 2,558 2,552 2,563 2,546 2,543 2,55 2,554 2,556 2,567 2,559 2,559 2,575 2,552 2,559 2,536 2,538 2,57 2,536 2,545 2,533 2,556 2,534 2,542 2,55 2,554 2,56 2,538 2,568 2,574 2,55 2,560 2,556 2,56 2,55 2,560 2,549 2,570 2,564 2,553 2,537 2,55 2,538 2,543 2,56 2,574 2,553 2,554

6 6.2. Cálculos para Distribuição de Freqüência A. Montar a folha de contagem Folha de contagem de valores para pesos de eios de ação ( com origem em valores de 2,500 Kg). PESO TABULAÇÃO PESO TABULAÇÃO PESO TABULAÇÃO Números de células de 5 a 20.

7 B. Determinar a amplitude R H L 2,575 2,53 0,044 (Kg) C. Determinar o intervalo de células C R/ i onde: C número de células R amplitude i intervalo de célula D. Determinar os limites das células Valores etremos, conhecidos como limite superior e inferior. E. Determinar os pontos médios das células Ponto central entre os limites superior e inferior.

8 F. Mostrar a freqüência após a célula Quantidades de valores correspondentes a cada célula. G. Freqüência acumulada Maior ( ou Menor) Quantidades de valores iguais ou maiores (ou menores) que a célula indicada. Eemplo: Distribuição de freqüências de pesos de eios de aço. Limites das Ponto Freqüência Freqüência Acumulada Células médio das menor que maior que células 2,53 2,535 2,535 2,539 2,539 2,543 2,543 2,547 2,547 2,55 2,55 2,555 2,555 2,559 2,559 2,563 2,563 2,567 2,567-2,57 2,57 2,575 2,575 2,579 2,533 2,537 2,54 2,545 2,549 2,553 2,557 2,56 2,565 2,569 2,573 2,

9 6.3. Apresentação Gráfica de Distribuições de freqüências A. Histograma B. Polígono de Freqüências

10 C. Gráfico de Freqüências Acumuladas ou Ogivas Freqüência Acumulada Maior Que Freqüência Acumulada Menor Que

11 8. MEDIDAS DE TENDÊNCIA CENTRAL 8.. Moda É o valor ou classe de maior frequência. E: Mediana ordenada. É o valor do centro da distribuição, após a mesma ter sido E: E se o número de observações for par? E: Mediana: (7 + 8) / 2 7, Média X Média aritmética das observações n n i i

12 2 s S ) ( 2 n S i n i 9. MEDIDAS DE DISPERSÃO OU VARIABILIDADE 9.. Variância (S 2 ) 9.2. Desvio Padrão (S): 9.3. Amplitude (R): R X ma -X min ) ( 2 2 n S i n i

13 0. Distribuição de Probabilidades n P r ( e ) lim n possíveis todos Forma de associar os eventos possíveis com suas probabilidades. Distribuições Discretas Variável discreta. Distribuições Contínuas Variáveis contínuas.

14 Conceitos Matemáticos de Apoio: ) Arranjo: nº de grupos de K elementos que se pode ordenar de n elementos. A n, K n! ( n K)! Eemplo: Quantas maneiras pode-se arranjar as letras A, B, C e D, duas a duas? A 4! (4 2)! ,2 2 2) Permutação: caso particular de arranjo de n elementos agrupados em formas diferentes. P n n! Eemplo: Quantas maneiram se permutam as letras A, B e C? P 3 3!

15 3) Combinação: nº de grupos K elementos que pode obter de n elementos. C n, K n! K!( n K)! Eemplo: Quantos resultados são possíveis ao se retirar 2 bolas, com reposição de uma urna contendo uma bola vermelha, uma azul, uma amarela e uma preta? C 4! 2!(4 2)! ,2 6 A) Distribuições Contínuas A.) Distribuição Normal Uma das mais utilizadas: σ 2 f ( X ) e σ 2π ( X µ ) 2 / 2 σ 2 µ

16 Padronização: distribuição padrão normal N (µ, σ 2 ) N (0,) z µ σ onde:... amostra µ... média populacional (- < µ < ) σ 2... variância da população (σ 2 > 0) A padronização transforma uma variável aleatória com distribuição N (µ,σ 2 ) em uma distribuição padrão N (0,). Eemplo: A distribuição dos diâmetros de uma peça segue uma distribuição normal com µ 00 mm e desvio padrão de 0,3 mm. Qual a porcentagem de peças que se encontra fora da especificação 00, ± 0,7? Solução: Xmin 00, 0,7 99,4 Xma 00, + 0,7 00,8 99, ,8

17 z 99,4 00 0,3 2,00 tabela 0,0228 z 00,8 00 0,3 2,67 tabela 0,9962 P (fora da especificação) ( 0,9962) + 0,0228 P (fora da especificação) 2,66% A.2) Distribuição Eponencial f () f () λ e -λ para 0

18 P( > o ) X λe o λ d e λ o onde: λ... taa de acontecimentos de sucesso A média e a variância da distribuição eponencial são: µ λ σ 2 2 λ Eemplo: Uma fábrica produz lâmpadas com uma duração de vida que pode ser considerada com uma distribuição eponencial com média 200 horas. a) Qual a probabilidade de uma lâmpada queimar antes de 20 horas de uso? f () 20

19 Solução: µ 200 h 20 h λ µ 200 queimas/ h P( < 20) e ,0952 b) Qual a probabilidade de uma lâmpada queimar entre 00 e 20 h Solução: f () P(00 < < 20) e e , ,0577 c) Das lâmpadas que duram mais de 00 horas, qual a porcentagem que queimam entre 00 e 20 horas? Solução:

20 00 < < 20 0,0577 P( ) > 00 0,6065 0,0952 B) Distribuições Discretas B.) Distribuição Hipergeométrica A variável aleatória da distribuição hipergeométrica é: X nº de peças defeituosas numa amostra, retirada sem reposição de uma população finita. N nº de peças de um lote D nº de peças defeituosas deste lote n tamanho da amostra A probabilidade de saírem K peças defeituosas na amostra é: P( X K) D N D. k n K N n

21 onde: N n... nº de amostras distintas de tamanho n, que podem ser retiradas de uma população de tamanho N D K. N n K D... nº de amostras com eatamente K peças defeituosas. Eemplo: Um lote de 50 peças contém eatamente 20% de peças defeituosas. Retirada uma amostra de 5 peças, qual a probabilidade de mais de 20% das peças da amostra serem defeituosas? Solução: N 50 D 0, n 5? P (X > 0,2 5) (X > ) - P (X 0) P (X ) D N D ( 0) k n K P X N 50 n 5 0,306

22 P( X ) ,433 P( X > ) 0,306 0,433 0,258 B.2) Distribuição Binomial Condições: a) n provas independentes b) cada prova admite sucesso ou fracasso c) a probabilidade de sucesso é p d) X nº de sucessos nas n provas Função probabilidade: P( X n p k K nk ) ( ) K p

23 onde: K... nº de ordens que pode-se ter p k ( p) n K... probabilidade de nas n provas acontecer K sucessos e n-k fracassos numa particular ordem n K... combinação, n, K Eemplo: Da produção mensal de uma máquina foi retirada uma amostra de 5 peças. Sabe-se que esta máquina apresenta uma porcentagem de peças defeituosas constante ao longo do tempo e igual a 5%. a) Qual a probabilidade de dentre as 5 peças eatamente 2 serem defeituosas? b) Qual a probabilidade de mais de 2 serem defeituosas? Solução: a) P( X 2) 0.0,5 2 n p k (0,85) 3 K ( p) 0,382 nk 5 0,5 2 2 ( 0,5) 52

24 b) P (X > 2) P (X 3) + P (X 4) + (X 5) P (X 0) P (X ) P (X 2) P( X P( X P( X 5 0).0,5 0 0 (0,85) 0, ).0,5.(0.85) 0,395 > 2) 0,4437 0,395 0, ,0266 B.3) Distribuição Poisson Condições: a) sucessos acontecem independentemente b) taa de acontecimento de sucesso (λ) é constante em todo o intervalo t c) X nº de sucessos no intervalo t d) t intervalo contínuo de tempo, área, volume, etc. Função probabilidade é: P( X K ) e ( λt) K! e λt K µ µ K! K onde: µ... média (µ λ.t)

25 Eemplo: Na inspeção de chapas de aço são retiradas amostras de 2m 2 e eaminadas quanto ao número de imperfeições encontradas. As chapas com duas ou mais imperfeições na amostra são rejeitadas. Se a média do processo de fabricação for de 0,75 imperfeições por metro quadrado, qual a probabilidade de uma chapa ser rejeitada? Solução: λ 0,75 imperfeições/m 2 t 2 m 2 µ 2 0,75,5 imperfeições por amostra X nº de imperfeições (sucessos) numa amostra de 2 m 2 rejeição 2 ou mais imperfeições P (rejeitar) P (X 2) - P (X 0) P (X ) P( X 0) e,5,5 0! 0 0,223 P( X ) e,5,5! 0,3347 P( X 2) 0,223 0,3347 0,4422

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados

Leia mais

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha Universidade Estadual de Londrina. 26 de abril de 2017

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha  Universidade Estadual de Londrina. 26 de abril de 2017 MEDIDAS DE POSIÇÃO Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de abril de 2017 Introdução Medidas de posição São utilizadas para sintetizar,

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL Estatística e Probabilidade CH: 40 h/a Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação; e Análise de resultados. Séries Estatísticas.

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Engenharia da Qualidade. Profa. Luciana Rosa Leite

Engenharia da Qualidade. Profa. Luciana Rosa Leite Engenharia da Qualidade Profa. Luciana Rosa Leite Unidade 1 Introdução à Engenharia Da Qualidade 1.1 Evolução da Gestão da Qualidade 1.2 Revisão de conceitos estatísticos Exercícios Evolução da Gestão

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

CONTEÚDOS PROGRAMÁTICOS

CONTEÚDOS PROGRAMÁTICOS CONTEÚDOS PROGRAMÁTICOS CURSO: MATEMÁTICA DISCIPLINA: ESTATÍSTICA E PROBABILIDADE SÉRIE: 1ª CARGA HORÁRIA: 144 HORAS PROFESSORA: Maria Ivete Basniak ANO LETIVO: 2013 EMENTA: Variáveis e gráficos; Distribuições

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA ENGENHARIA DA QUALIDADE A ENG 09008 AULA REVISÃO DE ESTATÍSTICA PROFESSORES: CARLA SCHWENGBER TEN CATEN ROGÉRIO FEROLDI MIORANDO Introdução Em um ambiente industrial, os dados devem formar a base para

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Revisão de estatística descritiva

Revisão de estatística descritiva Revisão de estatística descritiva Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais 1 Estatística descritiva É utilizada para resumir, descrever e organizar os dados coletados pelo pesquisador.

Leia mais

Revisão de estatística descritiva

Revisão de estatística descritiva Revisão de estatística descritiva Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais 1 Apresentação de grupos: dia 19/02 (quinta) Definir e eplicar sucintamente o funcionamento das seguintes

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Unidade III Medidas Descritivas

Unidade III Medidas Descritivas Unidade III Medidas Descritivas Autor: Anderson Garcia Silveira Anderson Garcia Silveira Na aula anterior... Medidas de Tendência Central 2 Na aula anterior... Medidas de Tendência Central Moda Mediana

Leia mais

Medidas de Dispersão. Prof.: Joni Fusinato

Medidas de Dispersão. Prof.: Joni Fusinato Medidas de Dispersão Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos

Leia mais

CAD. 8 SETOR A AULAS 45-48

CAD. 8 SETOR A AULAS 45-48 CAD. 8 SETOR A AULAS 45-48 48 ESTATÍSTICA STICA Prof. Suzart ESTATÍSTICA Elabora métodos para coleta, organização, descrição, análise e intepretação de dados. Experimentos não-determinísticos. Determinação

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma:

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma: DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09. Prof. Eduardo R Luz - MsC

Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09. Prof. Eduardo R Luz - MsC Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09 Prof. Eduardo R Luz - MsC AULA 1 SUMÁRIO A Administração da Qualidade O Controle da Qualidade CEP Origem e história Outros conceitos relacionados ao CEP

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Coleta e Modelagem dos Dados de Entrada

Coleta e Modelagem dos Dados de Entrada Slide 1 Módulo 02 Coleta e Modelagem dos Dados de Entrada Prof. Afonso C. Medina Prof. Leonardo Chwif Três Etapas Coleta Tratamento Inferência Coleta dos Dados 1. Escolha adequada da variável de estudo

Leia mais

Medidas Descritivas de Posição, Tendência Central e Variabilidade

Medidas Descritivas de Posição, Tendência Central e Variabilidade Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 27 de Março de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Sumário 1 Introdução

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 3 Prof.: Patricia Maria Bortolon, D. Sc. Estatística: Prof. André Carvalhal Dados quantitativos: medidas numéricas Propriedades Numéricas Tendência Central Dispersão Formato Média Mediana

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Distribuições de Probabilidades

Distribuições de Probabilidades Distribuições de Probabilidades 1 Distribuições Contínuas 1.1 Distribuição Uniforme - U(a,b) Uso mais comum: Primeira tentativa em casos em que apenas os limites dos dados são conhecidos. f() 1/(b-a) a

Leia mais

Medidas Descritivas de Posição, Tendência Central e Variabilidade

Medidas Descritivas de Posição, Tendência Central e Variabilidade Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 24 de Agosto de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva 1 O que é Estatística A Estatística originou-se com a coleta e construção de tabelas de dados para o governo. A situação evoluiu e esta coleta de dados representa somente um dos

Leia mais

Soluções da Colectânea de Exercícios

Soluções da Colectânea de Exercícios Soluções da Colectânea de Exercícios (Edição de Fevereiro de 2003) Capítulo 1 1.1 d) x = 3.167; s = 0.886 (dados não agrupados) e) mediana = x = 3.25; q 1 = 2.4 ; q 3 = 3.9 1.2 a) x = 2.866 ; x = 3; moda

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA

QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA 1) Um pesquisador que ordena uma lista de cidades segundo o ritmo de vida, do mais lento para o mais acelerado, está operando no nível de medida: (A)

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS

CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS 1. PLANOS DE AMOSTRAGEM tamanho do lote; nível de inspeção; tamanho da amostra; tipos de inspeção; regime de inspeção; nível de qualidade aceitável

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

DISTRIBUIÇÃO BINOMIAL

DISTRIBUIÇÃO BINOMIAL Universidade Federal de Viçosa - CCE / DPI Inf 161 - Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR /2. Monitor Adi Maciel de A. Jr Prof. Jomar.

Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR /2. Monitor Adi Maciel de A. Jr Prof. Jomar. Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR - 2014/2 Monitor Adi Maciel de A. Jr Prof. Jomar. ----------------//----------------//---------------- Distribuição Binomial N =

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 09/2014 Probabilidade Espaços Amostrais e Eventos Probabilidade e Estatística 3/41 Experimentos Aleatórios Experimento

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

Aula 03: Dados Profa. Ms. Rosângela da Silva Nunes

Aula 03: Dados Profa. Ms. Rosângela da Silva Nunes Aula 03: Dados Profa. Ms. Rosângela da Silva Nunes 1 de 29 Tipos de Conjuntos de dados Registro Tabela do BD Matriz de dados Document 1 Document 2 team coach pla y ball score game wi n lost timeout 3 0

Leia mais

PLANO DE ENSINO. Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º. Ementa

PLANO DE ENSINO. Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º. Ementa Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º PLANO DE ENSINO Ementa Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação e Análise de resultados.

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Estatística. Guia de Estudos P1

Estatística. Guia de Estudos P1 Estatística Guia de Estudos P1 1. Introdução O objetivo principal do curso de estatística é dar as ferramentas necessárias para o aluno saber analisar e manipular dados e, a partir deles, extrair conclusões

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Luiz Felix

Unidade I ESTATÍSTICA APLICADA. Prof. Luiz Felix Unidade I ESTATÍSTICA APLICADA Prof. Luiz Felix O termo estatística Provém da palavra Estado e foi utilizado originalmente para denominar levantamentos de dados, cuja finalidade era orientar o Estado em

Leia mais

Variáveis aleatórias discretas

Variáveis aleatórias discretas Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e Licenciaturas. MATRIZ Informações no Sistema Acadêmico (SA) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 10 de maio de 2017 relativo (DPR) São medidas que visam fornecer o grau de

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO MESTRADO - TURMA 2012 PROVA

Leia mais

1073/B - Introdução à Estatística Econômica

1073/B - Introdução à Estatística Econômica Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva Prof. Henrique Dantas Neder Instituto de Economia Universidade Federal de Uberlândia Typeset by FoilTEX 1 Tópicos introdutórios A estatística descritiva trata dos métodos estatísticos

Leia mais

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix Unidade II ESTATÍSTICA APLICADA Prof. Luiz Felix Distribuição de frequências - média Cálculo da Média x = X i. f i n Onde: x média aritmética da distribuição de frequência X i ponto médio de cada classe

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais