CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES"

Transcrição

1 CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro? - Até que ponto estamos certos? Π P ±,96 P( n P) (com 95% de confiança) onde: n... tamanho da amostra P... proporção da amostra Eemplo: Em 972, pouco antes das eleições presidenciais nos Estados Unidos, uma pesquisa Gallup, feita junto a 2000 eleitores, acusou 760 favoráveis a McGovern e 240 favoráveis a Nion. Calcular o intervalo π de confiança de 95% em relação a proporção P, da população que votou em McGovern.

2 - Aumentando n, aumenta-se a confiança. Para 99% de confiança, tem-se: Π P ± 2,58 P( n P) 2. VARIABILIDADE Duas peças nunca serão eatamente iguais: variações podem ser mínimas. 3. TIPOS DE VARIAÇÃO A Dentro da própria peça B. Entre peças produzidas no mesmo período C. Entre peças produzidas em períodos diferentes

3 4. TIPOS DE CARACTERÍSTICAS DA QUALIDADE o Variável: quando se faz um registro de uma característica medida, através de uma dimensão. Uma variável pode ter todos os valores possíveis entre dois valores limite. o Atributo: quando se faz registros de um número de ítens que atendam ou não a qualquer requisito específico, dizemos que esses registros são feitos com base em atributos. o Variáveis tratadas como atributos: a qualidade medida de ítens é chamada de variável, e o grupamento de itens em função de suas dimensões é chamado de atributo. 5. CLASSIFICAÇÃO DOS DADOS - Discretos: assumem determinados valores sem valores intermediários.

4 - Contínuos: assumem qualquer valor dentro dos limites especificados. 6. DISTRIBUIÇÃO DE FREQUÊNCIAS Nenhum processo pode fornecer ítens eatamente iguais, sempre eistirá variação. Distribuição de freqüências é útil para entender e interpretar a natureza dos dados

5 6.. Diagrama de Freqüências Eemplo de distribuição de freqüências para dados contínuos. Peso de eio de transmissão de aço (em Kg) 2,559 2,570 2,560 2,546 2,568 2,56 2,55 2,556 2,559 2,550 2,534 2,544 2,564 2,552 2,539 2,532 2,547 2,57 2,55 2,567 2,570 2,546 2,556 2,546 2,560 2,555 2,572 2,560 2,562 2,550 2,557 2,559 2,547 2,550 2,553 2,543 2,569 2,552 2,537 2,545 2,569 2,572 2,542 2,53 2,566 2,565 2,545 2,55 2,550 2,564 2,542 2,56 2,532 2,565 2,569 2,552 2,558 2,562 2,552 2,575 2,547 2,545 2,559 2,558 2,552 2,563 2,546 2,543 2,55 2,554 2,556 2,567 2,559 2,559 2,575 2,552 2,559 2,536 2,538 2,57 2,536 2,545 2,533 2,556 2,534 2,542 2,55 2,554 2,56 2,538 2,568 2,574 2,55 2,560 2,556 2,56 2,55 2,560 2,549 2,570 2,564 2,553 2,537 2,55 2,538 2,543 2,56 2,574 2,553 2,554

6 6.2. Cálculos para Distribuição de Freqüência A. Montar a folha de contagem Folha de contagem de valores para pesos de eios de ação ( com origem em valores de 2,500 Kg). PESO TABULAÇÃO PESO TABULAÇÃO PESO TABULAÇÃO Números de células de 5 a 20.

7 B. Determinar a amplitude R H L 2,575 2,53 0,044 (Kg) C. Determinar o intervalo de células C R/ i onde: C número de células R amplitude i intervalo de célula D. Determinar os limites das células Valores etremos, conhecidos como limite superior e inferior. E. Determinar os pontos médios das células Ponto central entre os limites superior e inferior.

8 F. Mostrar a freqüência após a célula Quantidades de valores correspondentes a cada célula. G. Freqüência acumulada Maior ( ou Menor) Quantidades de valores iguais ou maiores (ou menores) que a célula indicada. Eemplo: Distribuição de freqüências de pesos de eios de aço. Limites das Ponto Freqüência Freqüência Acumulada Células médio das menor que maior que células 2,53 2,535 2,535 2,539 2,539 2,543 2,543 2,547 2,547 2,55 2,55 2,555 2,555 2,559 2,559 2,563 2,563 2,567 2,567-2,57 2,57 2,575 2,575 2,579 2,533 2,537 2,54 2,545 2,549 2,553 2,557 2,56 2,565 2,569 2,573 2,

9 6.3. Apresentação Gráfica de Distribuições de freqüências A. Histograma B. Polígono de Freqüências

10 C. Gráfico de Freqüências Acumuladas ou Ogivas Freqüência Acumulada Maior Que Freqüência Acumulada Menor Que

11 8. MEDIDAS DE TENDÊNCIA CENTRAL 8.. Moda É o valor ou classe de maior frequência. E: Mediana ordenada. É o valor do centro da distribuição, após a mesma ter sido E: E se o número de observações for par? E: Mediana: (7 + 8) / 2 7, Média X Média aritmética das observações n n i i

12 2 s S ) ( 2 n S i n i 9. MEDIDAS DE DISPERSÃO OU VARIABILIDADE 9.. Variância (S 2 ) 9.2. Desvio Padrão (S): 9.3. Amplitude (R): R X ma -X min ) ( 2 2 n S i n i

13 0. Distribuição de Probabilidades n P r ( e ) lim n possíveis todos Forma de associar os eventos possíveis com suas probabilidades. Distribuições Discretas Variável discreta. Distribuições Contínuas Variáveis contínuas.

14 Conceitos Matemáticos de Apoio: ) Arranjo: nº de grupos de K elementos que se pode ordenar de n elementos. A n, K n! ( n K)! Eemplo: Quantas maneiras pode-se arranjar as letras A, B, C e D, duas a duas? A 4! (4 2)! ,2 2 2) Permutação: caso particular de arranjo de n elementos agrupados em formas diferentes. P n n! Eemplo: Quantas maneiram se permutam as letras A, B e C? P 3 3!

15 3) Combinação: nº de grupos K elementos que pode obter de n elementos. C n, K n! K!( n K)! Eemplo: Quantos resultados são possíveis ao se retirar 2 bolas, com reposição de uma urna contendo uma bola vermelha, uma azul, uma amarela e uma preta? C 4! 2!(4 2)! ,2 6 A) Distribuições Contínuas A.) Distribuição Normal Uma das mais utilizadas: σ 2 f ( X ) e σ 2π ( X µ ) 2 / 2 σ 2 µ

16 Padronização: distribuição padrão normal N (µ, σ 2 ) N (0,) z µ σ onde:... amostra µ... média populacional (- < µ < ) σ 2... variância da população (σ 2 > 0) A padronização transforma uma variável aleatória com distribuição N (µ,σ 2 ) em uma distribuição padrão N (0,). Eemplo: A distribuição dos diâmetros de uma peça segue uma distribuição normal com µ 00 mm e desvio padrão de 0,3 mm. Qual a porcentagem de peças que se encontra fora da especificação 00, ± 0,7? Solução: Xmin 00, 0,7 99,4 Xma 00, + 0,7 00,8 99, ,8

17 z 99,4 00 0,3 2,00 tabela 0,0228 z 00,8 00 0,3 2,67 tabela 0,9962 P (fora da especificação) ( 0,9962) + 0,0228 P (fora da especificação) 2,66% A.2) Distribuição Eponencial f () f () λ e -λ para 0

18 P( > o ) X λe o λ d e λ o onde: λ... taa de acontecimentos de sucesso A média e a variância da distribuição eponencial são: µ λ σ 2 2 λ Eemplo: Uma fábrica produz lâmpadas com uma duração de vida que pode ser considerada com uma distribuição eponencial com média 200 horas. a) Qual a probabilidade de uma lâmpada queimar antes de 20 horas de uso? f () 20

19 Solução: µ 200 h 20 h λ µ 200 queimas/ h P( < 20) e ,0952 b) Qual a probabilidade de uma lâmpada queimar entre 00 e 20 h Solução: f () P(00 < < 20) e e , ,0577 c) Das lâmpadas que duram mais de 00 horas, qual a porcentagem que queimam entre 00 e 20 horas? Solução:

20 00 < < 20 0,0577 P( ) > 00 0,6065 0,0952 B) Distribuições Discretas B.) Distribuição Hipergeométrica A variável aleatória da distribuição hipergeométrica é: X nº de peças defeituosas numa amostra, retirada sem reposição de uma população finita. N nº de peças de um lote D nº de peças defeituosas deste lote n tamanho da amostra A probabilidade de saírem K peças defeituosas na amostra é: P( X K) D N D. k n K N n

21 onde: N n... nº de amostras distintas de tamanho n, que podem ser retiradas de uma população de tamanho N D K. N n K D... nº de amostras com eatamente K peças defeituosas. Eemplo: Um lote de 50 peças contém eatamente 20% de peças defeituosas. Retirada uma amostra de 5 peças, qual a probabilidade de mais de 20% das peças da amostra serem defeituosas? Solução: N 50 D 0, n 5? P (X > 0,2 5) (X > ) - P (X 0) P (X ) D N D ( 0) k n K P X N 50 n 5 0,306

22 P( X ) ,433 P( X > ) 0,306 0,433 0,258 B.2) Distribuição Binomial Condições: a) n provas independentes b) cada prova admite sucesso ou fracasso c) a probabilidade de sucesso é p d) X nº de sucessos nas n provas Função probabilidade: P( X n p k K nk ) ( ) K p

23 onde: K... nº de ordens que pode-se ter p k ( p) n K... probabilidade de nas n provas acontecer K sucessos e n-k fracassos numa particular ordem n K... combinação, n, K Eemplo: Da produção mensal de uma máquina foi retirada uma amostra de 5 peças. Sabe-se que esta máquina apresenta uma porcentagem de peças defeituosas constante ao longo do tempo e igual a 5%. a) Qual a probabilidade de dentre as 5 peças eatamente 2 serem defeituosas? b) Qual a probabilidade de mais de 2 serem defeituosas? Solução: a) P( X 2) 0.0,5 2 n p k (0,85) 3 K ( p) 0,382 nk 5 0,5 2 2 ( 0,5) 52

24 b) P (X > 2) P (X 3) + P (X 4) + (X 5) P (X 0) P (X ) P (X 2) P( X P( X P( X 5 0).0,5 0 0 (0,85) 0, ).0,5.(0.85) 0,395 > 2) 0,4437 0,395 0, ,0266 B.3) Distribuição Poisson Condições: a) sucessos acontecem independentemente b) taa de acontecimento de sucesso (λ) é constante em todo o intervalo t c) X nº de sucessos no intervalo t d) t intervalo contínuo de tempo, área, volume, etc. Função probabilidade é: P( X K ) e ( λt) K! e λt K µ µ K! K onde: µ... média (µ λ.t)

25 Eemplo: Na inspeção de chapas de aço são retiradas amostras de 2m 2 e eaminadas quanto ao número de imperfeições encontradas. As chapas com duas ou mais imperfeições na amostra são rejeitadas. Se a média do processo de fabricação for de 0,75 imperfeições por metro quadrado, qual a probabilidade de uma chapa ser rejeitada? Solução: λ 0,75 imperfeições/m 2 t 2 m 2 µ 2 0,75,5 imperfeições por amostra X nº de imperfeições (sucessos) numa amostra de 2 m 2 rejeição 2 ou mais imperfeições P (rejeitar) P (X 2) - P (X 0) P (X ) P( X 0) e,5,5 0! 0 0,223 P( X ) e,5,5! 0,3347 P( X 2) 0,223 0,3347 0,4422

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Apontamentos de Introdução às Probabilidades e à Estatística

Apontamentos de Introdução às Probabilidades e à Estatística i Índice 1. Introdução 1 1.1. Enquadramento e objectivos 2 1.2. Organização 5 1.3. Noções base da Estatística 7 1.3.1. Distinção entre população e amostra 8 1.3.2. Amostragem 10 1.3.3. Unidade estatística

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

CAPÍTULO 6 CARACTERÍSTICAS DE OPERAÇÃO DOS PLANOS DE AMOSTRAGEM

CAPÍTULO 6 CARACTERÍSTICAS DE OPERAÇÃO DOS PLANOS DE AMOSTRAGEM CAPÍTULO 6 CARACTERÍSTICAS DE OPERAÇÃO DOS PLANOS DE AMOSTRAGEM A CCO define para cada plano de amostragem: a probabilidade de aceitação do lote (P) que tem uma qualidade p em porcentagem defeituosa, e

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. RINCIAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por f, β α 0, Notação: ~ Uα, β.

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em

Leia mais

Engenharia da Qualidade. Profa. Luciana Rosa Leite

Engenharia da Qualidade. Profa. Luciana Rosa Leite Engenharia da Qualidade Profa. Luciana Rosa Leite Unidade 1 Introdução à Engenharia Da Qualidade 1.1 Evolução da Gestão da Qualidade 1.2 Revisão de conceitos estatísticos Exercícios Evolução da Gestão

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II

UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção Introdução à Probabilidade e à Estatística (BCN0406-1) Prova 2 (A) 16/08/2018 Correção (1.pt) 1. Dadas as seguintes probabilidades associadas à variável aleatória X: -1 1 2 p() 1/2 1/3 1/6 a) Calcule a

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM

Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Revisão de Estatística Coleta de dados Análise de dados

Leia mais

Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo

Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo Estatística Estatística Descritiva Ivonete Melo de Carvalho Conteúdo Definições; Tabelas e Gráficos; Medidas de tendência central; Medidas de dispersão. Objetivos Diferenciar população e amostra. Elaborar

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2 SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL Estatística e Probabilidade CH: 40 h/a Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação; e Análise de resultados. Séries Estatísticas.

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA ENGENHARIA DA QUALIDADE A ENG 09008 AULA REVISÃO DE ESTATÍSTICA PROFESSORES: CARLA SCHWENGBER TEN CATEN ROGÉRIO FEROLDI MIORANDO Introdução Em um ambiente industrial, os dados devem formar a base para

Leia mais

Medidas de Dispersão. Prof.: Joni Fusinato

Medidas de Dispersão. Prof.: Joni Fusinato Medidas de Dispersão Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos

Leia mais

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um

Leia mais

1 Teoria da Decisão Estatística

1 Teoria da Decisão Estatística 1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos

Leia mais

CONTEÚDOS PROGRAMÁTICOS

CONTEÚDOS PROGRAMÁTICOS CONTEÚDOS PROGRAMÁTICOS CURSO: MATEMÁTICA DISCIPLINA: ESTATÍSTICA E PROBABILIDADE SÉRIE: 1ª CARGA HORÁRIA: 144 HORAS PROFESSORA: Maria Ivete Basniak ANO LETIVO: 2013 EMENTA: Variáveis e gráficos; Distribuições

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

DISTRIBUIÇÃO NORMAL CÁLCULO DE Z. m.a.perissinotto DIN - 1

DISTRIBUIÇÃO NORMAL CÁLCULO DE Z. m.a.perissinotto DIN - 1 DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica

Leia mais

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Medidas de Dispersão. Prof.: Joni Fusinato

Medidas de Dispersão. Prof.: Joni Fusinato Medidas de Dispersão Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos

Leia mais

Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09. Prof. Eduardo R Luz - MsC

Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09. Prof. Eduardo R Luz - MsC Curso: Eng da Produção Aula 1, 2, 4, 5 Agosto 09 Prof. Eduardo R Luz - MsC AULA 1 SUMÁRIO A Administração da Qualidade O Controle da Qualidade CEP Origem e história Outros conceitos relacionados ao CEP

Leia mais

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da

Leia mais

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha Universidade Estadual de Londrina. 26 de abril de 2017

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha  Universidade Estadual de Londrina. 26 de abril de 2017 MEDIDAS DE POSIÇÃO Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de abril de 2017 Introdução Medidas de posição São utilizadas para sintetizar,

Leia mais

Medidas de Centralidade

Medidas de Centralidade Medidas de Centralidade Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 28 de março de 2018 Londrina 1 / 26 Medidas de centralidade São utilizadas para sintetizar,

Leia mais

UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006

UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006 UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006 Ficha de trabalho nº 1 Estatística Descritiva 1. Num conjunto de jovens estudantes pretende-se estudar; 1.1 A profissão

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Distribuições de Probabilidade (Extra)

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Distribuições de Probabilidade (Extra) Estatística: Aplicação ao Sensoriamento Remoto SER 04 - ANO 018 Distribuições de Probabilidade (Etra) Camilo Daleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ Distribuição Uniforme

Leia mais

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma:

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma: DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica

Leia mais

Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM

Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM Cronograma parcial DPS1037 Data Aula Conteúdo 10/ago 1 Introdução à Engenharia da

Leia mais

1 Estatística Descritiva

1 Estatística Descritiva 1 Estatística Descritiva A estatística descritiva é parte da estatística que lida com a organização, resumo e apresentação de dados. Esta é feita por meio de: Tabelas; Gráficos; Medidas Descritivas (média,

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 011 Variável aleatória é o espaço amostral de um eperimento aleatório. Uma variável aleatória,, é uma função que atribui um número real a cada resultado em. Eemplo. Retira-, ao

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.

Leia mais

Unidade III Medidas Descritivas

Unidade III Medidas Descritivas Unidade III Medidas Descritivas Autor: Anderson Garcia Silveira Anderson Garcia Silveira Na aula anterior... Medidas de Tendência Central 2 Na aula anterior... Medidas de Tendência Central Moda Mediana

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

CE219 - Controle Estatístico de Qualidade

CE219 - Controle Estatístico de Qualidade CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 96 Aula 2 - Métodos estáticos para

Leia mais

Bioestatística. Luiz Ricardo Nakamura Cristiane Mariana Rodrigues da Silva. Ciências biológicas a USP ESALQ. Estatística

Bioestatística. Luiz Ricardo Nakamura Cristiane Mariana Rodrigues da Silva. Ciências biológicas a USP ESALQ. Estatística Bioestatística Luiz Ricardo Nakamura Cristiane Mariana Rodrigues da Silva Ciências biológicas a USP ESALQ LR Nakamura Estatística ESALQ 1 / 67 Estatística e o método científico Circularidade do método

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 21 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 00 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

Universidade Federal de Mato Grosso - UFMT Probabilidade e Estatística

Universidade Federal de Mato Grosso - UFMT Probabilidade e Estatística Universidade Federal de Mato Grosso - UFMT Probabilidade e Estatística 1 Introdução Definição: Estatística é um conjunto de conceitos e métodos científicos para coleta, organização, descrição, análise

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Referências Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFinal 0,4

Leia mais

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidades Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Noções Básicas Os métodos estatísticos para análise de dados estão associados

Leia mais

Medidas de dispersão. 23 de agosto de 2018

Medidas de dispersão. 23 de agosto de 2018 23 de agosto de 2018 Dispersão de dados A representação feita pelas medidas centrais, ao mesmo tempo que permite uma visualização rápida das informações acaba levando ao embaralhamento do conjunto. A média

Leia mais

Cap. 5 Variáveis aleatórias discretas

Cap. 5 Variáveis aleatórias discretas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Análise Exploratória e Estimação PARA COMPUTAÇÃO

Análise Exploratória e Estimação PARA COMPUTAÇÃO Análise Exploratória e Estimação MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Médias Média Aritmética (valor médio de uma distribuição) n x = 1 n i=1 x i = 1 n x 1 + + x n Média Aritmética

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Cap. 8 Distribuições contínuas e modelo normal

Cap. 8 Distribuições contínuas e modelo normal Estatística Aplicada às Ciências Sociais Seta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 8 Distribuições contínuas e modelo normal Variável aleatória discreta variável aleatória

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,

Leia mais