PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano"

Transcrição

1 PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano

2 Aula 7 11/2014 Variáveis Aleatórias

3 Variáveis Aleatórias Probabilidade e Estatística 3/41

4 Variáveis Aleatórias Colete dados amostrais e, então, obtenha estatísticas e gráficos x f x = 3, 6 s =1, 7 Lance um dado Encontre a probabilidade para cada resultado P(1) = 1/6 P(2) = 1/6! P(1) = 1/6 Probabilidade e Estatística 4/41

5 Variáveis Aleatórias Lance um dado Criar um modelo teórico que descreva como se espera que o experimento se comporte e, então obtenha parâmetros x P(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 µ = 3, 5 σ =1, 7 Probabilidade e Estatística 5/41

6 Variáveis Aleatórias Uma é uma variável (normalmente representada por x) que assume um único valor numérico, determinado pelo acaso, para cada resultado de um experimento. Probabilidade e Estatística 6/41

7 Distribuição de Probabilidade Uma é uma descrição que dá a probabilidade para cada valor da variável aleatória. Ela é frequentemente expressa na forma de um gráfico, de uma tabela ou de uma fórmula. Probabilidade e Estatística 7/41

8 EXEMPLO 1 Considere a prole de ervilhas de pais que têm, ambos, a combinação verde/amarelo de genes de vagem. Sob essas condições, a probabilidade de uma prole ter uma vagem verde é 3/4 ou 0,75. Isto é, P (vagem verde) = 0,75. Se obtemos cinco dessas proles e fazemos: x = número de ervilhas com vagens verdes entre 5 proles de ervilhas Então, x é uma variável aleatória, pois seu valor depende do acaso. Probabilidade e Estatística 8/41

9 EXEMPLO 1 A tabela abaixo, é uma distribuição de probabilidade, porque ela dá a probabilidade para cada valor da variável aleatória x. x (Número de ervilhas com vagens verdes) P(x) 0 0,01 1 0, , , , ,237 Probabilidade e Estatística 9/41

10 Variáveis Aleatórias Variável Aleatória Discreta É uma variável aleatória com uma faixa finita (ou infinita contável). Variável Aleatória Contínua É uma variável aleatória com um intervalo (tanto finito como infinito) de números reais para sua faixa. Probabilidade e Estatística 10/41

11 Variáveis Aleatórias Variável Aleatória Discreta Ø Número de arranhões em uma superfície; Ø Proporção de partes defeituosas entre testadas; Ø Número de bits transmitidos que foram recebidos com erro. Variável Aleatória Contínua Ø Corrente Elétrica; Ø Comprimento; Ø Pressão; Ø Temperatura, Ø Tempo, Ø Voltagem. Probabilidade e Estatística 11/41

12 Gráficos Podemos representar uma distribuição de frequências através de um histograma: o Área do retângulo: 1 0,396 As áreas dos retângulos são iguais às probabilidades da Tabela do Exemplo 1 Probabilidade e Estatística 12/41

13 Distribuição de Probabilidades Toda distribuição de probabilidades deve satisfazer cada um dos seguintes requisitos: P( x) =1 Valores como 0,999 ou 1,001 são aceitáveis quando resultam de erros de arredondamento. 0 P( x) 1 Probabilidade e Estatística 13/41

14 EXEMPLO 1 Analisando a tabela do Exemplo 1: x (Número de ervilhas com vagens verdes) P(x) 0 0, , , , , ,237 P( x) =1, 001 Cada P (x) está entre 0 e 1 Probabilidade e Estatística 14/41

15 Média, Variância e Desvio-Padrão Podemos descrever distribuições de probabilidades utilizando a média, a variância e o desvio-padrão. : Valor central da variável aleatória. aleatória. : Medem a variação da variável Probabilidade e Estatística 15/41

16 Média, Variância e Desvio-Padrão A média de uma distribuição de frequências é dada por: µ = f x N f i = frequência da i-ésima classe k = número de classes N = tamanho da população µ = " f x% " $ ' = x f % $ ' = " # x P( x) % & # N & # N & Probabilidade e Estatística 16/41

17 Média, Variância e Desvio-Padrão Média de uma distribuição de probabilidade Variância (de mais fácil entendimento) µ = " # x P( x) $ % σ 2 = # ( x µ ) 2 P( x) % $ & Variância (cálculos mais fáceis) σ 2 = " # ( ) x 2 P x $ % µ 2 Desvio-padrão σ = σ 2 Probabilidade e Estatística 17/41

18 EXEMPLO 2 A tabela abaixo descreve a distribuição de probabilidade para o número de ervilhas com vagens verdes entre 5 proles obtidas de pais que tinham, ambos, pares de genes verde/ amarelo. Ache a média, a variância e o desvio-padrão para esta distribuição de probabilidade. Probabilidade e Estatística 18/41

19 EXEMPLO 2 x (Número de ervilhas com vagens verdes) P(x) 0 0,01 1 0, , , , ,237 Total x. P(x) (x-µ) 2. P(x) 0,000 0, ,015 0, ,176 0, ,792 0, ,584 0, ,185 0, ,752 0, Probabilidade e Estatística 19/41

20 EXEMPLO 2 O número médio de ervilhas com vagens verdes é 3,8 ervilhas; A variância é 0,9 ervilhas ao quadrado ; O desvio-padrão é 1,0 ervilha. Probabilidade e Estatística 20/41

21 VALORES NÃO USUAIS Se, sob uma dada hipótese, a probabilidade de um evento particular observado é extremamente pequena, concluímos que a hipótese provavelmente não é correta. Como no caso da hipótese de uma moeda ser honesta. Se tivermos observado 992 caras em 1000 lançamentos. Concluímos que a hipótese não é correta, já que a probabilidade deste evento é extremamente baixa. Probabilidade e Estatística 21/41

22 VALORES NÃO USUAIS Probabilidades podem ser usadas para se aplicar a regra do evento raro. Número de sucessos não usualmente alto: x sucessos em n tentativas é um número de sucessos se a probabilidade de x ou mais sucessos for improvável, com uma probabilidade de 0,05 ou menos. Esse critério pode ser expresso como. Probabilidade e Estatística 22/41

23 VALORES NÃO USUAIS Número de sucessos não usualmente baixo: x sucessos em n tentativas é um número de sucessos se a probabilidade de x ou menos sucessos for improvável, com uma probabilidade de 0,05 ou menos. Esse critério pode ser expresso como. O valor 0,05 não é absolutamente rígido. Outros valores, tais como 0,01 também são frequentemente usados. Probabilidade e Estatística 23/41

24 EXEMPLO 3 Para determinarmos se 1 é um valor não usualmente baixo de ervilhas com vagens verdes (entre 5 proles), precisamos encontrar a probabilidade de se obter 1 ou menos ervilhas com vagens verdes. x (n o de ervilhas com vagens verdes) P(x) 0 0, , , , , ,237 P 1 ou menos ( ) = P 1 ou 0 ( ) = 0, , 001 = 0,16 Como 0,16 > 0,05, 1 não é um valor não usualmente baixo. Probabilidade e Estatística 24/41

25 Distribuição Binomial Probabilidade e Estatística 25/41

26 Distribuição Binomial A nos permite lidar com circunstâncias nas quais os resultados pertencem a categorias, tais como aceitável/defeituoso ou sobreviveu/morreu. Probabilidade e Estatística 26/41

27 Distribuição Binomial Uma distribuição binomial resulta de um experimento que satisfaz os seguintes requisitos: 1. O experimento tem um ; 2. As tentativas devem ser ; 3. Cada tentativa deve ter todos os resultados classificados em (em geral, chamadas de e ); 4. A probabilidade de sucesso permanece em todas as tentativas. Probabilidade e Estatística 27/41

28 Distribuição Binomial Se um experimento satisfaz os requisitos anteriores, a distribuição da variável aleatória x (número de sucessos) é chamada de. Probabilidade e Estatística 28/41

29 Notação para Distribuição Binomial S e F (sucesso e fracasso): Representam as duas categorias possíveis de resultados. P(S) = p: probabilidade de sucesso. P(F) = 1 p = q: probabilidade de fracasso. n: número fixo de tentativas. Probabilidade e Estatística 29/41

30 Notação para Distribuição Binomial x: número específico de em n tentativas, de modo que x pode ser qualquer número inteiro entre 0 e n, inclusive. p: Probabilidade de em uma de n tentativas. q: Probabilidade de fracasso em uma de n tentativas. P(x): Probabilidade de se obterem exatamente x sucessos entre as n tentativas. Probabilidade e Estatística 30/41

31 A palavra sucesso é arbitrária e não representa, necessariamente, algo bom. Qualquer uma das duas categorias pode ser chamada de sucesso S, desde que sua probabilidade seja identificada como p. Ao usar a Distribuição Binomial, certifique-se de que p e x se referem à mesma categoria. Probabilidade e Estatística 31/41

32 EXEMPLO 4 Considere um experimento no qual 5 proles de ervilhas são geradas de 2 pais, tendo cada um a combinação de genes verde/amarelo para a cor da vagem. A probabilidade de uma prole de ervilha ter uma vagem verde é 0,75, ou seja, P (vagem verde) = 0,75. Suponha que desejemos encontrar a probabilidade de que exatamente 3 das 5 proles de ervilhas tenham vagem verde. Esse procedimento resulta em uma Distribuição Binomial? Se sim, identifique os valores de n, x, p e q. Probabilidade e Estatística 32/41

33 EXEMPLO 4 1. O número de tentativas (5) é fixo; 2. As 5 tentativas são independentes, porque a probabilidade de qualquer prole de ervilha ter vagem verde não é afetada pelo resultado de qualquer outra prole de ervilha. 3. Cada uma das 5 tentativas tem duas categorias de resultados: a ervilha tem vagem verde ou não; 4. Para cada prole de ervilha, a probabilidade de que tenha vagem verde é 0,75, e essa probabilidade permanece a mesma para cada uma das cinco ervilhas. Probabilidade e Estatística 33/41

34 EXEMPLO 4 Podemos, então, concluir que o procedimento dado resulta em uma Distribuição Binomial. n = 5; x = 3; p = 0,75; q = 0,25. x e p devem se referir ao mesmo conceito de sucesso. Aqui, usamos x para contar o número de ervilhas com vagem verde, de modo que p deve ser a probabilidade de que uma ervilha tenha vagem verde. Probabilidade e Estatística 34/41

35 Determinação das probabilidades correspondentes à variável aleatória x em uma distribuição binomial: P ( x) = n! ( n x)! x! p x q n x para x = 0, 1, 2,..., n. em que: n = número de tentativas; x = número de sucessos entre n tentativas; p = probabilidade de sucesso em qualquer tentativa; q = probabilidade de fracasso em qualquer tentativa. Probabilidade e Estatística 35/41

36 Exemplo 5 Supondo que a probabilidade de uma ervilha ter vagem verde seja 0,75, use a fórmula da probabilidade binomial para encontrar a probabilidade de se obterem exatamente 3 ervilhas com vagens verdes quando são geradas 5 proles. Probabilidade e Estatística 36/41

37 Média, Variância e Desvio-Padrão Vamos analisar como fica a média, a variância e o desviopadrão para a Distribuição Binomial. Distribuição Qualquer Distribuição Binomial µ = " # x P( x) $ % µ = np σ 2 = " # ( ) x 2 P x $ % µ 2 2 σ = npq σ = σ 2 σ = npq Probabilidade e Estatística 37/41

38 EXEMPLO 6 Use as fórmulas para o cálculo da média e do desvio-padrão para uma Distribuição Binomial para os números de ervilhas com vagens verdes, quando são gerados grupos de 5 ervilhas. Suponha que haja uma probabilidade 0,75 de que uma ervilha gerada tenha vagem verde. Probabilidade e Estatística 38/41

39 EXEMPLO A fórmula para a média tem sentido, intuitivamente. Se 75% das ervilhas têm vagens verdes e são geradas 5 ervilhas, esperamos obter cerca de 5 0,75 = 3,8 ervilhas com vagens verdes. Este resultado pode ser facilmente generalizado como µ = np. A variância e o desvio-padrão não se justificam tão facilmente, então apenas verificamos que usando ambas as fórmulas para desvio-padrão, obtivemos o mesmo resultado. Probabilidade e Estatística 39/41

40 Distribuição de Poisson Probabilidade e Estatística 40/41

41 Distribuição de Poisson A é uma distribuição de probabilidade discreta que se aplica a ocorrências de eventos ao longo de intervalos especificados. A variável aleatória x é o número de ocorrências do evento no intervalo. O intervalo pode ser de tempo, distância, área, volume ou alguma unidade similar. Probabilidade e Estatística 41/41

42 Distribuição de Poisson A probabilidade de ocorrência do evento, x vezes em um intervalo é dada por: P x ( ) = µ x e µ x! Probabilidade e Estatística 42/41

43 Distribuição de Poisson Uma distribuição de Poisson resulta de um experimento que satisfaz os seguintes requisitos: 1. A variável aleatória x é o número de ocorrências de um evento ; 2. As ocorrências devem ser ; 3. As ocorrências devem ser umas das outras. Probabilidade e Estatística 43/41

44 Média, Variância e Desvio-Padrão A média e o desvio-padrão para a distribuição de Poisson são: µ σ = µ Probabilidade e Estatística 44/41

45 1. A Distribuição Binomial é afetada pelo tamanho n da amostra e pela probabilidade p, enquanto a Distribuição de Poisson é afetada apenas pela média µ. 2. Na Distribuição Binomial, os valores possíveis da variável aleatória x são 0, 1,..., n, mas uma Distribuição de Poisson tem, para valores possíveis de x; 0, 1, 2,..., sem nenhum limite superior. Probabilidade e Estatística 45/41

46 EXEMPLO 7 Para um período recente de 100 anos, houve 93 terremotos maiores (de, pelo menos, 6,0 na escala Richter) no mundo. Suponha que a Distribuição de Poisson seja um modelo adequado. a) Ache o número médio de terremotos maiores por ano; b) Se P (x) é a probabilidade de x terremotos em um ano selecionado aleatoriamente, ache P (0), P(1), P (2), P(3), P (4), P(5), P (6) e P(7). Probabilidade e Estatística 46/41

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Estatística e Probabilidade Aula 7 Cap 04

Estatística e Probabilidade Aula 7 Cap 04 Aula 7 Cap 04 Um estatístico é aquele que, se está com a cabeça em um forno e os pés enterrados no gelo, ainda diz que na média está tudo bem. Na aula anterior vimos... Variáveis aleatórias Distribuições

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Probabilidade - aula III

Probabilidade - aula III 2012/02 1 Regra da Multiplicação 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a. Regra da Multiplicação Frequentemente

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Noções básicasb de Inferência Estatística descritiva inferencial População - Parâmetros desconhecidos (reais) Amostra

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Distribuições discretas de probabilidade

Distribuições discretas de probabilidade 4 Distribuições discretas de probabilidade x = número de respostas corretas x = número de chegadas pontuais Estatística Aplicada Larson Farber x = número de funcionários que alcançou a cota de vendas x

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades 2012/02 1 Variáveis Aleatórias Discretas 2 Distribuições de Probabilidade e Funções de Probabilidade 3 4 de uma Variável Aleatória Discreta

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Bioestatística F. Modelo Binomial. Enrico A. Colosimo

Bioestatística F. Modelo Binomial. Enrico A. Colosimo Bioestatística F Modelo Binomial Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 1 Variável aleatória discreta Definição Uma

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Distribuição de Probabilidade Descreve a chance que uma variável pode assumir

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço

Leia mais

Distribuições de Probabilidade Conjuntas

Distribuições de Probabilidade Conjuntas Distribuições de Probabilidade Conjuntas 1. Duas variáveis aleatórias discretas Exemplo 1. No desenvolvimento de um novo receptor para transmissão digital de informação, cada bit é classificado como aceitável,

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Distribuição de Probabilidade Discreta

Distribuição de Probabilidade Discreta Instituto de Física da Universidade de São Paulo Distribuição de Probabilidade Discreta (Trevo) 01-02 de abril de 2014 P. R. Pascholati Pro logo Distribuic a o Multinomial Trevo Parque da Previde ncia

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

12 Distribuições de Probabilidades

12 Distribuições de Probabilidades 12 Distribuições de Probabilidades 12.1 Introdução Neste capítulo vamos dar continuidade ao estudo de probabilidades, introduzindo os conceitos de variáveis aleatórias e de distribuições de probabilidade.

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Estatística Descritiva Medidas de Variação Probabilidade e Estatística 3/42 Medidas de Variação Vamos

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

PROBABILIDADE E ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 3 09/2014 Estatística Descritiva Medidas de Centro Probabilidade e Estatística 3/19 Medidas de Centro Uma medida

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Probabilidade Revisão de Conceitos

Probabilidade Revisão de Conceitos Probabilidade Revisão de Conceitos Espaço de Amostras A totalidade dos possíveis resultados de um experimento aleatório. Exemplo: jogar dados S = {(1,1),(1,),... (,1),(,)... (6,6)} S é dito o número de

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006. Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

Distribuições Estatísticas

Distribuições Estatísticas Distribuições Estatísticas Para darmos sequência ao estudo da estatística, será necessário conhecer um pouco mais sobre as distribuições mais utilizadas, como distribuição normal, distribuição Gama, distribuição

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

à Análise de Padrões

à Análise de Padrões CC-226 Introdução à Análise de Padrões Prof. Carlos Henrique Q. Forster Variáveis, Estatísticas sticas e Distribuições de Probabilidades Tópicos de hoje Definições Alguns estimadores estatísticos Distribuições

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais