Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto"

Transcrição

1 Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto

2 Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas.

3 Distribuição de Bernoulli Na área de teoria das probabilidades e estatística, a distribuição de Bernoulli, nome em homenagem ao cientista suíço Jakob Bernoulli, é a distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 p. Neste caso a variável aleatória X tem distribuição de Bernoulli e sua função de probabilidade é dada por: P(X = x) = p x. q 1-x

4 X P(X) X. P(X) X 2. P(X) 0 q p p p 1 p p Esperança: E(X) = p Variância: VAR(X) = p p 2 = p. (1 q) = p. q

5 Exemplo: Uma urna tem 30 bolas brancas e 20 verdes. Retira-se uma bola dessa urna. Sendo X o número de bolas verdes, calcular E(X) e VAR(X) e determinar P(X).

6 Distribuição Geométrica A distribuição geométrica é constituída por duas funções de probabilidade discretas: a) a distribuição de probabilidade do número X de tentativas de Bernoulli necessárias para alcançar um sucesso, suportadas pelo conjunto { 1, 2, 3,... }, ou b) a distribuição de probabilidade do número Y = X 1 de insucessos antes do primeiro sucesso, suportadas pelo conjunto { 0, 1, 2, 3,... }.

7 Se a probabilidade de sucesso de cada tentativa é p, então a probabilidade de n tentativas serem necessárias para ocorrer um sucesso é P(X = n) = (1 p) n-1. p para n = 1, 2, 3,... De forma equivalente, a probabilidade de serem necessários n insucessos antes do primeiro sucesso é para n = 0, 1, 2, 3,... P(Y = n) = (1 p) n. p Em qualquer caso, a sequência de probabilidades é uma progressão geométrica.

8 Média: E(X) = Variância: VAR(X) = Demonstrações no livro texto.

9 Exemplo: A probabilidade de se encontrar aberto o sinal de trânsito numa esquina é 0,20. Qual a probabilidade de que seja necessário passar pelo local 5 vezes, para encontrar o sinal aberto pela primeira vez? X: número de vezes necessárias para encontrar o sinal aberto. p = 0,20; q = 0,80 P(X = 5) = (0,80) 4 (0,20) = 0,08192 = 8,192%

10 Distribuição de Pascal A distribuição de Pascal ou distribuição binomial negativa indica o número de tentativas necessárias para obter r sucessos de igual probabilidade p ao fim de x experimentos de Bernoulli, sendo a última tentativa um sucesso. A sua função de probabilidade é dada por: x = r, r + 1,... X é o número de repetições necessárias para que ocorram r sucessos.

11 Importante: A distribuição Geométrica e fortemente relacionada com a Binomial negativa. Na Geométrica queremos o número de tentativas para obter o primeiro sucesso, ou seja, o tempo de espera até que se tenha o evento de importância ou sucesso. Média: E(X) = Variância: VAR(X) =

12 Exemplo: Numa linha de montagem, 10% das peças são defeituosas. Qual a probabilidade de que a quinta peça analisada seja a segunda defeituosa? Assim, x = 5; p = 10% ou 0,10; r = 2; q = 0,9

13 Distribuição Hipergeométrica A distribuição hipergeométrica descreve a probabilidade de se retirar k elementos do tipo A numa sequência de n extrações de uma população finita de tamanho N, com r elementos do tipo A e N-r elementos do tipo B, sem reposição. Seja um conjunto com N elementos tal que existem r elementos do tipo A e N-r elementos do tipo B. Um conjunto de n elementos é selecionado, aleatoriamente e sem reposição, do conjunto de N elementos. A variável aleatória X denota o número de elementos tipo A. Então, X tem distribuição hipergeométrica e

14 onde k = 0,1,2,..., min(r, n) e onde refere-se ao coeficiente binomial, o número de combinações possíveis ao selecionar b elementos de um total a. O valor esperado da variável aleatória X é dado por E(X) = n.p e a sua variância Quando o tamanho da população é muito maior do que a amostra (isto é, N é muito maior que n) a distribuição hipergeométrica é razoavelmente bem aproximada pela distribuição binomial com parâmetros n (número de tentativas) e p = K / N (probabilidade de sucesso numa tentativa única).

15 Exemplo: Pequenos motores são guardados em caixas de 50 unidades. Um inspetor de qualidade examina cada caixa, antes da posterior remessa, testando 5 motores. Se nenhum motor for defeituoso, a caixa é aceita. Se pelo menos um for defeituoso, todos os 50 são testados. Há 6 motores defeituosos numa caixa. Qual a probabilidade de que seja necessário examinar todos os motores dessa caixa? X: número de motores defeituosos da amostra. N = 50; r = 6; n = 5.

16 Distribuição Binomial É a distribuição de probabilidade discreta do número de sucessos numa sequência de n tentativas tais que: 1. Cada tentativa tem exclusivamente como resultado duas possibilidades, sucesso ou fracasso; 2. Cada tentativa é independente das demais; 3. A probabilidade de sucesso p a cada tentativa permanece constante independente das demais; 4. A variável de interesse é o número de sucessos k nas n tentativas.

17 A variável aleatória X é o número de tentativas que resultam em sucesso. A probabilidade de ter exatamente k sucessos é dado pela função de probabilidade: Esperança: E(X) = n. p Variância: VAR(X) = n. p. (1 p) Demonstrações no livro texto.

18 Exemplo: Uma moeda é lançada 20 vezes. Qual a probabilidade de saírem 8 caras? X: número de sucessos (caras) X = 0, 1, 2,..., 20 Probabilidades de cara em um lançamento: p = 0,5 Portanto k = 8; n = 20; p = 0,5

19 Exemplo: Uma prova tipo teste tem 50 questões independentes. Cada questão tem 5 alternativas. Apenas uma das alternativas é a correta. Se um aluno resolve a prova respondendo a esmo as questões, qual a probabilidade de acertar metade das questões? X: número de acertos X: 0, 1, 2,..., 50 Probabilidades de acerto de 1 questão: p = 1/5 = 0,2 Portanto k = 25; n = 50; p = 0,2

20 Exemplo: Achar a média e a variância da variável aleatória Y = 3X + 2, sendo X com n = 20; p = 0,3 E(X) = n p = 20 0,3 = 6 VAR(X) = n p q = 20 0,3 0,7 = 4,2 Logo E(Y) = E(3X + 2) = 3 E(X) + 2 = = 20 VAR(Y) = VAR(3X + 2) = 9 VAR(X) = 9 4,2 = 37,8

21 Distribuição Multinomial A distribuição multinomial ou polinomial é uma generalização da distribuição binomial. Assim consideremos a possibilidade de k alternativas, isto é repartirmos o espaço amostral em k eventos X 1, X 2, X 3,..., X k mutuamente exclusivos, com probabilidades p 1, p 2, p 3,..., p k, tais que p 1 + p 2 + p p k = 1

22 Então em k eventos a probabilidade de que X 1 ocorra n 1 vezes, X 2 ocorra n 2 vezes, X 3 ocorra n 3 vezes... X k ocorra n k vezes, é dado por: Esperança: E(X i ) = n i. p i Variância: VAR(X i ) = n i. p i. (1 p i ) sendo i = 1, 2,... k Demonstrações no livro texto.

23 Exemplo: Uma urna tem 6 bolas brancas, 4 pretas e 5 azuis. Retiram-se 8 bolas com reposição. Qual a probabilidade de sair 4 bolas brancas, 2 pretas e 2 azuis? X 1 : saída de 4 bolas brancas X 2 : saída de 2 bolas pretas X 3 : saída de 2 bolas azuis X 1 + X 2 + X 3 = 8

24 Distribuição de Poisson A distribuição de Poisson expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem independentemente de quando ocorreu o último evento. A distribuição foi descoberta por Siméon-Denis Poisson ( ) e publicada, conjuntamente com a sua teoria da probabilidade, em 1838 no seu trabalho Recherches sur la probabilité des jugements en matières criminelles et matière civile ("Inquérito sobre a probabilidade em julgamentos sobre matérias criminais e civis"). O trabalho focava-se em variáveis aleatórias N que contavam, entre outras coisas, o número de ocorrências discretas de um certo fenômeno durante um intervalo de tempo de determinada duração.

25 A probabilidade de que existam exatamente k ocorrências (k sendo um inteiro não negativo, k = 0, 1, 2,...) é onde e é base do logaritmo natural (e = 2, ), λ é um número real, igual ao número esperado de ocorrências que ocorrem num dado intervalo de tempo. Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usaríamos como modelo a distribuição de Poisson com λ = 10/4 = 2,5.

26 Esperança: E(X) = l Variância: VAR(X) = l Demonstrações no livro texto. Exemplo: A probabilidade de uma lâmpada se queimar ao ser ligada é de 1/100. Numa instalação com 100 lâmpadas, qual a probabilidade de 2 lâmpadas se queimarem ao serem ligadas, usando Poisson? l = n. p = 100 0,01 = 1

27 Exemplo: Numa central telefônica chegam 300 telefonemas por hora. Qual a probabilidade de que: a) Num minuto não haja nenhum chamado. b) Em 2 minutos haja 2 chamados. c) Em t minutos não haja chamados. a) X: número de chamadas por minuto l = 5 b) Dois minutos l = 10 c) Tempo de t minutos l = 5t

28 A distribuição de Poisson representa um modelo probabilístico adequado para o estudo de um grande número de fenômenos observáveis. Eis alguns exemplos: Chamadas telefônicas por unidade de tempo; Defeitos por unidade de área; Acidentes por unidade de tempo; Chegada de clientes a um supermercado por unidade de tempo; Número de glóbulos sanguíneos visíveis ao microscópio por unidade de área; Número de partículas emitidas por uma fonte de material radioativo por unidade de tempo.

29 Estatística Básica Luiz Gonzaga Morettin Pearson Prentice Hall, 2010.

30 Páginas da Wikipédia referentes à: Distribuição de Bernoulli; Distribuição Geométrica; Distribuição Hipergeométrica; Distribuição de Pascal; Distribuição Binomial; Distribuição Multinomial; Distribuição de Poisson.

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas 1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Distribuições Discretas de Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE Distribuições de Probabilidade

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

PRINCIPAIS MODELOS DISCRETOS

PRINCIPAIS MODELOS DISCRETOS PRINCIPAIS MODELOS DISCRETOS 2012 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

Estatística Planejamento das Aulas

Estatística Planejamento das Aulas 29 de outubro de 2018 Distribuição Discreta Uniforme No experimento estatístico, os eventos são equiprováveis. A v.a. discreta X assume n valores discretos tem função de probabilidade: { 1 se x f x = i

Leia mais

Distribuições Geométrica e Hipergeométrica

Distribuições Geométrica e Hipergeométrica Distribuições Geométrica e Hipergeométrica Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 06 de junho de 2018 Londrina 1 / 15 Distribuição Geométrica Em algumas

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Distribuição de Probabilidade. Prof.: Joni Fusinato

Distribuição de Probabilidade. Prof.: Joni Fusinato Distribuição de Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Distribuições de Probabilidade (Extra)

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Distribuições de Probabilidade (Extra) Estatística: Aplicação ao Sensoriamento Remoto SER 04 - ANO 018 Distribuições de Probabilidade (Etra) Camilo Daleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ Distribuição Uniforme

Leia mais

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Distribuição de Probabilidade Descreve a chance que uma variável pode assumir

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

HIPERGEOMÉTRICA. Lucas Santana da Cunha Universidade Estadual de Londrina

HIPERGEOMÉTRICA. Lucas Santana da Cunha    Universidade Estadual de Londrina DISTRIBUIÇÕES GEOMÉTRICA E HIPERGEOMÉTRICA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 28 de junho de 2017 Distribuição Geométrica

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2010 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 3. Uma peça é classificada como defeituosa

Leia mais

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5: Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir

Leia mais

Avaliação e Desempenho Aula 5

Avaliação e Desempenho Aula 5 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade

Leia mais

Distribuições de probabilidade de variáveis aleatórias discretas

Distribuições de probabilidade de variáveis aleatórias discretas Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ). Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade

Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Referências Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFinal 0,4

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

PARTE 2. Profª. Drª. Alessandra de Ávila Montini

PARTE 2. Profª. Drª. Alessandra de Ávila Montini PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

AULA 16 - Distribuição de Poisson e Geométrica

AULA 16 - Distribuição de Poisson e Geométrica AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios

Leia mais

3 a Lista de PE. Universidade de Brasília Departamento de Estatística

3 a Lista de PE. Universidade de Brasília Departamento de Estatística Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

1.1.1 Distribuição binomial

1.1.1 Distribuição binomial 2 CAPÍTULO 1. INTRODUÇÃO 1.1.1 Distribuição binomial Em teoria das probabilidades e na estatística a distribuição binomial é a distribuição de probabilidade do número de sucessos em uma seqüência de n

Leia mais

Cap. 5 Variáveis aleatórias discretas

Cap. 5 Variáveis aleatórias discretas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

DISTRIBUIÇÕES BERNOULLI E BINOMIAL

DISTRIBUIÇÕES BERNOULLI E BINOMIAL DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Distribuições Bernoulli e Binomial

Distribuições Bernoulli e Binomial Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2017/2

Estatística (MAD231) Turma: IGA. Período: 2017/2 Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Aula 5. Variáveis Aleatórias Discretas

Aula 5. Variáveis Aleatórias Discretas Aula 5. Variáveis Aleatórias Discretas Definição formal : Variável aleatória é qualquer função definida em espaço Ω. Ω função é uma regra que para cada valor de domínio corresponde um valor de R R Definição

Leia mais

1073/B - Introdução à Estatística Econômica

1073/B - Introdução à Estatística Econômica Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Probabilidade em espaços discretos. Prof.: Joni Fusinato Probabilidade em espaços discretos Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT) Distribuições de

Leia mais

Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com

Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Discretas

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Discretas Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Discretas Professora Renata Alcarde Sermarini Piracicaba abril 2016 Renata Alcarde Sermarini Estatística Geral

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Distribuições Bernoulli, Binomial e Poisson

Distribuições Bernoulli, Binomial e Poisson Distribuições Bernoulli, Binomial e Poisson Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 06 de junho de 2018 Londrina 1 / 18 Nos experimentos de Bernoulli,

Leia mais

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais