Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Tamanho: px
Começar a partir da página:

Download "Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada"

Transcrição

1 Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. elemento de S (s S) um número real x X(s) é denominada variável aleatória. O conjunto de valores O conjunto formado por todos os valores x, isto é, a imagem da variável aleatória X, é denominado de conjunto de valores de X. X(S) { x R X(s) x } s KKK CKK KKC KCK CCK CKC KCC CCC S X 3 R x X(s) X(S) Tipos de variáveis Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

2 Variável Discreta (VAD) Se o conjunto de valores for finito ou então infinito enumerável a variável é dita discreta. A função de probabilidade (fp) A função de probabilidade (fp) de uma VAD é a função que associa a cada x i X(S) o número f(x i ) P(X x i ) que satisfaz as seguintes propriedades: f(x i ), para todo i f(x i ) Variável Contínua (VAC) Se o conjunto de valores for infinito não enumerável então a variável é dita contínua. A distribuição de probabilidade A coleção dos pares [x i, f(x i )] para i,, 3,... é denominada de distribuição de probabilidade da VAD X. Exemplo: Suponha que uma moeda equilibrada é lançada três vezes. Seja X número de caras. Então a distribuição de probabilidade de X é:

3 KKK CKK KKC KCK CCK CKC KCC CCC S X x(s) 3 R f f (x) [;] Como X((a, b)) a + b, o conjunto de valores de X é dado por: X(S) {, 3, 4, 5, 6, 7, 8, 9,,, } KKK CKK KKC KCK CCK 3 CKC KCC R x(s) f (x) S CCC X f /8 3/8 3/8 /8 [;] A função de probabilidade f(x) P(X x), associa a cada x X(S), um número no intervalo [; ] dado por: f(x) P(X x) P(X(s) x) P([x X(S) / X(s) x}) Exemplo: Suponha que um par de dados é lançado. Então X soma do par é uma variável aleatória discreta com o seguinte conjunto de valores: Desta forma: f() P(X ) P{(,)} /36 f(3) P(X 3) P{(,), (, )} /36... f() P(X) P{(6, 5), (5, 6)} /36 f() P(X ) P{(6, 6)} /36 A distribuição de probabilidade será: 3

4 A distribuição de probabilidade de X será então: x Σ f(x) Expressão analística Considere X soma do par, no lançamento de dois dados equilibrados, então: f : X(S) R x (x - )/36 se x 7 ( - x + )/36 se x > 7 Representação de uma distribuição de probabilidade Poderá ser feita por meio de: uma tabela uma expressão analítica (fórmula) um diagrama Diagrama,8,6,4,,,8,6,4,, Tabela Seja X número de caras, obtidas no lançamento de 4 moedas honestas. Então a distribuição de X é a da tabela ao lado. x f(x) /6 4/6 6/6 3 4/6 4 /6 Σ VAD - Caracterização (a) Expectância, valor esperado (Expectation) µ E(X) x.f(x) x.p(x x) (b) Variância (Variance) σ f(x) (x µ ) x f(x) µ E( X )-E(X) 4

5 (iii) Desvio Padrão (Standard Deviation) σ f (x)(x µ ) x f (x) µ E( X )-E(X) (iv) O Coeficiente de Variação (Variation Coeficient) γ σ/µ (ii) O primeiro momento central é sempre zero; (iii) O terceiro momento central é utilizado para determinar a assimetria de uma distribuição; (iv) O quarto momento central é utilizado na determinação da curtose de uma distribuição. Definições: Seja X uma VA. O momento de ordem k de X é o valor E(X k ) µ k, se esse valor convergir. Obs.: A expectância é o primeiro momento. Se X é um VAD então o k-ésimo momento de X é dado por: e o k-ésimo momento central de X é obtido por: µ k k xi f ( xi) i k µ k ( xi µ ) f ( xi) i Seja X uma VA. O momento central de ordem k de X é o valor E[(X E(X)) k ] E[(X µ) k ], se esse valor convergir. Obs.: (i) A variância é o segundo momento central; Considerando que o momento de ordem k de X é E(X k ) µ k, pode-se expressar a expectância e as demais medidas em função desse resultado. Temse, então: 5

6 (a) Expectância, valor esperado µ E(X) (b) Variância σ V(X) E(X ) E(X) µ µ (c) Assimetria γ [µ 3 3µ µ + µ 3 ]/σ 3 Cálculos x f(x) x.f(x) x f(x) x 3 f(x) x 4 f(x) /6 4/6 4/6 4/6 4/6 4/6 6/6 /6 4/6 48/6 96/6 3 4/6 /6 36/6 8/6 34/6 4 /6 4/6 6/6 64/6 56/6 Σ 5 4 4,5 Tem-se: (v) Curtose γ E[(X - µ) 4 ]/σ 4 3 [µ 4 4µ µ 3 + 6µ µ 3µ 4 ]/σ 4-3 µ ; µ 5; µ 3 4 e µ 4 4,5 Assim: (i) E(X) µ caras (ii) σ µ µ 5 4 cara (iii) γ [µ 3 3µ µ + µ 3 ]/σ Exemplo Calcular o valor esperado, a variabilidade da variável X número de caras no lançamento de quatro moedas honestas. (iv) Curtose γ [µ 4 4µ µ 3 + 6µ µ 3µ 4 ]/σ 4-3 4, , ,5 3 -,5 6

7 Outros resultados Moda m o caras Mediana m e caras Exercício Três dados honestos são lançados. Seja X soma dos resultados. Determine a distribuição de X e calcule os momentos até a quarta ordem. Propriedades Da expectância ou valor esperado (i) Linearidade E(aX +b) ae(x) + b (ii) Não multiplicativa E(XY) E(X)E(Y), em geral (iii) E(X ± Y) E(X) ± E(Y) A partir dos momentos, determinar: (i) A expectância (ii) A variância (iii) A assimetria (iv) A curtose Da variância (i) V(a) (ii) V(aX + b) a V(X) (iii) V(X ± Y) V(X) + V(Y) se X e Y forem independentes. A Função de Distribuição (FD) Seja X uma variável aleatória (discreta ou contínua). A função de distribuição (acumulada) ou simplesmente função de repartição é definida por: F(x) P(X x). 7

8 Propriedades da FD (a) F(x) ; (b) F(x ) F(x ) se x < x (c) lim F(x) x (d) lim F(x) x + Exemplo Seja X número de caras no lançamento de uma moeda. Então a FD de X é: se x < F(x) P(X x) p se x < se x Determinação de probabilidades a partir da FD A Função de Distribuição (i) P(a < X b) F(b) F(a); q p (ii) P(X < a) F(a) e (iii) P(X > a) - F(a) p VAD e FD Observação: Seja X é uma variável aleatória discreta (VAD) então a FD é a função em escada dada por: F(x) P(X x ) xi x i Seja X é uma variável aleatória discreta (VAD) com FD F(x), então: P(X xi) f( xi) F( xi) F( xi ) 8

9 Exercício Uma fonte de informação gera símbolos ao acaso a partir de um alfabeto de quatro letras { a, b, c, d } com probabilidades f(a) ½, f(b) ¼ e f(c) f(d) /8. Um esquema codifica esses símbolos em binário da seguinte forma: a, b, c, d. Seja X a VA que representa o tamanho do código, isto é, o número de dígitos binários (bits). Bernoulli Binomial Hipergeométrica Poisson (a) Qual é o conjunto de valores de X? (b) Assumindo que a geração dos símbolos são independentes, encontre: P(X ), P(X ), P(X 3) e P(X > 3). (c) Determine a FD de X. (d) Represente a FD graficamente. Experimento Qualquer um que corresponda a apenas dois resultados. Estes resultados são anotados por ou fracasso e ou sucesso. A probabilidade de ocorrência de sucesso é representada por p e a de insucesso por q p. 9

10 Conjunto de Valores Função de Distribuição X(S) {, } A Função de Probabilidade (fp) p f (x) p P(X x) p se se x x q p A Função de Probabilidade (fp),,8,6,4 Características Expectância ou Valor Esperado E(X) x.f (x).q +.p p Variância V(X) E(X ) - E(X),, (.q +.p) p p p p( p) pq A Função de Distribuição (FD) se x < F(x) P(X x) q se x < se x Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em um teste. Determine a distribuição de X.

11 Como se trata de um único teste, a variável X é Bernoulli com p %, assim a distribuição é:,9 se x f (x) P(X x), se x Conjunto de Valores X(S) {,,, 3,..., n} A Função de Probabilidade (fp) n f (x) P(X x) p x x q n x A Função de Probabilidade (fp),8,6,4,,,8,6,4,, Experimento Como existem apenas duas situações: A ocorre ou não, pode-se determinar a probabilidade de A não ocorrer como sendo q p. A VAD definida por X número de vezes que A ocorreu nas n repetições de E é denominada BINOMIAL. A Função de Distribuição (FD) x n k F(x) P(X x) p q k k n-k se x < se x n se x > n

12 A Função de Distribuição,,9,8,7,6,5,4,3,,, Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em testes. Determine a distribuição de X. Características Expectância ou Valor Esperado n x n x E(X) x.f (x) x. p q np x Variância V(X) E(X ) - E(X) n x n x E(X ) x. p q n(n -) p x + np Como se tratam de testes a variável X é Binomial com p %, assim a distribuição é: f (x) P(X x) (,) x.(,9) x para x,,,..., x V(X) E(X ) - E(X) n(n ) p + np (np) n p + np np( p) npq Assim: E (X) np σx npq Exemplo Uma fábrica recebe um lote de peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as peças se não houver nenhuma defeituosa em uma amostra aleatória de peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito.

13 Experimento: Tem-se: n e p 5/,5 f() P(X ),5,95 59,87% A distribuição Binomial é deduzida com base em n repetições de um experimento de maneira independente (isto é, p constante), ou retiradas com reposição de uma população finita. Tem-se: n e p 5/ 5% Então: f () P(X ).(,5).(,95) 59,87% Se a experiência consistir na seleção de objetos, sem reposição, de uma população finita, de tamanho N, onde r apresentam uma característica N r não apresentam esta característica, então existirá dependência entre as repetições. Neste caso a variável aleatória X número de objetos com a característica r em uma amostra de tamanho n, terá uma distribuição denominada de Hipergeométrica. 3

14 Conjunto de Valores x : máx{, n N+r},..., mín{r, n} A Função de Probabilidade (fp) r N r x n x f (x) P(X x) N n,,9,8,7,6,5,4,3,,, Função de Distribuição H(; 5; 5) ,3, A Função de Probabilidade (fp) H(; 5; 5) Características Expectância ou Valor Esperado E (X) np,,,, Desvio Padrão σ X N n npq N Onde p r N A Função de Distribuição (FD) se x < j r N r k x n x F(x) P(X x) se j x k x j N n se x > k onde j máx{, n - N + r} k mín{r, n} Exemplo Uma fábrica recebe um lote de peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as peças se não houver nenhuma defeituosa em uma amostra aleatória de peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito. 4

15 Pela Hipergeométrica: N, r 5, n f () P(X ) 58,38% Experimento Na Binomial a variável que interessa é o número de sucessos em um intervalo discreto (n repetições de um experimento). Muitas vezes, entretanto, o interesse é o número de sucessos em um intervalo contínuo, como o tempo, área, superfície, etc. Pela Binomial: n e p 5/ 5% f () P(X ).(,5).(,95) 59,87% Para determinar a f(x) de uma distribuição deste tipo, será suposto que: (i) Eventos definidos em intervalos não sobrepostos são independentes; (ii) Em intervalos de mesmo tamanho as probabilidades de um mesmo número de sucessos são iguais; (iii) Em intervalos muito pequenos a probabilidade de mais de um sucesso é desprezível. (iv) Em intervalos muito pequenos a probabilidade de um sucesso é proporcional ao tamanho do intervalo. 5

16 Definição: Se uma variável satisfaz estas quatro propriedades ela é dita VAD de POISSON. Se X é uma VAD de POISSON, então a função de probabilidade de X é dada por: A Função de Distribuição (FD) F(x) P(X x) x -λ e. λ k k! k se x < se x A Função de Probabilidade (fp) Função de Distribuição - P() e f (x) P(X x) para x,,,.... λ x! λ λ é denominada de taxa de sucessos x,,9,8,7,6,5,4,3,,, A Função de Probabilidade (fp) - P(),5,,9,6,3, Características: Expectância ou Valor Esperado E(X) λ Desvio Padrão σx λ 6

17 Exemplo: O número de consultas a uma base de dados computacional é uma VAD de Poisson com λ 6 em um intervalo de dez segundos. Qual é a probabilidade de que num intervalo de 5 segundos nenhum acesso se verifique? Então: λ.,5,5. -,5.,5 f () P(X ) e! -,5 e 6,65% A taxa de consultas é de seis em dez segundos em cinco segundos teremos uma taxa de λ 3 consultas. Então: -3 f () P(X ) e.3! -3 e 4,98% Em resumo: Binomial: 59,85% Hipergeométrica: 58,38% Poisson: 6,65% Como pode ser visto, nesse caso, é possível resolver um mesmo problema, utilizando três modelos diferentes. Exemplo: Considerando o exemplo dado na Hipergeométrica, que foi resolvido, também, pela Binomial, é possível ainda utilizar a Poisson. Para isto deve-se fazer λ np. 7

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Tipos de Modelos. Exemplos. Efeito. Causas. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico.

Tipos de Modelos. Exemplos. Efeito. Causas. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico. Tipos de Modelos Sistema Real Determinístico Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração clássica v at Aceleração relativística v at + a t c Modelo probabilístico

Leia mais

Tipos de Modelos. Determinístico. Sistema Real. Probabilístico. Prof. Lorí Viali, Dr. FAculdade de Matemática - Departamento de Estatística - PUCRS

Tipos de Modelos. Determinístico. Sistema Real. Probabilístico. Prof. Lorí Viali, Dr. FAculdade de Matemática - Departamento de Estatística - PUCRS Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M 2 /r 2 Aceleração clássica v at Aceleração relativística v 1 + at a 2 c t 2

Leia mais

Tipos de Modelos. Exemplos. Causas. Efeito. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico.

Tipos de Modelos. Exemplos. Causas. Efeito. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico. 5/9/07 Tipos de Modelos Sistema Real Determinístico Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração clássica v at Aceleração relativística v at + a t c Modelo

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. E 1 : Joga-se um dado e observase o número da face superior.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. E 1 : Joga-se um dado e observase o número da face superior. Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www. ufrgs.br/~viali/ Sistema Real Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado.

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Uma função X que associa a cada elemento de S (s S) um número real x = X(s) é denominada variável aleatória.

Uma função X que associa a cada elemento de S (s S) um número real x = X(s) é denominada variável aleatória. Prof. Lorí Viali, Dr. viali@ma.ufrgs.br hp://www.ma.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X R x = X(s) X(S) Uma fução X que associa a cada elemeo de S (s S) um úmero real x = X(s) é deomiada

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável

Leia mais

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@mat.ufrgs.br htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Introdução à Bioestatística

Introdução à Bioestatística Instituto Nacional de Cardiologia February 22, 2016 1 2 3 4 Existem dois tipos de variáveis aleatórias Variáveis aleatórias discretas Variáveis aleatórias contínuas discreta Assume um número nito ou innito

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@ucrs.br viali@mat.ufrgs.br htt://www.ucrs.br/famat/viali/ htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/ Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e

Leia mais

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA 1. INTRODUÇÃO CONCEITOS DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS...

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA 1. INTRODUÇÃO CONCEITOS DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS... SUMÁRIO 1. INTRODUÇÃO...3 1.1. MODELOS...3 1.1.1. Modelo determínistico...3 1.1.2. Modelo não-determinístico ou probabilístico...3 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...4 1.2.1. Características

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB

Motivação. VA n-dimensional. Distribuições Multivariadas VADB Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Cap. 5 Variáveis aleatórias discretas

Cap. 5 Variáveis aleatórias discretas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

É a função que associa um número real a cada elemento do espaço amostral.

É a função que associa um número real a cada elemento do espaço amostral. Capítulo Variável Aleatória 1. VARIÁVEL ALEATÓRIA (X) (Walpole, S 1 ) É a função que associa um número real a cada elemento do espaço amostral. S IR s X(s) Onde S espaço amostral s elemento do espaço amostral

Leia mais

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL

VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60 INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Variável Aleatória Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Variável Aleatória Uma variável aleatória X representa um valor numérico associado a cada resultado de um experimento

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).

F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ). Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,

Leia mais

Experimento aleatório: Lançamento de uma moeda honesta três vezes e observação das faces que ocorrem. c k c k c

Experimento aleatório: Lançamento de uma moeda honesta três vezes e observação das faces que ocorrem. c k c k c 7// UNIDADE III - Elementos de probabilidades.. Probabilidade no espaço básico...introdução...onceitos fundamentais...onceitos de probabilidade...teoremas para o cálculo de probabilidades...probabilidade

Leia mais

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A função densidade de probabilidade. Exemplo

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A função densidade de probabilidade. Exemplo Estatística Computacional Geração de Variáveis Aleatórias Contínuas 06 Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ A função densidade de probabilidade Seja X uma variável aleatória

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Exercícios propostos:

Exercícios propostos: INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.

Leia mais

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5: Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias BIOESTATÍSTICA Parte 3 Variáveis Aleatórias Aulas Teóricas de 29/03/2011 a 26/04/2011 3.1. Conceito de Variável Aleatória. Função de Distribuição Variáveis aleatórias Uma variável aleatória pode ser entendida

Leia mais

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas 1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1).

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1). A distribuição normal Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f (x) =.e π. σ x µ. σ, x R Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ com

Leia mais

Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson

Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G. EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Referências Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFinal 0,4

Leia mais

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 011 Variável aleatória é o espaço amostral de um eperimento aleatório. Uma variável aleatória,, é uma função que atribui um número real a cada resultado em. Eemplo. Retira-, ao

Leia mais

Estatística. Aula : Probabilidade. Prof. Ademar

Estatística. Aula : Probabilidade. Prof. Ademar Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Estatística Planejamento das Aulas

Estatística Planejamento das Aulas 29 de outubro de 2018 Distribuição Discreta Uniforme No experimento estatístico, os eventos são equiprováveis. A v.a. discreta X assume n valores discretos tem função de probabilidade: { 1 se x f x = i

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA

CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA DISCIPLINA: MÉTODOS QUANTITATIVOS PROFESSORA: GARDÊNIA SILVANA DE OLIVEIRA RODRIGUES CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA MOSSORÓ/RN 2015 1 POR QUE ESTUDAR

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE

Texto SII: ELEMENTOS DE PROBABILIDADE SUMÁRIO 1. INTRODUÇÃO... 2 1.1. MODELOS... 2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)... 2 1.3. O ESPAÇO AMOSTRAL... 3 1.4. EVENTOS... 4 1.5. COMBINAÇÃO DE EVENTOS... 4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...

Leia mais

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Variável aleatória É uma função, com propriedades especiais, que transforma eventos em números,

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento

Leia mais