Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada"

Transcrição

1 Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. elemento de S (s S) um número real x X(s) é denominada variável aleatória. O conjunto de valores O conjunto formado por todos os valores x, isto é, a imagem da variável aleatória X, é denominado de conjunto de valores de X. X(S) { x R X(s) x } s KKK CKK KKC KCK CCK CKC KCC CCC S X 3 R x X(s) X(S) Tipos de variáveis Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

2 Variável Discreta (VAD) Se o conjunto de valores for finito ou então infinito enumerável a variável é dita discreta. A função de probabilidade (fp) A função de probabilidade (fp) de uma VAD é a função que associa a cada x i X(S) o número f(x i ) P(X x i ) que satisfaz as seguintes propriedades: f(x i ), para todo i f(x i ) Variável Contínua (VAC) Se o conjunto de valores for infinito não enumerável então a variável é dita contínua. A distribuição de probabilidade A coleção dos pares [x i, f(x i )] para i,, 3,... é denominada de distribuição de probabilidade da VAD X. Exemplo: Suponha que uma moeda equilibrada é lançada três vezes. Seja X número de caras. Então a distribuição de probabilidade de X é:

3 KKK CKK KKC KCK CCK CKC KCC CCC S X x(s) 3 R f f (x) [;] Como X((a, b)) a + b, o conjunto de valores de X é dado por: X(S) {, 3, 4, 5, 6, 7, 8, 9,,, } KKK CKK KKC KCK CCK 3 CKC KCC R x(s) f (x) S CCC X f /8 3/8 3/8 /8 [;] A função de probabilidade f(x) P(X x), associa a cada x X(S), um número no intervalo [; ] dado por: f(x) P(X x) P(X(s) x) P([x X(S) / X(s) x}) Exemplo: Suponha que um par de dados é lançado. Então X soma do par é uma variável aleatória discreta com o seguinte conjunto de valores: Desta forma: f() P(X ) P{(,)} /36 f(3) P(X 3) P{(,), (, )} /36... f() P(X) P{(6, 5), (5, 6)} /36 f() P(X ) P{(6, 6)} /36 A distribuição de probabilidade será: 3

4 A distribuição de probabilidade de X será então: x Σ f(x) Expressão analística Considere X soma do par, no lançamento de dois dados equilibrados, então: f : X(S) R x (x - )/36 se x 7 ( - x + )/36 se x > 7 Representação de uma distribuição de probabilidade Poderá ser feita por meio de: uma tabela uma expressão analítica (fórmula) um diagrama Diagrama,8,6,4,,,8,6,4,, Tabela Seja X número de caras, obtidas no lançamento de 4 moedas honestas. Então a distribuição de X é a da tabela ao lado. x f(x) /6 4/6 6/6 3 4/6 4 /6 Σ VAD - Caracterização (a) Expectância, valor esperado (Expectation) µ E(X) x.f(x) x.p(x x) (b) Variância (Variance) σ f(x) (x µ ) x f(x) µ E( X )-E(X) 4

5 (iii) Desvio Padrão (Standard Deviation) σ f (x)(x µ ) x f (x) µ E( X )-E(X) (iv) O Coeficiente de Variação (Variation Coeficient) γ σ/µ (ii) O primeiro momento central é sempre zero; (iii) O terceiro momento central é utilizado para determinar a assimetria de uma distribuição; (iv) O quarto momento central é utilizado na determinação da curtose de uma distribuição. Definições: Seja X uma VA. O momento de ordem k de X é o valor E(X k ) µ k, se esse valor convergir. Obs.: A expectância é o primeiro momento. Se X é um VAD então o k-ésimo momento de X é dado por: e o k-ésimo momento central de X é obtido por: µ k k xi f ( xi) i k µ k ( xi µ ) f ( xi) i Seja X uma VA. O momento central de ordem k de X é o valor E[(X E(X)) k ] E[(X µ) k ], se esse valor convergir. Obs.: (i) A variância é o segundo momento central; Considerando que o momento de ordem k de X é E(X k ) µ k, pode-se expressar a expectância e as demais medidas em função desse resultado. Temse, então: 5

6 (a) Expectância, valor esperado µ E(X) (b) Variância σ V(X) E(X ) E(X) µ µ (c) Assimetria γ [µ 3 3µ µ + µ 3 ]/σ 3 Cálculos x f(x) x.f(x) x f(x) x 3 f(x) x 4 f(x) /6 4/6 4/6 4/6 4/6 4/6 6/6 /6 4/6 48/6 96/6 3 4/6 /6 36/6 8/6 34/6 4 /6 4/6 6/6 64/6 56/6 Σ 5 4 4,5 Tem-se: (v) Curtose γ E[(X - µ) 4 ]/σ 4 3 [µ 4 4µ µ 3 + 6µ µ 3µ 4 ]/σ 4-3 µ ; µ 5; µ 3 4 e µ 4 4,5 Assim: (i) E(X) µ caras (ii) σ µ µ 5 4 cara (iii) γ [µ 3 3µ µ + µ 3 ]/σ Exemplo Calcular o valor esperado, a variabilidade da variável X número de caras no lançamento de quatro moedas honestas. (iv) Curtose γ [µ 4 4µ µ 3 + 6µ µ 3µ 4 ]/σ 4-3 4, , ,5 3 -,5 6

7 Outros resultados Moda m o caras Mediana m e caras Exercício Três dados honestos são lançados. Seja X soma dos resultados. Determine a distribuição de X e calcule os momentos até a quarta ordem. Propriedades Da expectância ou valor esperado (i) Linearidade E(aX +b) ae(x) + b (ii) Não multiplicativa E(XY) E(X)E(Y), em geral (iii) E(X ± Y) E(X) ± E(Y) A partir dos momentos, determinar: (i) A expectância (ii) A variância (iii) A assimetria (iv) A curtose Da variância (i) V(a) (ii) V(aX + b) a V(X) (iii) V(X ± Y) V(X) + V(Y) se X e Y forem independentes. A Função de Distribuição (FD) Seja X uma variável aleatória (discreta ou contínua). A função de distribuição (acumulada) ou simplesmente função de repartição é definida por: F(x) P(X x). 7

8 Propriedades da FD (a) F(x) ; (b) F(x ) F(x ) se x < x (c) lim F(x) x (d) lim F(x) x + Exemplo Seja X número de caras no lançamento de uma moeda. Então a FD de X é: se x < F(x) P(X x) p se x < se x Determinação de probabilidades a partir da FD A Função de Distribuição (i) P(a < X b) F(b) F(a); q p (ii) P(X < a) F(a) e (iii) P(X > a) - F(a) p VAD e FD Observação: Seja X é uma variável aleatória discreta (VAD) então a FD é a função em escada dada por: F(x) P(X x ) xi x i Seja X é uma variável aleatória discreta (VAD) com FD F(x), então: P(X xi) f( xi) F( xi) F( xi ) 8

9 Exercício Uma fonte de informação gera símbolos ao acaso a partir de um alfabeto de quatro letras { a, b, c, d } com probabilidades f(a) ½, f(b) ¼ e f(c) f(d) /8. Um esquema codifica esses símbolos em binário da seguinte forma: a, b, c, d. Seja X a VA que representa o tamanho do código, isto é, o número de dígitos binários (bits). Bernoulli Binomial Hipergeométrica Poisson (a) Qual é o conjunto de valores de X? (b) Assumindo que a geração dos símbolos são independentes, encontre: P(X ), P(X ), P(X 3) e P(X > 3). (c) Determine a FD de X. (d) Represente a FD graficamente. Experimento Qualquer um que corresponda a apenas dois resultados. Estes resultados são anotados por ou fracasso e ou sucesso. A probabilidade de ocorrência de sucesso é representada por p e a de insucesso por q p. 9

10 Conjunto de Valores Função de Distribuição X(S) {, } A Função de Probabilidade (fp) p f (x) p P(X x) p se se x x q p A Função de Probabilidade (fp),,8,6,4 Características Expectância ou Valor Esperado E(X) x.f (x).q +.p p Variância V(X) E(X ) - E(X),, (.q +.p) p p p p( p) pq A Função de Distribuição (FD) se x < F(x) P(X x) q se x < se x Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em um teste. Determine a distribuição de X.

11 Como se trata de um único teste, a variável X é Bernoulli com p %, assim a distribuição é:,9 se x f (x) P(X x), se x Conjunto de Valores X(S) {,,, 3,..., n} A Função de Probabilidade (fp) n f (x) P(X x) p x x q n x A Função de Probabilidade (fp),8,6,4,,,8,6,4,, Experimento Como existem apenas duas situações: A ocorre ou não, pode-se determinar a probabilidade de A não ocorrer como sendo q p. A VAD definida por X número de vezes que A ocorreu nas n repetições de E é denominada BINOMIAL. A Função de Distribuição (FD) x n k F(x) P(X x) p q k k n-k se x < se x n se x > n

12 A Função de Distribuição,,9,8,7,6,5,4,3,,, Suponha que um circuito é testado e que ele seja rejeitado com probabilidade,. Seja X o número de circuitos rejeitados em testes. Determine a distribuição de X. Características Expectância ou Valor Esperado n x n x E(X) x.f (x) x. p q np x Variância V(X) E(X ) - E(X) n x n x E(X ) x. p q n(n -) p x + np Como se tratam de testes a variável X é Binomial com p %, assim a distribuição é: f (x) P(X x) (,) x.(,9) x para x,,,..., x V(X) E(X ) - E(X) n(n ) p + np (np) n p + np np( p) npq Assim: E (X) np σx npq Exemplo Uma fábrica recebe um lote de peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as peças se não houver nenhuma defeituosa em uma amostra aleatória de peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito.

13 Experimento: Tem-se: n e p 5/,5 f() P(X ),5,95 59,87% A distribuição Binomial é deduzida com base em n repetições de um experimento de maneira independente (isto é, p constante), ou retiradas com reposição de uma população finita. Tem-se: n e p 5/ 5% Então: f () P(X ).(,5).(,95) 59,87% Se a experiência consistir na seleção de objetos, sem reposição, de uma população finita, de tamanho N, onde r apresentam uma característica N r não apresentam esta característica, então existirá dependência entre as repetições. Neste caso a variável aleatória X número de objetos com a característica r em uma amostra de tamanho n, terá uma distribuição denominada de Hipergeométrica. 3

14 Conjunto de Valores x : máx{, n N+r},..., mín{r, n} A Função de Probabilidade (fp) r N r x n x f (x) P(X x) N n,,9,8,7,6,5,4,3,,, Função de Distribuição H(; 5; 5) ,3, A Função de Probabilidade (fp) H(; 5; 5) Características Expectância ou Valor Esperado E (X) np,,,, Desvio Padrão σ X N n npq N Onde p r N A Função de Distribuição (FD) se x < j r N r k x n x F(x) P(X x) se j x k x j N n se x > k onde j máx{, n - N + r} k mín{r, n} Exemplo Uma fábrica recebe um lote de peças das quais cinco são defeituosas. Suponhamos que a fábrica aceite todas as peças se não houver nenhuma defeituosa em uma amostra aleatória de peças selecionadas para inspeção. Determinar a probabilidade de o lote ser aceito. 4

15 Pela Hipergeométrica: N, r 5, n f () P(X ) 58,38% Experimento Na Binomial a variável que interessa é o número de sucessos em um intervalo discreto (n repetições de um experimento). Muitas vezes, entretanto, o interesse é o número de sucessos em um intervalo contínuo, como o tempo, área, superfície, etc. Pela Binomial: n e p 5/ 5% f () P(X ).(,5).(,95) 59,87% Para determinar a f(x) de uma distribuição deste tipo, será suposto que: (i) Eventos definidos em intervalos não sobrepostos são independentes; (ii) Em intervalos de mesmo tamanho as probabilidades de um mesmo número de sucessos são iguais; (iii) Em intervalos muito pequenos a probabilidade de mais de um sucesso é desprezível. (iv) Em intervalos muito pequenos a probabilidade de um sucesso é proporcional ao tamanho do intervalo. 5

16 Definição: Se uma variável satisfaz estas quatro propriedades ela é dita VAD de POISSON. Se X é uma VAD de POISSON, então a função de probabilidade de X é dada por: A Função de Distribuição (FD) F(x) P(X x) x -λ e. λ k k! k se x < se x A Função de Probabilidade (fp) Função de Distribuição - P() e f (x) P(X x) para x,,,.... λ x! λ λ é denominada de taxa de sucessos x,,9,8,7,6,5,4,3,,, A Função de Probabilidade (fp) - P(),5,,9,6,3, Características: Expectância ou Valor Esperado E(X) λ Desvio Padrão σx λ 6

17 Exemplo: O número de consultas a uma base de dados computacional é uma VAD de Poisson com λ 6 em um intervalo de dez segundos. Qual é a probabilidade de que num intervalo de 5 segundos nenhum acesso se verifique? Então: λ.,5,5. -,5.,5 f () P(X ) e! -,5 e 6,65% A taxa de consultas é de seis em dez segundos em cinco segundos teremos uma taxa de λ 3 consultas. Então: -3 f () P(X ) e.3! -3 e 4,98% Em resumo: Binomial: 59,85% Hipergeométrica: 58,38% Poisson: 6,65% Como pode ser visto, nesse caso, é possível resolver um mesmo problema, utilizando três modelos diferentes. Exemplo: Considerando o exemplo dado na Hipergeométrica, que foi resolvido, também, pela Binomial, é possível ainda utilizar a Poisson. Para isto deve-se fazer λ np. 7

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@mat.ufrgs.br htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA I 1. INTRODUÇÃO...3

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA I 1. INTRODUÇÃO...3 SUMÁRIO. INTRODUÇÃO...3.. MODELOS...3... Modelo determínistico...3..2. Modelo não-determinístico ou probabilístico...3.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...4.2.. Características dos Experimentos

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Espaços Amostrais Finitos

Espaços Amostrais Finitos 2 ESQUEMA DO CAPÍTULO Espaços Amostrais Finitos 1.1 ESPAÇO AMOSTRAL FINITO 1.2 RESULTADOS IGUALMENTE VEROSSÍMEIS 1.3 MÉTODOS DE ENUMERAÇÃO UFMG-ICEx-EST-032/045 Cap. 2 - Espaços Amostrais Finitos 1 2.1

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Variável aleatória É uma função, com propriedades especiais, que transforma eventos em números,

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

DISTRIBUIÇÕES BERNOULLI E BINOMIAL

DISTRIBUIÇÕES BERNOULLI E BINOMIAL DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE

Texto SII: ELEMENTOS DE PROBABILIDADE SUMÁRIO 1. INTRODUÇÃO... 2 1.1. MODELOS... 2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)... 2 1.3. O ESPAÇO AMOSTRAL... 3 1.4. EVENTOS... 4 1.5. COMBINAÇÃO DE EVENTOS... 4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA

UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA UFRGS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA - DEPARTAMENTO DE ESTATÍSTICA SUMÁRIO 1. COMBINATÓRIA... 3 1.1. CONJUNTOS... 3 1.2. OPERAÇÕES COM CONJUNTOS... 3 1.3. APLICAÇÕES

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

PARTE 2. Profª. Drª. Alessandra de Ávila Montini

PARTE 2. Profª. Drª. Alessandra de Ávila Montini PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Distribuições de Probabilidade Conjuntas

Distribuições de Probabilidade Conjuntas Distribuições de Probabilidade Conjuntas 1. Duas variáveis aleatórias discretas Exemplo 1. No desenvolvimento de um novo receptor para transmissão digital de informação, cada bit é classificado como aceitável,

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M. Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais