ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE"

Transcrição

1 ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal (ou de Gauss) pois, além de ser aplicada a muitos eperimentos aleatórios, é a base de boa parte da teoria de Inferência Estatística. Outras distribuições como a t de Student, a F e a de Qui-quadrado são fundamentais no desenvolvimento da teoria de distribuições amostrais. Em aplicações da Estatística a diversos problemas de engenharia vistos na Teoria de Filas, em Confiabilidade e em Análise de Sobrevivência, encontramos outras densidades de probabilidade. Entre elas, podemos citar a Log-normal, a Gama, a Beta, a Eponencial, a Weibull, etc DISTRIBUIÇÃO UNIFORME Uma v.a. X contínua tem distribuição uniforme sobre o intervalo [a, b], se sua função densidade de probabilidade for dada por: f() = 1 b a, paraa b 0, para outros valores de Graficamente, f() 1/(b-a) Note que todos os valores de no intervalo de a até b são igualmente prováveis no sentido de que a probabilidade de cair num subintervalo de

2 74 ESTATÍSTICA comprimento é a mesma que para qualquer outro subintervalo de mesmo comprimento dentro do intervalo [a, b]. A MÉDIA E A VARIANCIA SÃO: a µ = + b 2 = ( b a) EXEMPLO: Suponha que a roda de uma locomotiva tenha raio r e que seja um ponto na sua circunferência medido a partir de um ponto 0. Quando os freios são aplicados, em algum ponto há o atrito e um desgaste. Para aplicações repetidas dos freios, é razoável assumir que é uma v.a. que tem distribuição uniforme com a = 0 e b = 2πr. Ou seja, estamos assumindo que a incidência de atrito e desgaste da roda seja uniforme ao longo dela. Se isto estiver incorreto, ou ainda, se algum conjunto de pontos da roda fazem contato mais freqüentemente que outros, a roda eventualmente eibiria marcas de achatamento ou ficaria fora de centro DISTRIBUIÇÃO GAMA A distribuição Gama tem na sua função densidade de probabilidade a Função Gama, estudada em muitas aplicações da Matemática. Esta função é definida por: α 1 Γ( α) = e d, para α> 0 0 Integrando por partes, tem-se que: Γ(α) = (α- 1) Γ(α- 1) Se α = n onde n é um inteiro, Γ(n) = (n - 1)! 1 Em particular, Γ( 2 ) = π

3 ESTATÍSTICA 75 A v.a. X contínua tem distribuição Gama, com parâmetros α e β, se sua função densidade de probabilidade é dada por: 0, 0 f ( ) = 1 α 1 / β, > 0 e α β Γ ( α ) Gráficos de algumas distribuições gama para valores especificados dos parâmetros α e β são apresentados a seguir: f() 1,0 α=1, β=1 0,5 α=2, β=1 α=4, β= DISTRIBUIÇÃO EXPONENCIAL Dado um processo de Poisson com parâmetro λ, seja o tempo zero o tempo no qual começamos a observar o processo (ou o tempo em que se observou um sucesso). Seja T o tempo decorrido até que o próimo sucesso ocorra. T tem distribuição eponencial com parâmetro λ > 0 e sua função densidade de probabilidade é dada por: f(t) = λ e -λt, para t > 0 0, para t 0

4 76 ESTATÍSTICA Graficamente, f (t) λ 0 t µ = 1 / λ Note que a distribuição eponencial é um caso particular da distribuição gama quando α = 1. A média e a variancia da distribuição eponencial são iguais a: µ = 1 / λ 2 = 1 / λ2 A função de distribuição acumulada de T é dada por: F(t) = P( T t) = 1 - e -λt, para t > 0 0, para t 0

5 ESTATÍSTICA 77 EXEMPLO Suponha que um sistema contem um certo tipo de componente cujo tempo em anos para falhar (duração de vida) é dado por uma v.a. T, distribuída eponencialmente com média de 5 anos. Se 5 destes componentes são instalados em sistemas diferentes, qual é a probabilidade de que pelo menos dois deles ainda estejam funcionando ao final de 8 anos? A função densidade de probabilidade da v.a. tem parâmetro λ = 1/5 e é dada por: 1/5 e -1/5t, para t 0 f(t) = 0, para t < 0 Para o cálculo da probabilidade podemos usar a função de distribuição acumulada que, neste caso, é dada por: 1 - e -1/5 t, para t 0 F(t) = P( T t) = 0, para t < 0 A probabilidade de que um componente qualquer ainda esteja funcionando após 8 anos é dada por: P ( T > 8) = 1 - P(T 8) = 1 - F(8) = 1 - [1 - e -(1/5)(8) ] = e-8/5 = 0,2 Seja X a v.a. igual ao número de componentes que funcionam após 8 anos. X tem distribuição binomial com parâmetros n = 5 (cinco componentes instalados) e p=0,2 (a probabilidade de um componente estar funcionando após 8 anos) e sua função de probabilidade é dada por: p ( ) = PX ( = ) =,,,,,..., = 01 5 Assim, P(X 2) = p(2) + p(3) + p(4) + p(5) = 0,2627.

6 78 ESTATÍSTICA 4.5 DISTRIBUIÇÃO NORMAL Dizemos que uma v.a. X tem distribuição normal (ou de Gauss) com parâmetros µ e ² se a sua função densidade de probabilidade é dada por: f() = 1 - µ e, - < < 2 π OBSERVAÇÕES : ( a ) µ = E() e ² = V(). ( b ) f() tende a zero quando - ou. ( c ) f() tem dois pontos de infleão : µ - e µ +. ( d ) f() tem um ponto de máimo para = µ e seu valor máimo é: ( e ) f() é simétrica em relação a = µ. ( f ) A área total abaio da curva f() é igual a π Graficamente: f() f() 1 2π µ µ µ µ+ µ f() 1 2π µ µ

7 ESTATÍSTICA 79 Podemos mostrar que se X é uma v.a. com distribuição normal então: * entre µ - e µ + eiste aproimadamente 68% da área total; * entre µ - 2 e µ + 2 eiste aproimadamente 95% da área total; * entre µ - 3 e µ + 3 eiste aproimadamente 99% da área total. µ 3 µ 2 µ µ µ+ µ+2 µ+3 68% 95% 99% NOTAÇÃO: Se X é uma v.a. que tem distribuição normal com parâmetros µ e ² escrevemos : X : N( µ, ² ) onde µ é a média e ² a variancia VARIÁVEL ALEATÓRIA REDUZIDA OU PADRONIZADA Z Se X : N ( µ,² ), então a v.a. Z definida por: Z = X-µ terá uma distribuição normal com média µ µ= 0 e variancia ² = 1. f(z) z

8 80 ESTATÍSTICA Observe que Z calcula, para cada valor de X, a quantos desvios padrões cada ponto está afastado da média µµ. Se Z é negativo então é um ponto à esquerda da média e se é positivo então é um ponto à direita da média CÁLCULO DE PROBABILIDADES (USO DA TABELA) A tabela apresentada na página 91 fornece os valores da função de distribuição acumulada de Z para diversos pontos desde -3,49 até 3,49 com acréscimos de 0,01. Assim: tab (z 0 = F(z 0 = e z 2 z0 ) ). dz - 2π zo 0 z Suponha que X: N( µµ, ² ) e que se queira calcular P(a < X b). Esta a µ b µ probabilidade é igual a P( < X ). Para = a: z = a - µ Para = b: z = b - µ a b µ OBSERVAÇÕES: 0 z 1) Um cuidado especial deve ser tomado ao utilizar outras tabelas (geralmente apresentadas em apêndices dos livros de Estatística), pois eistem formas diferenciadas de apresentar estas probabilidades. 2) Um programa que gere estas probabilidades pode ser elaborado para calculadoras programáveis. Basta tomar o cálculo de áreas abaio da curva da v.a. padronizada z e inserir num programa que resolva integrais. O limite inferior pode ser -4 (4 desvios padrões abaio da média 0) pois sabemos que antes deste valor não eiste praticamente qualquer área significativa z 2 P( Z z0) = F( z0) = e dz 2π z 4

9 ESTATÍSTICA 81 EXEMPLO 1 Seja X : N ( 20,9 ) µµ = 20 ² = 9 ( = 3 ) ( a ) P( X 18 ) = P( Z -0,67 ) = tab (-0,67) = 0, ,67 z Para = 18 : z= - µ = = -0,67 ( b ) P(X >21) = P(Z >0,33) = 1- P(Z 0,33) = 1- tab(0,33) = 1-0,62930 = 0,37070 Para = 21: ,33 z z= - µ = =0,33

10 82 ESTATÍSTICA ( c ) P( 16 < X 24 ) = P( -1,33 < Z < 1,33 ) = tab(1,33) - tab(-1,33) = 0, ,09175 = 0, z Para = 16 : z= - µ = Para = 24 : z= - µ = =-1,33 =1,33 EXEMPLO 2 O diâmetro de certo tipo de anel industrial é uma v.a. com distribuição normal de média 0,10 cm e desvio padrão 0,02 cm. Se o diâmetro de um anel diferir da média por mais de 0,03 cm, ele é vendido por 5 u.m.; caso contrário é vendido por 10 u.m.. Qual o preço médio de venda de cada anel? Seja a v.a. X = diâmetro do anel X : N( 0,10 ; 0,02²) µ = 0,10 e = 0,02 0,04 0,06 0, ,12 0,14 0,16 P(X 0,07) = P(Z -1,50) = tab(-1,50) = 0,06680 Para = 0,07 : z= - µ = 0,07-0,10 0,02 =-1,50 P(X > 0,13) = 1- P(X 0,13) = 1- P(Z<1,5) = 1- tab(1,5) = 0,06680 Para = 0,13 : z= - µ = 0,13-0,10 0,02 =1,50

11 ESTATÍSTICA 83 P(diâmetro diferir da média por mais de 0,03) = P(X 0,07 ou X >0,13) = = 0, ,06680 = 0, P(não diferir da média por mais de 0,03) = 1-0,13360 = 0, : Seja a v.a V = preço de venda. V tem a seguinte distribuição de probabilidade v 5 10 p(v) 0, ,86640 Preço médio de venda : E(V) = v v.p(v) = 5.0, = 9,332 u.m. EXEMPLO 3 Uma máquina de empacotar determinado produto apresenta variações de peso com desvio padrão de 20g. Em quanto deve ser regulado o peso médio do pacote para que apenas 10% tenham menos de 400g? Supor distribuição normal dos pesos dos pacotes. 0,10 = µ 0,10 2,33 0 z na tabela X: peso dos pacotes X : N (µ,20²) P(X 400) = 0,10 P (Z < -2,33) = 0,10 z= - µ -2,33= µ 20 µ = 446,6 g.

12 84 ESTATÍSTICA APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL PELA DISTRIBUIÇÃO NORMAL Se uma v.a. X tem distribuição binomial com parâmetros n e p, a sua média é µ = n.p e sua variancia é ² = n.p(1-p). Quando n, a distribuição da v.a definida por : Z= X-np np(1- p) tem como distribuição limite a N ( 0,1 ). Note que isto é o mesmo que dizer que, para n grande a v.a. X tem distribuição N(µ,²) onde µ = np e ² = np(1-p). A aproimação melhora à medida que n cresce e é muito boa para valores de p não muito próimos de 0 ou 1. EXEMPLO 1 Seja X uma v.a binomial com n = 16 e p = 0,5 p() = ,5 0,5, = 0,1,...,16 µ = np = 8, 2 = np(1- p) = 4 0;16 1;15 2;14 3;13 4;12 5;11 6;10 7;9 8 p() 0, , , , , , , , ,19638 p() 0,20 0,18 0,16 0,14 0,12 0,10 0,08 0,06 0,04 0, ,5 10,5 µ

13 ESTATÍSTICA 85

14 86 ESTATÍSTICA ( a ) P(6 X 10) = 0, 5. 0, 5 = 0, =6 Usando a aproimação normal, temos: P B = (6 X 10) P (5,5 X < 10,5) = P (-1,25 Z < 1,25) = 0, ,10565 = 0,78870 N N ( b ) P(X = 8) P (7,5 X 8,5) = P (-0,25 Z 0,25) = 0,5987-0,4013 = 0,1974 N N ( c ) P(X < 6) P ( X 5) = P (Z < -1,25) = 0,10565 N N EXEMPLO 2 Uma máquina produz itens num certo processo de fabricação tal que 5% dos itens são defeituosos. Se uma amostra de 1000 itens é escolhida ao acaso, qual a probabilidade de que não mais do que 40 defeituosos ocorram na amostra? X = n de itens defeituosos na amostra n = 1000 p = 0,05 µ = np = ,05 = 50 ² = np(1-p) = ,05.0,95 = 47,5 P B(X 40) P N(X 40,5) = P N(Z -1,38) = 0,084.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo:

Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f().e π. μ., R com - < μ < e > 0 0, 0,6 N(0; ) N(0;

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu

Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 011 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por 1, f ( ) 0, Notação: X

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Probabilidade Aula 08

Probabilidade Aula 08 332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,

Leia mais

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo dos números

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues

Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues 0 1 CONCEITOS INICIAIS DE ESTATÍSTICA: PROBABILIDADE / VARIÁVEL ALEATÓRIA CONTÍNUA CURSO :

Leia mais

Distribuições de probabilidade

Distribuições de probabilidade Distribuições de probabilidade Distribuições contínuas Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT)

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

A distribuição normal é a distribuição mais importante do campo da Estatística, Muitas funções convergem para a normal (Poisson, Binomial);

A distribuição normal é a distribuição mais importante do campo da Estatística, Muitas funções convergem para a normal (Poisson, Binomial); Distribuições de Probabilidades Contínuas Capítu 7lo. DISTRIBUIÇÃO NORMAL A distribuição normal é a distribuição mais importante do campo da Estatística, uma vez que: Serve de parâmetro de comparação;

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL Entre as distribuições teóricas de variável contínua, uma das mais empregadas é a distribuição normal. O aspecto gráfico de uma distribuição normal é o da figura abaio. Para uma perfeita

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente. 1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Cap. 8 Distribuições contínuas e modelo normal

Cap. 8 Distribuições contínuas e modelo normal Estatística Aplicada às Ciências Sociais Seta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 8 Distribuições contínuas e modelo normal Variável aleatória discreta variável aleatória

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Universidade Federal Fluminense Instituto de Matemática e Estatística GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana

Leia mais

Distribuições de Probabilidades

Distribuições de Probabilidades Distribuições de Probabilidades 1 Distribuições Contínuas 1.1 Distribuição Uniforme - U(a,b) Uso mais comum: Primeira tentativa em casos em que apenas os limites dos dados são conhecidos. f() 1/(b-a) a

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Tópicos Especiais em Qualidade

Tópicos Especiais em Qualidade Tópicos Especiais em Qualidade Processos estocásticos, Distribuições de probabilidade e Ajustamento de dados Qualquer sistema real opera sempre em ambientes onde a incerteza impera, principalmente quando

Leia mais

SÉRIE: Probabilidade Univariada Parte 2: Variáveis Contínuas 2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS EXERCÍCIOS...

SÉRIE: Probabilidade Univariada Parte 2: Variáveis Contínuas 2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS EXERCÍCIOS... SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 1.. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA...3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)...4 1.3.1. Expectância,

Leia mais

Probabilidade 2. Jorge M. V. Capela, Marisa V. Capela, Araraquara, SP Instituto de Química - UNESP Araraquara, SP

Probabilidade 2. Jorge M. V. Capela, Marisa V. Capela, Araraquara, SP Instituto de Química - UNESP Araraquara, SP Probabilidade 2 Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016 1 Distribuição de probabilidades normal 2 Distribuição normal

Leia mais