Análise de Dados e Simulação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise de Dados e Simulação"

Transcrição

1 Universidade de São Paulo Instituto de Matemática e Estatística mbranco Simulação de Variáveis Aleatórias Contínuas.

2 O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer função de distribuição acumulada F contínua, a v.a. X definida por tem distribuição F. Prova: (em aula). X = F 1 (U) Exemplo 1: F(x) = x a, 0 < x < 1, com a um número natural. Então tem distribuição F. X = F 1 (U) = U 1/a

3 O método da Transformada Inversa Exemplo 2: Distribuição exponencial X Exp(λ) Sua f.d.p. é dada por Sua f.d.acumulada é f(x) = λe λx, x > 0, λ > 0. Portanto, x F(x) = λe λt dt = 1 e λx. 0 com U U (0,1). X = ln(1 U) λ = lnu λ

4 O método da Transformada Inversa Exemplo 3: Simular da Poisson a partir da Exponencial N(t) número de eventos até o instante t. X i tempo entre os eventos (i 1) e i. Se N(t) é Poisson então X 1, X 2,... são ind. Exponenciais. Faça t = 1 e N(1) = max{n : n X i 1}. i=1 Usando o exemplo anterior temos que N(1) = max{n : n ln(u i ) λ} i=1 N(1) = max{n : U 1 U 2 U n e λ }

5 O método da Transformada Inversa Exemplo 4: Distribuição Gama X Gama(n, λ). Sua f.d.p. é λ n Γ(n) xn 1 e λx. A f.d.a. da Gama não pode ser obtida analiticamente. Se n é um número natural temos que X pode ser escrita como uma soma de exponencias. Então, X = n 1 λ ln(u i) = 1 λ ln(u 1..., U n ). i=1

6 O método da Rejeição/aceitação Sejam f(x) uma f.d.p. de interesse e g(x) uma f.d.p. proposta. Considere que exista uma constante C tal que O algoritmo consiste em: f(x) g(x) C, x. (i) Simular x da densidade g(x). (ii) Simular um número aleatório u. (iii) Se u f(x) Cg(x) então faça x = x. Caso contrário, volte a (i).

7 O método da Rejeição/aceitação Observações: A probabilidade de aceitação de um particular valor x de X é f(x) Cg(x). É importante garantir a existência da constante C. Pode não existir e então o método não deverá ser aplicado. Os valores simulados usando o algoritmo formam uma amostra da distribuição de X (provar!). O número de iterações necessárias para a simulação de uma unidade amostral é uma v.a. com distribuição geométrica com média C (provar!). 1 C é denominada probabilidade de aceitação do algoritmo (média ).

8 O método da Rejeição/aceitação Exemplo 5: Distribuição Gama com parâmetro não natural X Gama(3/2, 1). Sua f.d.p. é f(x) = 2 π x 3/2 1 e x, x > 0. Vamos considerar com proposta uma Exp( 2 3 ) com Note que g(x) = 2 3 e 2x 3, x > 0. f(x) g(x) = 3 π x 1/2 e x/3. Existe C? Maximizando a razão acima obtemos C =

9 O método da Rejeição/aceitação No exemplo 5, a probabilidade de aceitação é e o algorítmo consiste em (i) Simular dois números aleatórios u 1 e u 2. (ii) Faça x = 3 2 ln(u 1) e α = f(x ) g(x ) (iii) Se u 2 < α faça x = x e pare. Caso contrário, volte a (i). O número médio de iterações necessarias para obtenção de um valor de X é

10 O método da Rejeição/aceitação Exemplo 6: Simulando da Normal via algoritmo de rejeição. Considere Z N(0, 1) com f.d.p. Se X = Z (modulo) então f(z) = 1 2π e x2 /2 f(x) = 2 2π e x2 /2, x > 0. Essa distribuição é denominada normal positiva ou half-normal. Se soubermos simular de X usamos o esquema abaixo para obter amostras de Z Z = X com probabilidade 1/2 Z = X com probabilidade 1/2

11 O método da Rejeição/aceitação Usamos o algoritmo de rejeição para simular de X com proposta Exponencial com média 1, então e g(x) = e x f(x) 2 g(x) = /2 π ex x2. O ponto de máximo é obtido quando x = 1 e C = f(1) 2e g(1) = π = 1.31.

12 O método da Rejeição/aceitação Algoritmo (i) Simule u 1 e u 2 da U (0,1) (ii) Calcule x = lnu 1. Se u 2 > e 1 2 (x 1) 2 volte para (i). Caso contrário, faça x = x e siga. (iii) Simule u 3 da U (0,1). Se u 3 < 1/2 faça z = x. Caso contrário, faça z = x. A probabilidade de aceitação do algoritmo é 0.76 e o número esperado de iterações é 1.31.

13 O método de Box-Muller para simular da Normal O método usa a idéia de transformação de variáveis bidimensional. Considere duas v.a. X e Y com distribuição normal padrão N(0, 1) e a seguinte transformação de variáveis: ( ) Y D = X 2 + Y 2 e θ = arctg. X Usando o método Jacobiano obtemos a f.d.p. de (D, θ) f(d, θ) = 1 2 e d/2 1 2π I (0,2π)(θ) d > 0, em que I A representa a função indicadora. Portanto, θ tem distribuição Uniforme em (0, 2π) e D tem distribuição exponencial com λ = 1/2.

14 O método de Box-Muller para simular da Normal Lembrando que D = 2lnU 1 e θ = 2πU 2 com U 1 e U 2 v.a. Uniformes no (0, 1). O algoritmo consiste em (i) Simular u 1, u 2 números aleatórios independentes. (ii) Calcular x = 2lnu 1 Cos(2πu 2 ) e y = 2lnu 1 Sen(2πu 2 ) Se desejamos simular de uma normal qualquer com média µ e variância σ 2 basta considerar a transformação W = µ + σx.

15 O método da Composição 1. Mistura Finita Suponha que seja possível decompor uma f.d.a. como uma mistura finita de outras f.d.a com n p i = 1. i=1 F(x) = n p i F i (x) Podemos então considerar o seguinte esquema de simulação: i=1 (i) Ordenar os p i s tal que p (1) p (2) p (n). (ii) Simular um número aleatório u. Se u < p (1) simula X de F 1 e para. Caso contrário, se p (1) + + p (j 1) u < p (1) + + p (j) simula X de F j e para.

16 O método da Composição 2. Mistura Infinita F(x) = F X Y =y (x y)f Y (y)dy Com f Y a f.d.p. de uma v.a. Y e F X Y =y a f.d.a. condicional da v.a. X dado Y = y O algoritmo consiste em simular y de Y e depois simular x de X Y = y. A relação acima pode ser escrita em função das funções densidades. f(x) = f X Y =y (x y)f Y (y)dy.

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Processo de Poisson. Processo de Poisson Homogêneo Considere N(t) o número de ocorrências de um determinado

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

Objetivos. fim de servir de entrada na simulação de um modelo.

Objetivos. fim de servir de entrada na simulação de um modelo. Geração de variáveis aleatórias Objetivos Geração de amostras para uma distribuição em específico a fim de servir de entrada na simulação de um modelo. Ilustrar algumas técnicas usadas para geração de

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y

M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57 Assim, e usando a Eq. (4.17), F W (w) = F W (w) = + w y + x= f X,Y (x,y)dxdy (4.24) w y f Y (y)dy f X (x)dx (4.25) x= Diferenciando

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I Conceitos básicos Probabilidade Experiência aleatória Acontecimentos

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Distribuições Truncadas e Aplicações

Distribuições Truncadas e Aplicações Distribuições Truncadas e Aplicações Raydonal Ospina Departamento de Estatística - CCEN/UFPE Gustavo H. Esteves Departamento de Estatística - CCT/UEPB 58ª RBRAS - 15º SEAGRO Campina Grande - Paraíba -

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: Quantis de distribuições P (t > t α ) = α P (F > F 0,05 ) = 0, 05 ν 1 ν 0,05 0,025 ν 2 42 43 56 57 89 1,66 1,99 42 1,67 1,67 1,63

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Definições e Notação Estimação Amostra Aleatória

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Sistemas Reparáveis - Processo de Contagem

Sistemas Reparáveis - Processo de Contagem Sistemas Reparáveis - Processo de Contagem Enrico A. Colosimo Colaboração: Rodrigo C. P. dos Reis e Maria Luiza Toledo Programa de Pós-Graduação em Estatística - UFMG Teoria básica de Processos de Contagem

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Vimos que a função geradora de momentos é uma ferramenta

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

CONTROLE ESTATÍSTICO DE QUALIDADE

CONTROLE ESTATÍSTICO DE QUALIDADE CONTROLE ESTATÍSTICO DE QUALIDADE Ralph S. Silva http://www.im.ufrj.br/ralph/ceq.html Departamento Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Março-Julho/2012 Sumário

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

S I M U L A Ç Ã O 84

S I M U L A Ç Ã O 84 S I M U L A Ç Ã O 84 - 1 - Elabore uma rotina que lhe permita gerar números pseudo-aleatórios (NPA) com distribuição X ( f X ( x ) representa a função de densidade de probabilidade de X e F X ( x ) representa

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas Universidade Federal Fluminense Instituto de Matemática e Estatística Métodos Estatísticos Aplicados à Economia II GET118) Variáveis Aleatórias Contínuas Ana Maria Lima de Farias Departamento de Estatística

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Avaliação e Desempenho Aula 18

Avaliação e Desempenho Aula 18 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma

Leia mais

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Processo Dirichlet. Paulo C. Marques F. Seminário relâmpago ministrado no Insper. 8 de Abril de 2016

Processo Dirichlet. Paulo C. Marques F. Seminário relâmpago ministrado no Insper. 8 de Abril de 2016 Processo Dirichlet Paulo C. Marques F. Seminário relâmpago ministrado no Insper 8 de Abril de 2016 Insper Processo Dirichlet 8 de Abril de 2016 1 / 12 Mistura de normais Considere um modelo de mistura

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Aula 5. Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios?

Aula 5. Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa.

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

28 de dezembro de 2007

28 de dezembro de 2007 Curso de UFRPE e UFPE 28 de dezembro de 2007 1 2 3 4 5 6 Seja f (y) uma função densidade conhecida, cujos cumulantes são dados por κ 1, κ 2,.... O interesse reside em usar f (y) para aproximar uma função

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3 Forecasting e Otimização i de Carteiras com Matlab AULA 3 Guia de Estudo para Aula 03 Modelos Discretos Exercícios - Formulação de um modelo - Programação de modelos com for - A simulação de um modelo

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais