4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC"

Transcrição

1 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3<x<5. Determine as seguintes probabilidades: (a) P(X<4) (b) P(X>3,5) (c) P(4<X<5) (d) P(X<4,5) (e) P(X<3,5 ou X>4,5) Resp: (a) 0,4375 ; (b) 0,7969 ; (c) 0,5625 ; (d) 0,7031 ; (e) 0,5 2. Suponha que f(x) =1,5 x 2 para -1<x<1. Determine as seguintes probabilidades: (a) P(X>0) (b) P(X>0,5) (c) P(-0,5 X 0,5) (d) P(X<-2) (e) P(X<0 ou X>-0,5) (f) Determine x tal que P(X>x)=0,05. Resp: (a) 0,5 ; (b) 0,4375 ; (c) 0,125 ; (d) 0 ; (e) 1 ; (f) 0, A função densidade de probabilidade do peso líquido, em libras, de um pacote de herbicida químico é f(x)=2,0, para 49,75 < x < 50,25 libras. (a) Determine a probabilidade de um pacote pesar mais de 50 libras. (b) Quanto herbicida químico está contido em 90% de todos os pacotes? Resp: (a) 0,5 ; (b) 49,8. Assunto: Função Distribuição Acumulada 4. A função densidade de probabilidade do tempo (em minutos depois das 8h) em que os clientes chegam a um terminal é f(x) = e -x/10 /10 para x>0. Determine a probabilidade de (a) O primeiro cliente chegar as 9h (b) O primeiro cliente chegar entre 8h15 e 8h30. (c) Dois ou mais clientes chegarem antes das 8h40, entre os cincos que chegam ao terminal. Considere que as chegadas dos clientes sejam independentes. (d) Determine a função de distribuição acumulada e use-a para determinar a probabilidade de o primeiro cliente chegar entre 8h15 e 8h30.

2 5. Determine a função densidade de probabilidade para a seguinte função de distribuição acumulada F(x) = Assunto: Média e Variância 6. Suponha que f(x) = 0,25, para 0 < x < 4. Determine a média e a variância de X. Resp: E(X) = 2, Var(X) = 4/3. 7. A espessura, em micrômetros, de um revestimento condutivo tem uma função densidade de 600 x -2 para 100 μm < x < 120 μm. (a) Determine a média e a variância da espessura do revestimento. (b) Se o revestimento custar R$ 0,50 por micrômetro de espessura em cada peça, qual será o custo médio de revestimento por peça? Resp: (a) E(X) = 109,39 ; Var(X) = 33,19 ; (b) 54,70 8. A função densidade de probabilidadedo peso de pacotes entregues pelo correio é f(x) = 70/(69 x 2 ) para 1 < x < 70 libras. (a) Determine a média e a variância do peso. (b) Se o custo para despachar for de R$ 2,50 por libra, qual será o custo médio para despachar o pacote? (c) Determine a probabilidade de o peso de um pacote exceder 50 libras. Assunto: Distribuição Contínua Uniforme 9. Suponha que X tenha uma distribuição contínua uniforme no intervalo [-1,1]. (a) Determine a média, a variância e o desvio-padrão de X. (b) Determine o valor de x, tal que P(-x < X < x)=0,90. (c) Determine a função de distribuição acumulada. Resp: (a) E(X) = 0 ; Var(X) = 0,577 ; (b) 0, Uma mensagem de chegará em um tempo uniformemente distribuído entre 9h e 11h. Você verifica seu às 9h15 e a cada meia hora depois desse tempo. (a) Qual é o desvio-padrão do tempo de chegada (em minutos)? (b) Qual é a probabilidade de que a mensagem chegue menos de 10 minutos antes de você vê-la? Resp: DP(X) = 34,64 ; (b) 1/3 ; (c) 1/2.

3 Assunto: Distribuição Exponencial 11. O tempo entre as chamadas para uma loja de suprimentos de encanamentos é distribuido exponencialmente, com um tempo médio de 15 minutos entre as chamadas. (a) Qual é a probabilidade de não haver chamadas dentro do intervalo de 30 minutos? (b) Qual é a probabilidade de que no mínimo uma chamada chegue dentro do intervalo de 10 minutos? (c) Qual é a probabilidade de que a primeira chamada chegue dentro de 5 e 10 minutos depois da loja aberta? (d) Determine o comprimento de um intervalo de tempo, tal que exista uma probabilidade igual a 0,90 de haver no mínimo uma chamada no intervalo. Resp: (a) 0,1353 ; (b) 0,4866 ; (c) 0,2031 ; (d) 34, Suponha que o tempo (em horas) de falha de ventiladores em um computador pessoal possa ser modelado por uma distribuição exponencial, com λ=1/0,0003. (a) Qual a proporção de ventiladores que durará no mínimo horas? (b) Qual a proporção de ventiladores que durará no máximo horas? Resp: (a) 0,0498 ; (b) 0, O tempo entre as chegadas de táxis em uma rua movimentada é distribuído exponencialmente, com uma média de 10 minutos. (a) Qual a probabilidade de você esperar mais de uma hora por um táxi? (b) Suponha que você já tivesse esperando uma hora por um táxi. Qual a probabilidade de que um táxi chegue dentro dos próximos 10 minutos? (c) Determine x tal que a probabilidade de você esperar mais de x minutos seja 0,10. (d) Determine x tal que a probabilidade de você esperar menos de x minutos seja 0,90. (e) Determine x tal que a probabilidade de você esperar menos de x minutos seja 0,50. Resp: (a) 0,0025 ; (b) 0,6321 ;(c) 23,03 ; (d) 23,03 ; (e) 6,93. Assunto: Distribuição Normal 14. Usando a Tabela Normal Padrão, calcule: (a) P(Z < 1,32) (b) P(Z < 3,0) (c) P(Z > 1,45) (d) P(Z > -2,15) (e) P(-2,34 < Z < 1,76)

4 15. Suponha que Z tenha uma distribuição Normal padrão. Usando a tabela, encontre os valores de z tal que: (a) P(Z < z) = 0,9 (b) P(Z < z) = 0,5 (c) P(Z > z) = 0,1 (d) P(Z > z) = 0,9 (e) P(-1,24 < Z < z) = 0,8 16. Suponha que X seja distribuida normalmente, com uma média de 5 e desvio-padrão de 4. Determine o seguinte: (a) P(X<11) (b) P(X>0) (c) P(3 < X < 7) (d) P(-2 < X < 9) (e) P(2 < X < 8) Resp: (a) 0,93319 ; (b) 0, ; (c) 0,38292 ; (d) 0,80128 ; (e) 0, Suponha que X seja distribuida normalmente, com uma média de 5 e desvio-padrão de 4. Determine o valor de x para cada item: (a) P(X > x) = 0,5 (b) P(X > x) = 0,95 (c) P(x < X < 9) = 0,2 (d) P(3 < X < x) = 0,95 (e) P(-x < X-5 < x) = 0, O tempo de recarga, sob condições normais, de uma bateria de um laptop é distribuído normalmente, com uma média de 260 minutos e um desvio-padrão de 50 minutos. (a) Qual é a probabilidade da bateria durar mais de 4 horas? (b) Quais são os quartis (os valores de 25% e 75%) da vida da bateria? (c) Qual é o valor da vida, em minutos, que é excedido por 95% de probabilidade? 19. Colesterol é uma substância gordurosa que é uma parte importante da ligação (membrana) externa das células do corpo de animais. Sua faixa normal para um adulto é de mg/dl. O Instituto de Alimentos e Nutrição das Filipinas encontrou que o nível de colesterol total para adultos filipinos tem uma média de 159,2 mg/dl e 84,1% de adultos têm um nível de colesterol abaixo de 200 mg/dl. Suponha que o nível de colesterol total seja distribuído normalmente. (a) Determine o desvio-padrão desta distribuição. (b) Quais são os quartis (os valores de 25% e 75%) dessa distribuição? (c) Qual é o valor do nível de colesterol que excede 90% da população? (d) Um adulto tem um nível moderado de risco, se o nível de colesterol é mais de um, porém, menos de dois desvios-padrão acima da média. Qual é a porcentagem da população que tem um risco moderado de acordo com esse critério?

5 (e) Um adulto tem alto risco se seu nível de colesterol é mais de dois desvios-padrão acima da média. Qual é a porcentagem da população que tem alto risco? (f) Um adulto tem baixo risco se seu nível de colesterol é um desvio-padrão, ou mais, abaixo da média. Qual a porcentagem da população que tem baixo risco? 20. A largura de uma linha para a fabricação de semicondutores tem supostamente uma distribuição normal, com uma média de 0,5 micrômetro e um desvio padrão de 0,05 micrometro. (a) Qual é a probabilidade de a largura da linha ser maior que 0,62 micrometro? (b) Qual é a probabilidade de a largura da linha estar entre 0,47 e 0,63 micrometro? (c) Abaixo de qual valor está a largura da linha de 90% das amostras? Resp: (a) 0,0082 ; (b) 0,72109 ; (c) 0, Em um centro acelerador, um experimento necessita de um cilindro de alumínio, com 1,41 cm de espessura. Suponha que a espessura de um cilindro tenha uma distribuição normal, com média igualc a 1,41 cm e um desvio-padrão igual a 0,01 cm. (a) Qual é a probabilidade de a espessura ser maior do que 1,42 cm? (b) Que espessura é excedida por 95% das amostras? (c) Se as especificações requerem que a espessura esteja entre 1,39 e 1,43 cm, que proporção das amostras satisfaz as especificações? Resp: (a) 0,1587 ; (b) 1,3936 ; (c) 0, A vida de um semicondutor a laser, a uma potência constante, é normalmente distribuída, com uma média de horas e desvio-padrão de 600 horas. (a) Qual é a probabilidade de o laser falhar antes de horas? (b) Qual é o tempo de vida em horas que 95% dos lasers excedem? (c) Se três lasers forem usados em um produto e se eles falharem independentemente, qual a probabilidade de todos os três estarem ainda operando depois de horas? Assunto: Aproximação das distribuições Binomial e Poisson pela distribuição Normal. 23. Suponha que X seja uma v.a. Binomial, com n = 200 e p=0,4. (a) Aproxime a probabilidade de X ser menor ou igual a 70. (b) Aproxime a probabilidade de X ser maior que 70 e menor que 90. (c) Aproxime a probabilidade de X= Suponha que X seja uma v.a. de Poisson, com uma média igual a 64. Aproxime as seguintes probabilidades: (a) P(X > 72) (b) P(X<64) (c) P(60 < X 68)

6 25. A Agua de Fenix é fornecida para aproximadamente 1,4 milhão de pessoas, que são servidas por meio de mais de contas. Todas as contas são medidas e cobradas mensalmente. A probabilidade de uma conta conter um erro em um mês é 0,001, e contas podem ser consideradas independentes. (a) Quais são a média e o desvio-padrão do número de contas com erro a cada mês? (b) Aproxime a probabilidade de menos de 350 contas com erro em um mês. (c) Aproxime um valor de modo que a probabilidade de o número de contas exceder esse valor seja 0,05. (d) Aproxime a probabilidade de mais de 400 contas com erros por mês nos próximos 2 meses. Considere que os resultados entre os meses sejam independentes. 26. Uma impressora de alta capacidade imprime páginas com pequenos erros de qualidade de impressão, em um teste de páginas de texto, de acordo com uma distribuição de Poisson, com média de 0,4 por página. (a) Qual é o número médio de páginas com erros (um ou mais)? (b) Aproxime a probabilidade de mais de 350 páginas conterem erros (um ou mais); 27. Golpes em sites de internet, com alta consulta, seguem supostamente uma distribuição de Poisson, com uma média de por dia. Aproxime cada opção seguinte: (a) A probabilidade de mais de golpes em um dia. (b) A probabilidade de menos de golpes em um dia. (c) O valor tal que a probabilidade de o número de golpes em um dia exceder esse valor seja igual a 0,01. (d) Aproxime o numero esperado de dias em um ano (365 dias) que exceder golpes. (e) Aproxime a probabilidade de que, ao longo de um ano (365 dias), mais de 15 dias tenham mais de golpes por dia. Assunto: Teorema do Limite Central 28. Um tubo de PVC é fabricado com um diâmetro médio de 1,01 polegada e um desviopadrão de 0,003 polegada. Encontre a probabilidade de uma amostra aleatória de n=9 seções do tubo ter um diâmetro médio amostral maior que 1,009 polegada e menor que 1,012 polegada. Resp: 0, Uma fibra sintética, usada na fabricação de carpete, tem uma resistência à tração que é normalmente distribuída, com média de 75,5 psi e desvio-padrão de 3,5 psi. Encontre a probabilidade de uma amostra aleatória de n=6 corpos de prova de fibra ter uma resistência média amostral à tração que exceda 75,75 psi. Resp: 0,4306

7 30. A resistência do concreto à compressão é normalmente distribuída com μ=2500 psi e σ=50 psi. Encontre a probabilidade de uma amostra aleatória de n=5 corpos de prova ter um diâmetro médio amostral que caia no intervalo de psi para psi. Resp: 0, Suponha que X tenha uma distribuição discreta uniforme f(x) = Uma a.a. de n=36 é selecionada dessa população. Encontre a probabilidade de a média amostral ser maior que 2,1 porém, menor que 2,5. Resp: 0, A quantidade de tempo que um consumidor gasta esperando no bqalcão de check-in de um aeroporto é uma variável aleatória, com média de 8,2 minutos e desvio-padrão de 1,5 minuto. Suponha que uma a.a. de n=49 consumidores seja observada. Encontre a probabilidade que o tempo médio de espera na fila para esses consumidores seja (a) Menor que 10 minutos (b) Entre 5 e 10 minutos (c) Menor que 6 minutos

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Lista nº 1 Variáveis Aleatórias e Independência

Lista nº 1 Variáveis Aleatórias e Independência Lista nº 1 Variáveis Aleatórias e Independência 1. (Montgomery et al. (1) Exercício 5-26, pág. 113) O rendimento, em libras, de um dia de produção é distribuído normalmente, com uma média de 1.500 libras

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Ano Lectivo 2006/2007 Ficha nº5

Ano Lectivo 2006/2007 Ficha nº5 Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando

Leia mais

Distribuições Discretas: Hipergeométrica, Binomial e Poisson

Distribuições Discretas: Hipergeométrica, Binomial e Poisson CAP3: Distribuições Discretas e Contínuas Distribuições Discretas: Hipergeométrica, Binomial e Poisson Uma distribuição de probabilidade é um modelo matemático que relaciona o valor da variável com a probabilidade

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)

Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Lista de Exercícios 2 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 2 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 2 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) O número de quilômetros que um carro pode rodar sem que a bateria descarregue possui distribuição exponencial

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Lista 4: Distribuição de Probabilidade Contínua

Lista 4: Distribuição de Probabilidade Contínua Probabilidade Lista 4: Distribuição de Probabilidade Contínua 1) A resistência à compressão de amostras de cimento pode ser modelada por uma distribuição normal, com média de 6000 kg por cm2 e desvio padrão

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2]

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] FATEC GT/FATEC SJC Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] 1. O tempo necessário para um medicamento contra dor fazer efeito foi modelado de acordo com a densidade Uniforme no intervalo

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015)

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015) ) Seja uma v.a. X.d.p. (x) = x se 0 x k. a) Encontre k para que (x) seja uma.d.p. b) Encontre sua.d.a. F(x). c) Calcule a média e a variância de X. Introdução à Estatística e Probabilidade Turma B 5 a

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)

Leia mais

Lista 4 de exercícios

Lista 4 de exercícios Lista 4 de exercícios 1. (MORETTIN, 2010) Na leitura de uma escala, os erros variam de -1/4 a ¼, com distribuição uniforme de probabilidade. Calcular a média e a variância da distribuição dos erros. 2.

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

1073/B - Introdução à Estatística Econômica

1073/B - Introdução à Estatística Econômica Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 2012/02 1 Variáveis Aleatórias Contínuas 2 Distribuições de Probabilidade e Funções Densidades de Probabil 3 4 Objetivos Ao final

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Exercícios Funções Multivariadas, Exponencial e Outras

Exercícios Funções Multivariadas, Exponencial e Outras Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS. Aula 14 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS. Aula 14 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS Aula 14 - Prof. Regina Meyer Branski Distribuições Contínuas Distribuição Normal Outras Distribuições Contínuas Exponencial

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 A altura média dos estudantes do sexo masculino em uma universidade é de 170 cm com desvio padrão de 12 cm. Uma amostra aleatória de de 64 estudantes dessa universidade é observada. Calcule

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 Suponha que os tempos de vida de dois aparelhos elétricos D1 e D2 tenham distribuições N(42, 36) e N(45, 9), respectivamente. Se os aparelhos são feitos para serem usados por um período de

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II

Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA

Leia mais

Aproximação normal para as distribuições binomial e Poisson

Aproximação normal para as distribuições binomial e Poisson Aproximação normal para as distribuições binomial e Poisson Distribuição normal: aproximação para uma variável aleatória com um grande número de amostras. Distribuição binomial n Distribuição normal Difícil

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

COS767 - Modelagem e Análise Aula 3 - Simulação

COS767 - Modelagem e Análise Aula 3 - Simulação COS767 - Modelagem e Análise Aula 3 - Simulação Validando resultados da simulação Média e variância amostral Teorema do Limite Central Intervalo de confiança Organizando as execuções da simulação Verificando

Leia mais

2ª Prova de Probabilidade 22/06/2015

2ª Prova de Probabilidade 22/06/2015 2ª Prova de Probabilidade 22/06/2015 Nome: N º USP: Atenção: ESTA PROVA CONTÉM 5 QUESTÕES. A prova tem duração de 100 minutos; não haverá tempo adicional. O aluno deve comprovar sua identidade com documento

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais