Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)"

Transcrição

1 Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período de um mês. A distribuição de probabilidade de X é dada abaixo: x Total p(x) a) Calcular P(X 3), P(X 4) e P(3 < X 5). b) Calcular E(X) e Var(X). c) Encontre a f.d.a. de X e construa seu gráfico. d) Quais valores de X estão no intervalo de ( - 2; + 2). X e) Encontre EY e VarY, onde Y ) Seja a função dada por px k 3 x, x = -2, -1, 0, 1, 2. a) Encontre a constante k para que a p(x) seja de fato uma densidade de probabilidade. X 0 X 1 P X 1 X 1. b) Com o valor de k encontrado, calcule c) Calcule E(X) e Var(X). P, P e 3) Seja X ~ binomial (20; 0.1). a) Calcular P(X = 10), P(X 2), e encontrar E(X) e Var(X). b) Achar a média e a variância de variável aleatória Y = 3X ) Numa indústria, 24% das ligações ao serviço de atendimento ao consumidor são de reclamações a respeito do produto. Num dia normal de trabalho qual é a probabilidade de que: a) A primeira reclamação aconteça na 5 a chamada? b) A primeira reclamação aconteça somente após a 8 a chamada? c) O número médio de chamadas atendidas até que ocorra a primeira reclamação. 5) Numa cidade, os casos de dengue são divididos em adultos e crianças. A proporção de adultos com dengue é de Se num dia 5 novos casos são registrados, qual é a probabilidade de que: a) Exatamente 2 sejam em adultos. b) No mínimo 3 sejam em adultos. c) Qual é o número de adultos que se espera sejam contagiados em um mês? d) Qual a probabilidade de que o primeiro caso de dengue numa criança seja o quarto caso registrado? e) Quantos casos são esperados até que se ocorra o primeiro caso em criança? 6) Um jogo é composto de 4 possíveis: A,B,C e D. Sabe-se que P(A) = 3P(C), P(B) = 2P(C) e que P(D) = Um jogador ganha R$ 4,00 cada vez que ocorre A, ganha R$ 3,25 cada vez que B ocorre, ganha R$ 10,00 em cada ocorrência de C e perde R$ 25,00 se ocorre D. Se cada aposta custa R$ 2,00 e ele consegue jogar 200 vezes numa noitada de apostas, qual o ganho esperado numa noite? 7) Numa fábrica têxtil, o número de impressoras que apresentam problemas, mensalmente, é uma v.a. com distribuição de Poisson com = 3. a) Qual a probabilidade de 7 impressoras problemas em um mês? b) Qual a probabilidade de 5 ou mais impressoras apresentarem problemas em 3 meses?

2 8) Examinaram-se 2000 ninhadas de 5 porcos cada uma, segundo o número de machos. Os dados estão representados na tabela abaixo. Num. de Machos Num. de Ninhadas Total 2000 a) Calcule a proporção média de machos. b) Calcule, para cada valor de X, o número de ninhadas que você deve esperar se X ~ binomial (7; p), onde p é a proporção média de machos calculada em (a). 9) Uma no final de cada dia de trabalho uma máquina é inspecionada com a finalidade de se verificar se necessita ajustes ou reparos. Para isso um inspetor toma uma amostra de 10 ítens produzidos pela máquina, decidindo por ajustes de encontra de um a cinco ítens defeituosos e por reparos se encontra mais de cinco ítens defeituosos. Após a inspeção de uma amostra, determinar as probabilidades de: a) Não ser necessário ajustes ou reparos. b) Ser necessário apenas ajustes. c) Ser necessário apenas reparos. 10) Na fabricação de uma fita uma magnética, ocorrem fissuras a uma taxa de 1 por 2000 pés. Qual a probabilidade de que num rolo com 2000 pés de fita magnética tenha: a) nenhuma fissura; b) no máximo duas fissuras; c) pelo menos duas fissuras. 11) Se num cruzamento passam veículos numa taxa de 8 a cada minuto, determine: a) A probabilidade de que em 4 minutos passem exatamente 40 veículos. b) A probabilidade de que em meio minuto passem mais do que cinco veículos. c) Se no cruzamento for colocado um semáforo com tempo de 20 segundos, quantos carros em média ficarão esperando a abertura do semáforo? 12) Num comunidade com 4800 pessoas, a procura diária por leitos de um hospital segue uma distribuição binomial ( 4800 ; p ), onde p = 1/2500. a) Qual o número esperado de pessoas que, num dia, procuram leitos no hospital? b) Qual a probabilidade de que num dia, duas ou mais pessoas procurem leitos no hospital? (use a aproximação pela Poisson). c) Qual o número esperado de pessoas que procuram leitos no hospital numa semana? 13) Seja uma v.a. X f.d.p. f(x) = 1 x se 0 x k. a) Encontre k para que f(x) seja uma f.d.p. b) Encontre sua f.d.a. F(x). c) Calcule a média e a variância de X. 14) A data na qual será necessário revisar um equipamento é dada pela variável aleatória T, onde T é o número de milhares de horas de uso contínuo do mesmo. A função densidade de probabilidade f t da v.a. T é descrita abaixo.

3 k a) Encontre o valor de k e determine t f. b) Calcule E(T) e Var(T). c) Qual a probabilidade de sermos obrigados a revisa-lo antes de 25 mil horas? d) Encontre a e b simétricos em torno da média tal que P(a X b) = T 15) Um fabricante de máquinas de lavar, sabe que a duração de suas máquinas tem distribuição Normal com média de 1600 dias e desvio padrão de 400 dias. Oferece uma garantia de um ano (365 dias). Produz 2000 máquinas mensalmente. Quantas espera trocar pelo uso da garantia dada, mensalmente? 16) A duração de certo tipo de pneu, em quilometros rodados, é uma variável aleatória normal com duração média de km e desvio padrão de km. Qual a probabilidade de um pneu durar: a) Entre e km? b) Exatamente km? c) O fabricante deseja fixar uma garantia de fábrica G (km), tal que, se a duração do pneu for inferior à G, o pneu será trocado gratuitamente. De quanto deve ser G para que apenas 1% dos pneus sejam trocados? 17) Supor que os tempos de vida de um lote de componentes para rádio têm uma distribuição normal com média 500 horas e desvio padrão de 50 horas. Um comprador requer que pelo menos 95% dos componentes tenha uma durabilidade maior do que 410 horas de funcionamento. Você acha que o lote estará de acordo com as especificações do comprador? 18) Se X é uma v.a. com distribuição Normal com média = 200 e = 5, achar b tal que: a) P(X < b) = 0.67; b) P(X > b) = ; c) P( X 200 < b) = ) Numa fábrica foram instaladas 1000 lâmpadas novas. Sabe-se que o tempo de vida de uma lâmpada com uso de 10 h/dia tem distribuição normal com vida média de 2400 horas e desvio padrão de 360 horas. Determinar a quantidade de lâmpadas que durarão: a) menos que 1320 horas; b) mais de 3300 horas; c) entre 1878 e 3005 horas. c) quantas lâmpadas se esperam funcionando após 3030 horas? 20) Um fabricante de máquinas de lavar, sabendo que o tempo de vida de suas máquinas tem distribuição normal com média 2510 dias e desvio padrão 400 dias, oferece garantia de 3.5 anos. a) Se ele produz 2000 máquinas/mês, quantas espera trocar, por mês, pelo uso da garantia? b) De quanto deve diminuir a variabilidade para que, mantido o limite de garantia, esse número caia pela metade? 21) O diâmetro de um furo de uma engrenagem tem como especificação valor nominal de 0.80 mm. É característica que a sua produção tenha distribuição normal com média 0.80 e variância Considerando que os limites de especificação do produto é de 0.72 a 0.88, determine: a) Qual é proporção de engrenagens fora destes limites. a) De quanto deve ser diminuída a variabilidade para que a proporção de itens fora de especificação seja de no máximo 1%?

4 22) Suponha que a duração de vida de dois dispositivos eletrônicos do mesmo tipo, mas de marcas diferentes M 1 e M 2 tenham distribuições N 40, 36 e N 45, 9, respectivamente. Qual dos dispositivos deve ser escolhido: b) Se tiver que ser usado por um período de 52 horas? Justifique. c) Se tiver que ser usado por um período de 48 horas? Justifique. d) Se exigirmos que pelo menos 95% dos dispositivos escolhidos em (b) tenham duração superior a 40 horas, tal especificação é atendida? Justifique. e) Qual deve ser o tempo t * tal que os dois dispositivos tenham a mesma confiabilidade, ou seja PM1 t* PM2 t*? 23) Uma indústria metalúrgica produz um cilindro com diâmetro interno tendo distribuição normal com média 36 mm e desvio padrão 0.5 mm. O gerente de qualidade da empresa quer determinar limites de controle (inferior e superior) tal que 98% das peças produzidas tenham diâmetro dentro destes limites. a) Encontre esses limites. b) Se cada cilindro fora dos limites é sucateado a um custo de R$ 1.50, qual o prejuízo da empresa se a produção mensal é de peças? 24) Um produtor classifica suas frutas como Tipo A ou Tipo B segundo o peso. As frutas com peso acima de 158g são classificados como tipo A, caso contrário, como tipo B, sendo que o peso das frutas tem distribuição normal N(148, 141.6). a) Calcule a proporção de frutas com peso acima de 158g.? b) Considerando que os frutos embalados aleatoriamente em caixas com n = 12 unidades, determine o número esperado de frutas tipo A por caixa. c) Qual a probabilidade de que, numa caixa assim formada, exatamente metade das frutas sejam do tipo A? E no máximo duas. As frutas são vendidas com preço diferenciado sendo R$ 1,00 as de tipo B e R$ 1,55 as de tipo A. O produtor pretende selecionar as frutas e vendê-las separadamente por tipo, só que para isso ele terá um custo adicional de R$ 0,10 por unidade para fazer a seleção. d) Qual o preço médio de venda com o sistema atual de embalagem? e) Qual deverá ser o preço de vendas das frutas selecionadas por tipo mantendo-se a relação 1:1.55 no preço de venda? Nesse caso, qual o preço médio de venda por caixa? 25) Um produto usado na fabricação de automóveis tem dureza normalmente distribuída com média 12 e variância Considere que o produto é fabricado a um preço R$ 5,00/peça. Se a dureza for inferior a 10, então a peça é descartada, não servindo para utilização. Se a dureza estiver entre 10 e 14.4, a peça é considerada boa e é vendida a R$ 20.00, porém, se a dureza for superior a 14.4, a peça recebe um tratamento térmico, a um custo adicional de R$ 2,50, para corrigir a dureza. a) Determinar a probabilidade de que um item do produto seja descartado? b) Encontrar a probabilidade de um item do produto tenha dureza entre 10 e c) Determine o preço médio de produção por peça e o lucro esperado se forem produzidas 5000 peças. 26) Suponha que D a demanda diária de uma peça seja uma v.a. com a seguinte distribuição de probabilidade: d k P D d 2, d = 1, 2, 3, 4. d! a) Encontre a constante k. b) Faça os gráficos de f.d.p. e f.d.a. 27) Seja X uma v.a. com densidade uniforme sobre 0, 1,..., 99. Determine: a) F(x), P X 25 e P X 10. b) P 25 X 75. c) P 26. X 122..

5 28) Considere a v.a. dureza do exercício anterior. Num lote com N = 80 peças, há m = 10 peças misturadas indevidamente e que deveriam ser descartadas. Deste lote deve-se retirar 8 peças para a linha de montagem. a) Qual a probabilidade de que dentre as 8 peças selecionadas exatamente 3 sejam das peças para descarte? b) Ao saber do ocorrido, o encarregado decidiu separar as peças ruins do lote. Para isso ele pediu para um inspetor inspecionar uma a uma. Qual a probabilidade de que a última peça ruim seja encontrada ao se inspecionar a metade do lote? 29) Sabe-se que em um edifício existem 500 moradores, das quais 10 trabalham na empresa X. Se 5 moradores deste edifício são selecionados aleatoriamente para responder um questionário a respeito da eficiência da empresa, qual é a probabilidade de que nenhum deles trabalhem na empresa X. Observe que um morador não é sorteado mais de uma vez. 30) Suponha X uma v.a. para a qual = 10 e 2 = 36. Quais os valores de a e b para os quais Z = ax + b tenha esperança 0 (zero) e variância 1? 31) Ao comprar certo tipo de interruptor elétrico, o comprador faz a seguinte proposta ao fabricante: Uma caixa é selecionada ao acaso e todas as suas peças inspecionadas. Se forem encontrados 4 ou mais itens defeituosos o lote todo é devolvido. Caso contrário, o preço de compra seria de R$ 532,00 por caixa se nenhum item defeituoso for encontrado; R$ 520,00 por caixa caso seja encontrado 1 item com defeito; R$ 520,00 por caixa caso para 2 defeituosos e R$ 500,00 por caixa caso sejam encontrados 3 defeituosos. Além disso, todas as peças com defeito do lote identificadas na hora da montagem seriam devolvidas, ficando o fabricante com o custo. Considerando que cada caixa contém 25 peças e o índice de defeitos na produção é de 4%, determine: a) A probabilidade de que o lote seja devolvido. b) Qual o preço médio por item do produto pagaria o comprador segundo a sua proposta? c) O fabricante faz, então, a seguinte contraproposta: preço fixo de R$ 522,00 por caixa, ficando o comprador com o prejuízo mediante as peças defeituosas. Qual das duas opções você escolheria se fosse o comprador? d) De quanto seria o prejuízo esperado do comprador ao optar pela proposta do vendedor? 32) Seja uma v.a. X ~ Poisson(): a) Encontre E(X) e E(X 2 ). b) Verifique que Var(X) = E(X) =. 33) Seja N um número inteiro positivo e seja f uma função definida por: 2 x, se x 1, 2,, N. f x NN 1 0, outros valores de x Mostre que f(x) é uma f. de probabilidade discreta e obtenha a sua média. Dado: N 2 x1 x NN 1 2N ) Seja uma variável aleatória X com distribuição: x k 0 k p(x) p (1 2p) p a) Determine E(X), E(X 2 ) e Var(X). b) Se k = 2, onde 2 é a variância de X, qual deverá ser o valor de p? c) Mostre que se k =, então p = 1/2. 35) Seja uma v.a. X e seja g(x) uma função de X. Se g(x) = a + b x + c x 2, mostre que: E[g(x)] = a + b E(X) + c [E(X)] 2 + c Var(X).

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015)

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015) ) Seja uma v.a. X.d.p. (x) = x se 0 x k. a) Encontre k para que (x) seja uma.d.p. b) Encontre sua.d.a. F(x). c) Calcule a média e a variância de X. Introdução à Estatística e Probabilidade Turma B 5 a

Leia mais

2º LISTA DE EXERCÍCIO

2º LISTA DE EXERCÍCIO DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador

Leia mais

DISTRIBUIÇÃO BINOMIAL

DISTRIBUIÇÃO BINOMIAL Universidade Federal de Viçosa - CCE / DPI Inf 161 - Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

6ª Lista de Probabilidade I Professor: Spencer

6ª Lista de Probabilidade I Professor: Spencer 6ª Lista de Probabilidade I Professor: Spencer 1) Em um determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma, Pergunta-se:

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Lista 4 de exercícios

Lista 4 de exercícios Lista 4 de exercícios 1. (MORETTIN, 2010) Na leitura de uma escala, os erros variam de -1/4 a ¼, com distribuição uniforme de probabilidade. Calcular a média e a variância da distribuição dos erros. 2.

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Probabilidades. última atualização: 5 de junho de 2012

Probabilidades. última atualização: 5 de junho de 2012 Probabilidades última atualização: 5 de junho de 2012 1. (B. & M.) Um empreiteiro apresentou orçamentos separados para a execução da parte elétrica e da parte de encanamento de um edifício. Ele acha que

Leia mais

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2]

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] FATEC GT/FATEC SJC Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] 1. O tempo necessário para um medicamento contra dor fazer efeito foi modelado de acordo com a densidade Uniforme no intervalo

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0, de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e os defeituosos

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 6: Distribuições Contínuas. Distribuição Normal. 1. A distribuição dos pesos de coelhos

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Lista nº 1 Variáveis Aleatórias e Independência

Lista nº 1 Variáveis Aleatórias e Independência Lista nº 1 Variáveis Aleatórias e Independência 1. (Montgomery et al. (1) Exercício 5-26, pág. 113) O rendimento, em libras, de um dia de produção é distribuído normalmente, com uma média de 1.500 libras

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Distribuições Discretas: Hipergeométrica, Binomial e Poisson

Distribuições Discretas: Hipergeométrica, Binomial e Poisson CAP3: Distribuições Discretas e Contínuas Distribuições Discretas: Hipergeométrica, Binomial e Poisson Uma distribuição de probabilidade é um modelo matemático que relaciona o valor da variável com a probabilidade

Leia mais

Variáveis aleatórias discretas

Variáveis aleatórias discretas Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia e Gestão Industrial 2º Semestre 1º Folha Nº4 Distribuições discretas 1. De um lote que contém 10 parafusos, dos quais 5 são defeituosos, extraem-se 2 com reposição.

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: Quantis de distribuições P (t > t α ) = α P (F > F 0,05 ) = 0, 05 ν 1 ν 0,05 0,025 ν 2 42 43 56 57 89 1,66 1,99 42 1,67 1,67 1,63

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

2 Distribuições Teóricas Discretas

2 Distribuições Teóricas Discretas 2 Distribuições Teóricas Discretas Exercício 2.1 Seja X B (n, p) e Y B (n, 1 p), verifique que P (X = r) =P (Y = n r). InterpreteoresultadoemtermosdeprovasdeBernoulli. Exercício 2.2 Utilizando as tabelas

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Probabilidade e Estatística 2011/2

Probabilidade e Estatística 2011/2 Probabilidade e Estatística 2011/2 Prof. Fernando Deeke Sasse Exercícios resolvidos sobre distribuições discretas Distribuição Binomial 1. Lotes de 50 peças são examinados. O número médio de peças não-conformes

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

LISTA DE EXERCÍCIOS 1 VARIÁVEIS ALEATÓRIAS DISCRETAS

LISTA DE EXERCÍCIOS 1 VARIÁVEIS ALEATÓRIAS DISCRETAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 151 Estatística e Probabilidade Turma 76 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades Ano lectivo: 2007/2008 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Noções de Probabilidade e Estatística CAPÍTULO 3

Noções de Probabilidade e Estatística CAPÍTULO 3 Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 3 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 3.1 1 Uma moeda viciada tem probabilidade de cara igual

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

INE 5118 Exercícios Extras INE 5118 LISTAS DE EXERCÍCIOS EXTRAS TURMA 05202

INE 5118 Exercícios Extras INE 5118 LISTAS DE EXERCÍCIOS EXTRAS TURMA 05202 INE 5118 LISTAS DE EXERCÍCIOS EXTRAS TURMA 05202 INE 5118 Exercícios Extras VARIÁVEIS ALEATÓRIAS DISCRETAS 1) Num processo de fabricação de pratos de porcelana 8% destes pratos apresentam algum tipo de

Leia mais

Distribuição de Probabilidade

Distribuição de Probabilidade Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Universidade da Beira Interior Departamento de Matemática

Universidade da Beira Interior Departamento de Matemática Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Folha de exercícios nº4: Distribuições de probabilidade. Introdução à Inferência

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 Suponha que os tempos de vida de dois aparelhos elétricos D1 e D2 tenham distribuições N(42, 36) e N(45, 9), respectivamente. Se os aparelhos são feitos para serem usados por um período de

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (II)

NOÇÕES DE TESTE DE HIPÓTESES (II) NOÇÕES DE TESTE DE HIPÓTESES (II) Teste de Hipóteses sobre p Nível Descritivo 1 Resumo X ~ binomial (n; p ) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 ; (ou A: p p 0, ou A: p p 0 ) (2)

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 215 Gabarito da Lista de exercícios 5 - Distribuição Binomial - CASA Exercício 1.(2,5 pontos) Uma concessionária tem disponível, para um certo automóvel,

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais