Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico"

Transcrição

1 RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico 1 o semestre ) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão 10 horas. Considere um conjunto desses equipamentos, e suponha que os tempos de vida dos equipamentos são variáveis independentes. Suponha que um equipamento é instalado e usado até falhar, quando é então substituído por um novo. a) Você compra 5 equipamentos, cada um ao custo de $100,00. Se os dois primeiros equipamentos utilizados durarem menos que 20 horas, o fornecedor lhe devolve o valor total pago ($500,00). Qual é a receita esperada do fornecedor? b) Assumindo que há 25 equipamentos em estoque, qual a probabilidade de se possa obter um tempo de vida total superior a 1100 horas? Resposta: a) 499,5; b) 0, ) Uma loja de automóveis de luxo tem a seguinte função de probabilidade do número de vendas por semana: x P(X = x) 0,25 0,25 0,25 0,25 Considere um conjunto de N pessoas em que todas compraram automóveis. Para cada uma dessas pessoas que comprou automóvel, considere ainda o evento a pessoa comprou blindagem. Suponha que esses N eventos sejam independentes (dado que as N pessoas compraram automóveis). Suponha também que a probabilidade de uma pessoa comprar blindagem, dado que ela pertence ao grupo de pessoas que comprou automóvel, é 0,60. Seja Y o número de compradores em uma semana que solicitaram blindagens. a) Determine a distribuição conjunta de X e Y. b) Determine P(X > Y ). c) Determine a função de probabilidade marginal de Y. Resposta: a) Veja tabela abaixo; b) 0,456; c) P(Y = 0) = 0,406, P(Y = 1) = 0,342, P(Y = 2) = 0,198, P(Y = 3) = 0,054. y\x ,25 0,1 0,04 0, ,15 0,12 0, ,09 0, ,054 3) Uma faculdade de administração verificou, com base em sua experiência ao longo dos anos, que 1/3 dos alunos ingressantes concluem o curso. Com base nessa hipótese aprova 450 alunos no vestibular, pois considera que o número ideal de alunos numa turma seja 150 alunos. Calcule a probabilidade de que mais de 160 dos 450 ingressantes conclua o curso (use aproximação pela normal). Resposta: 0,1587 (usando normal de mesma esperança e variância). 4) A função densidade conjunta de variáveis aleatórias X e Y é { 2e f(x,y) = x e 2y para x 0, y 0, 0 caso contrário. a) Calcule P(X > 1,Y < 1). b) Calcule P(X < Y ). c) Calcule Cov(X,Y ).

2 Resposta: a) 1/e 1/e 3 ; b) 1/3; c) 0. 5) Se X e Y são variáveis aleatórias independentes com distribuição de Poisson com parâmetros λ 1 e λ 2, calcule P(X = k X + Y = n) para quaisquer números naturais k e n, com k n. ( ) n Resposta: λ k k 1λ n k 2 /(λ 1 + λ 2 ) n. 6) Em uma lanchonete há apenas duas entradas, ambas para atendimento drive-through. Cada entrada situa-se em uma rua, com atendimento das 12 às 22 horas. Na rua A as chegadas de clientes obedecem a uma distribuição de Poisson com taxa de 20 clientes por hora. Na entrada pela rua B, os clientes chegam também com distribuição de Poisson e taxa de 15 clientes a cada meia hora. As chegadas são independentes. Em um período de 15 minutos constatou-se que chegaram 17 clientes à lanchonete. Qual a probabilidade de que 7 clientes tenham chegado pela rua A? Resposta: 0,19267 (use resposta da questão anterior). 7) A pontuação de Aldo no boliche é normalmente distribuída com esperança 170 e desvio padrão 20, enquanto a de Bruno é normalmente distribuída com esperança 160 e desvio padrão 15. Se ambos jogam um jogo cada, e supondo que as pontuações obtidas sejam independentes, determine: a) a probabilidade de que a pontuação de Bruno seja menor do que a pontuação de Aldo; b) a probabilidade de que o total de pontos supere 350. Resposta: a) 0,6554; b) 0, ) Sejam duas variáveis aleatórias contínuas independentes X e Y sobre as quais sabe-se que E(X) = 10, σ(x) = 10, σ(y ) = 10 e E(proposition) = 60. Define-se uma nova variável W dada por W = X 2 + Y 2. Quanto vale E(W )? Resposta: ) A tabela abaixo mostra a probabilidade conjunta de duas variáveis aleatórias discretas X e Y. y 1 y 2 y 3 y 4 x 1 0,125 a 0,10 0,125 x 2 0,05 0,06 b 0,05 x 3 c 0,09 0,06 0,075 Para que as duas variáveis sejam independentes, quais os valores de a e b e c? Resposta: 0,15, 0,04, ) Seja (X,Y ) uma variável aleatória discreta cuja distribuição de probabilidades é dada na seguinte tabela. y 1 = 1 y 2 = 2 y 3 = 3 x 1 = 1 8k 6k 7k x 2 = 2 5k 3k 6k x 3 = 3 0 1k 4k Para Z = XY, qual é a esperança condicional E(Z Y = 2)? Resposta: 3. 11) Uma urna contém 3 bolas vermelhas e 2 bolas pretas. Duas bolas são retiradas SEM reposição. Seja X o número de bolas vermelhas e Y o número de bolas pretas. Calcular a covariância Cov(X,Y ). Resposta: 9/25. 12) O eixo de um motor precisa ter um determinado comprimento e diâmetro; uma vez que o motor esteja

3 montado, é possível medir o diâmetro do eixo, mas não o seu comprimento. Uma empresa produz eixos, cujos diâmetros e comprimentos estão distribuídos como descrito na tabela abaixo. Diâmetro ( ) / Comprimento ( ) 10 cm 11 cm 12 cm 13 cm 5mm 0,01 0,02 0,05 0,01 6mm 0 0,05 0,4 0,05 7mm 0,02 0,03 0,02 0,04 8mm 0,05 0,1 0,1 0,05 Dado que para um certo motor montado notou-se que o eixo tem o diâmetro D = 6mm, qual é a probabilidade do comprimento ser C = 12cm? Resposta: 0,8. 13) Um criador de frangos compra pintinhos a R$0,10 cada um e ração a R$200,00 por tonelada. Vende os frangos criados, prontos para o abate, por R$1,00/kg para o frigorífico. Cada frango come, durante sua fase de crescimento, uma quantidade de ração segundo uma distribuição normal de esperança 10kg e desvio padrão 2kg, independentemente de seu peso final. O custo fixo de criação dos frangos é de R$0,10 por frango (água, energia elétrica, mão de obra, manutenção, etc...). Os frangos ficam prontos para o corte com um peso médio de 2,5kg e variância de 0,09 kg 2. Qual a probabilidade de um frango escolhido ao acaso dar lucro ao produtor na hora da venda? Resposta: 0, ) As variáveis aleatórias X e Y têm densidade conjunta { x + y, se 0 x,y 1, f XY (x,y) = 0, caso contrário. a) Calcule a probabilidade de X < Y 2. b) Calcule a densidade marginal de X. c) X e Y são independentes? Justifique. d) Suponha que você saiba agora que ocorreu o evento A = {X = 0,5}. Qual é a probabilidade de B = {Y 0,5} dado A? Resposta: a) 7/20; b) x + 1/2 para 0 x 1; c) não; d) 5/8. 15) Considere duas variáveis X e Y, independentes, e ambas com distribuição geométrica com parâmetro p = 1/3. Considere também duas variáveis W = X + Y e Z = X Y + 3. a) Obtenha P(W Z). b) Obtenha P(Z = 4 W = 3). c) Obtenha o valor de F W,Z (2,3) (F é a função de distribuição cumulativa). Resposta: a) 4/9; b) 1/4; c) 23/81. 16) Dizemos que uma variável Z distribuição Gama com parâmetros α e β quando sua densidade é f(z) = βα Γ(α) zα 1 e βz, para z > 0 (e igual a zero para outros valores de z), onde a função Γ(z) é: Γ(z) = 0 u z 1 e u du. Uma propriedade interessante dessa função é que Γ(z) = (z 1)! para z inteiro. A distribuição Gama é muito usada em estatística e suas propriedades são diretamente ligadas a seus parâmetros; por exemplo, a esperança de Y é α/β e a variância de Y é α/β 2.

4 Considere uma variável aleatória X, com densidade conditional dado Y, ou seja f(x Y ), igual a uma densidade exponencial com parâmetro Y. Considere também que Y tem distribuição Gama com parâmetros α e β iguais a 2. Obtenha a densidade condicional de de Y dado X = 1. Resposta: densidade da distribuição Gama com parâmetros α = β = 3. 17) Considere duas variáveis aleatórias independentes X e Y, as duas com distribuição exponencial com parâmetro igual a 1. a) Qual é a probabilidade do evento X Y? b) Considere a variável Z = 3X 4Y. Qual é a variância de Z? Resposta: a) 1/2; b) ) Em um experimento científico, a variável X mede a temperatura de um sistema, e tem distribuição normal com esperança 1 e variância 16. A laboratório onde ocorre o experimento pode aguentar um sistema com temperatura até um valor Y. Sabe-se que se X for maior que Y, o laboratório explodirá. Ocorre que Y também varia, e tem distribuição normal com esperança 6 e variância 9. As variáveis X e Y são independentes. O experimento é um sucesso se X tem valor menor que zero. a) Qual a probabilidade do experimento ser um sucesso? [1.0] b) Qual a probabilidade do laboratório explodir? [1.5] Resposta: a) 0,4013; b) 0, ) Considere duas variáveis aleatórias X e Y, independentes, sendo: E(X) = 1; E(Y ) = 2; E(X 2 ) = 4; E(Y 2 ) = 6. Definem-se duas novas variáveis aleatórias U e Z, dadas por: U = Y 2X e Z = 2Y + X. a) Encontre V (X), V (Y ) e Cov(X,Y ). b) Encontre V (U), V (Z), Cov(U,Z). Resposta: a) 3, 2, 0; b) 14, 11, ) Duas variáveis contínuas aleatórias X e Y tem densidade de probabilidade expressa por: { 2(x + y), 0 < x < y < 1; f X,Y (x,y) = 0 caso contrário. a) Obtenha a função densidade de probabilidade marginal de X. b) Calcule a probabilidade P(X < 1/2). c) Obtenha a densidade condicional de Y dado X. Resposta: a) 1 + 2x 3x 2 para 0 < x < 1; b) 5/8; c) 2(x + y)/(1 + 2x 3x 2 ) para 0 < y < 1. 21) O tempo de vida de um componente elétrico é uma variável aleatória com distribuição exponencial e com valor médio de 50 horas. Quando o componente falha, é imediatamente substituído por um outro componente do mesmo tipo. Dispõe-se de 100 componentes iguais e independentes. Considere a aproximação de distribuição normal para o conjunto de componentes. a) Qual a probabilidade de que se ainda tenha em operação um componente depois de um total de 5250 horas de operação? b) Considere o caso no qual o tempo de substituição do componente falho é uma variável aleatória, que segue uma distribuição uniforme entre 0 e 6h, com valor esperado 3h e variância 1/3 h2. Qual a probabilidade de que todos os 100 componentes já tenham falhado no instante 5500 horas? Resposta: a) 0,3085; b) 0, ) Um médico considera que fumar influencia a probabilidade de uma pessoa ter câncer. Além disso, experimentos demonstram que a predisposição genética é relevante para o aparecimento de câncer. Denote por X a variável aleatória que tem valor 1 se Maria fuma e 0 caso contrário. Denote por Y a variável aleatória que tem valor 1 se Maria tem predisposição genética e 0 caso contrário. Assuma a hipótese que fumar e ter predisposição genética são variáveis aleatórias independentes. Denote por Z a variável aleatória que tem valor 1 se Maria tem câncer e valor 0 caso contrário. Estudos revelam que P (Z = 0 X = x, Y = y) = 1/(2x+y+1),

5 P (X = 1) = 0,3, P (Y = 1) = 0,1. a) Obtenha a probabilidade de Maria ter câncer. b) Obtenha a probabilidade de Maria fumar dado que Maria tem predisposição genética. c) Obtenha a probabilidade de Maria ter predisposição genética dado que Maria tem câncer. Resposta: a) 0,2375; b) 0.3; c) 0,

6 Scanned by CamScanner

7 Ý ć Ļ ļ Ç ų çć Ķ į Ą ć ė Ŕ Scanned by CamScanner

8 »«ļ Scanned by CamScanner

9 ť ļ ĺ ļ Scanned by CamScanner

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015)

Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015) ) Seja uma v.a. X.d.p. (x) = x se 0 x k. a) Encontre k para que (x) seja uma.d.p. b) Encontre sua.d.a. F(x). c) Calcule a média e a variância de X. Introdução à Estatística e Probabilidade Turma B 5 a

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

DISTRIBUIÇÃO BINOMIAL

DISTRIBUIÇÃO BINOMIAL Universidade Federal de Viçosa - CCE / DPI Inf 161 - Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: Quantis de distribuições P (t > t α ) = α P (F > F 0,05 ) = 0, 05 ν 1 ν 0,05 0,025 ν 2 42 43 56 57 89 1,66 1,99 42 1,67 1,67 1,63

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

6ª Lista de Probabilidade I Professor: Spencer

6ª Lista de Probabilidade I Professor: Spencer 6ª Lista de Probabilidade I Professor: Spencer 1) Em um determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma, Pergunta-se:

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista November, 5 Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Lista 4 de exercícios

Lista 4 de exercícios Lista 4 de exercícios 1. (MORETTIN, 2010) Na leitura de uma escala, os erros variam de -1/4 a ¼, com distribuição uniforme de probabilidade. Calcular a média e a variância da distribuição dos erros. 2.

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2]

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] FATEC GT/FATEC SJC Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] 1. O tempo necessário para um medicamento contra dor fazer efeito foi modelado de acordo com a densidade Uniforme no intervalo

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

2 Distribuições Teóricas Discretas

2 Distribuições Teóricas Discretas 2 Distribuições Teóricas Discretas Exercício 2.1 Seja X B (n, p) e Y B (n, 1 p), verifique que P (X = r) =P (Y = n r). InterpreteoresultadoemtermosdeprovasdeBernoulli. Exercício 2.2 Utilizando as tabelas

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 6: Distribuições Contínuas. Distribuição Normal. 1. A distribuição dos pesos de coelhos

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Vimos que a função geradora de momentos é uma ferramenta

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

FIS-14 Prova 02 Novembro/2013

FIS-14 Prova 02 Novembro/2013 FIS-14 Prova 02 Novembro/2013 Nome: Nota: Duração máxima da prova: 240 min. Responda às questões de forma clara, completa e concisa dentro do espaço previsto. Uma parte da pontuação de cada questão será

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO.

MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, constituídas de itens,

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

M a n h ã... p r e s e n t e! L u g a r... p r e s e n t e! Q u e m... p r e s e n t e! N e n h u m... p r e s e n t e! C u í c a... p r e s e n t e!

M a n h ã... p r e s e n t e! L u g a r... p r e s e n t e! Q u e m... p r e s e n t e! N e n h u m... p r e s e n t e! C u í c a... p r e s e n t e! C a r o l i n a M a n h ã......................................................................... p r e s e n t e! L u g a r.......................................................................... p

Leia mais

U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E

U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E E S T U D O D O S P R O B L E M A S D A E C O N O M I A B R A S I L

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I 2. o Ano/Gestão 2. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: 14231 05.06.2015 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a) 2.a) 3.a)

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança?

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança? MQI 003 Estatística para Metrologia semestre 008.0 Lista 4 Profa. Mônica Barros PROBLEMA Toma-se duas amostras de engenheiros formados há 5 anos por duas Universidades e faz-se uma pesquisa salarial, cujos

Leia mais

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA MECÂNICA DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA MECÂNICA DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Página 1 de 10 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março AVALIAÇÃO DA CAPACIDADE

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Aproximação normal para as distribuições binomial e Poisson

Aproximação normal para as distribuições binomial e Poisson Aproximação normal para as distribuições binomial e Poisson Distribuição normal: aproximação para uma variável aleatória com um grande número de amostras. Distribuição binomial n Distribuição normal Difícil

Leia mais

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética:

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética: 1. A sequência a seguir é uma progressão aritmética: 00 15 0 45... 2010 Acima, aparecem apenas os quatro primeiros termos e o último. O número total de elementos dessa sequência é a) 11 b) 107 c) 109 d)

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Probabilidade e Estatística 2011/2

Probabilidade e Estatística 2011/2 Probabilidade e Estatística 2011/2 Prof. Fernando Deeke Sasse Exercícios resolvidos sobre distribuições discretas Distribuição Binomial 1. Lotes de 50 peças são examinados. O número médio de peças não-conformes

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/2016 Prova A MATEMÁTICA 01. Uma loja reajustou em 20% o preço de certo modelo de televisão. Todavia, diante da queda nas vendas, a loja pretende dar

Leia mais

Distribuição de Probabilidade

Distribuição de Probabilidade Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os

Leia mais

Distribuições Discretas: Hipergeométrica, Binomial e Poisson

Distribuições Discretas: Hipergeométrica, Binomial e Poisson CAP3: Distribuições Discretas e Contínuas Distribuições Discretas: Hipergeométrica, Binomial e Poisson Uma distribuição de probabilidade é um modelo matemático que relaciona o valor da variável com a probabilidade

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais