Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE"

Transcrição

1 Funções Geradoras de Variáveis Aleatórias 1

2 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de Variáveis Aleatórias ou FGVA s. Para cada tipo de distribuição teórica de probabilidades existe um FGVA apropriada. Para usá-las num programa de simulação basta invocar o nome da função desejada e fornecer os parâmetros necessários. 2

3 Funções Geradoras de Variáveis Aleatórias Modelo Computacional TEC= EXPO (10) TEC = 7,45823 Invoca a FGVA Fornece o parâmetro (10) para a FGVA EXPO Argumentos: NA[0;1] + Média (10) GNA fornece NA Retorna o valor de TEC Figura 2.5: Troca de dados e informações entre o modelo computacional e as FGVA s 3

4 Algoritmos para Geração de Variáveis Aleatórias Distribuições Teóricas de Probabilidade 4

5 Geração de Variáveis Aleatórias Métodos e procedimentos computacionais para a geração de variáveis aleatórias com características específicas de alguma das diversas distribuições teóricas de probabilidades. A necessidade de tais variáveis: tempos entre chegadas; tempos de serviço; demandas por produtos, etc. 5

6 Métodos de Geração Os métodos baseiam-se na prévia geração de um número aleatório R, uniformemente distribuído sobre o intervalo (0, 1). x é expresso como uma função explícita de R.. Métodos básicos: Transformação Inversa; Transformação Direta; Convolução; Aceitação/Rejeição; Propriedades Especiais 6

7 Distribuições Discretas: Geométrica Uma variável com distribuição geométrica representa o número de falhas observadas em uma seqüência de provas do tipo Bernoulli, sua função densidade é: p(x) = p(1 - p)x, x = 1, 2,... Pelo método da transformação inversa, obtém-se a seguinte relação: ln( 1 R) ln( 1 p) x < ln( 1 R) ln( 1 p) 7

8 Distribuições Discretas: Geométrica Para a obtenção de uma variável com distribuição geométrica, necessita-se do parâmetro (probabilidade de um sucesso) p. Obtido tal elemento, os seguintes passos devem ser considerados: Gerar R; Calcular x = ln( 1 R) ln( 1 p) A função. (arredondamento para o maior inteiro) atribui a x o maior inteiro que satisfaz a relação anterior. 8

9 Exemplo Gerar três valores de uma distribuição geométrica com p = 1/2. Usando uma tabela de valores aleatórios, obtemos R 1 = 0,932; R 2 = 0,105 e R 3 = 0,687. Primeiramente calcula-se o valor da constante 1/ln (1-p) = 1/ln (1-0,5) = -1,443. Na seqüência, obtemos os valores dos x i s a partir dos R i s. 9

10 Exemplo Passo Valor de R i e de x i 1 R 1 = 0,932 2 x 1 = -1,443 ln(1-0,932) = 3, 878 = 4 1 R 2 = 0,105 2 x 2 = -1,443 ln(1-0,105) = 1 1 R 3 = 0,687 2 x 3 = -1,443 ln(1-0,687) = 2 10

11 Distribuições Discretas: Poisson A distribuição de Poisson se caracteriza pela seguinte função densidade de probabilidade: x p( x) = P( X = x) = e λ λ x = 0,1,2,..., λ > 0 x! a qual representa a probabilidade de ocorrência de x sucessos, num dado intervalo de tempo. Onde, λ é o valor esperado do número de ocorrências por unidade de tempo. 11

12 Distribuições Discretas: Poisson Geração de uma variável aleatória Poisson, considerando o método da Aceitação/Rejeição: 1. Fazer n = 0, e P =1; 2. Gerar um número aleatório R n+1 e substituir P por P.R n+1 ; 3. Se, P < e, aceitar X = n, caso contrário, rejeitar n atual, fazer n = n +1, e retornar aos procedimentos no passo 2. A idéia básica por traz do método da Aceitação/Rejeição, é gerar um número aleatório e testar uma determinada condição de aceitação. Caso esta condição seja satisfeita, o valor gerado é aceito, caso contrário os passos são repetidos. 12

13 Exemplo geração distribuição Poisson Gerar três números, segundo uma distribuição de Poisson, com = 0,2. λ λ 0, 2 Primeiramente, computa-se o valor de e = e = 0, Na seqüência, obtém-se um conjunto de números aleatórios e iniciam-se os procedimentos estabelecidos nos passos de 1 a 3 anteriormente firmados 13

14 Exemplo geração distribuição Poisson Passo Geração de P, n e X 1 n = 0, P = 1 2 R 1 = 0,4357; P = 1.R 1 = 0, como P = 0,4357 < e -0,2 < 0,8187; aceitamos X = R 1 = 0,4146 nos leva a X = 0 1 n = 0, P = 1 2 R 1 = 0,8353; P = 1.R 1 = 0, como P e λ ; rejeitamos n = 0 e retornamos ao passo 2 com n = 1 2 R 2 = 0,9952; P = P.R 2 = 0,8353.0,9952 = 0, como P e λ ; rejeitamos n = 1 e retornamos ao passo 2 com n = 2 2 R 3 = 0,8004; P = P.R 3 = 0, ,8004 = 0, como P = 0,6654< e -0,2 < 0,8187; aceitamos X = 2 14

15 Distribuição Empírica Discreta (MC) Inicialmente, determinam-se as freqüências relativas acumuladas da distribuição. Por exemplo: x p(x) F(x) 0 0,50 0,50 1 0,30 0,80 2 0,20 1,00 Aplica-se o método da transformação inversa pesquisando em uma tabela de valores. Procedimento semelhante ao realizado no capítulo 1, quando se tratou do método de Monte Carlo. 15

16 Procedimentos Geração da Empírica Discreta Os procedimentos de busca são facilitados pela construção de uma tabela para a geração dos valores de x: i Entrada r i Saída x i 1 0, , ,00 2 Esquematizando os procedimentos: 1. Gerar R; 2. Descobrir i, tal que r i-1 < R r i ; 3 Fazer X = x i. 16

17 Exemplo Empírica Discreta Suponha uma variável aleatória com a seguinte distribuição de probabilidades: x p(x) F(x) 2 0,45 0,45 3 0,35 0,80 5 0,20 1,00 Dados R 1 = 0,43; R 2 =0,61 e R 3 =0,83; gerar três valores para a variável X, que pertençam a esta distribuição. R 1 = 0,43 < F(x=2) = 0,45; logo X=2; F(x=2) = 0,45 < R 2 = 0,61 F(x=3) = 0,80 ; logo X=3; F(x=3) = 0,80 < R 3 = 0,83 F(x=5) = 1,00 ; logo X=5; 17

18 Distribuições Contínuas: Uniforme Uma variável aleatória x tem distribuição uniforme sobre um intervalo [a, b], se sua função densidade de probabilidade (fdp) é dada por: A técnica mais utilizada para a obtenção de uma variável aleatória uniformemente distribuída é a da transformação inversa. A fórmula é a seguinte: Os parâmetros necessários para a obtenção de uma variável com distribuição uniforme são apenas os valores extremos do intervalo [a, b]. Uma vez definidos, os seguintes passos devem ser considerados: 1. Gerar R; 2. Calcular 1 f ( x) = a x b b a x = a + ( b a) R x = a + ( b a) R 18

19 Exemplo Distribuição Uniforme Gerar três valores de uma distribuição uniforme no intervalo [10, 50]. Usando os seguintes valores aleatórios R 1 = 0,932; R 2 = 0,105 e R 3 = 0,687. Aplicando o método proposto teremos: Passo Valor de R i e de x i 1 R 1 = 0,932 2 x 1 = 10 + (40)0,932 = 47,28 1 R 2 = 0,105 2 x 2 =10 + (40)0,105= 14,2 1 R 3 = 0,687 2 x 3 = 10 + (40)0,687= 37,48 19

20 Distribuição Triangular Uma variável aleatória x tem uma distribuição triangular se sua fdp é dada por: f ( x) = 2( x a) ( b a)( c a), 2( c x) ( c b)( c a), a x b b < x c onde a b c. A moda b = 3 E (x) - (a + c). Aplica-se o método da transformação inversa. A variável x com esta distribuição é obtida por: x = a R b a c a R b a + ( )( ), se 0 c a b a c ( 1 R)( c b)( c a), se < R 1 c a 20

21 Exemplo Triangular Gerar três valores de uma distribuição triangular com parâmetros (0, 1, 2). Obtidos R 1 = 0,544; R 2 = 0,747 e R 3 = 0,449. x = 1 2R 0 R ( 1 R) < R 1 2 Passo Valor de R i e de x i 1 R 1 = 0,544 2 x 1 = 2-2( 1 0, 544) = 1,045 1 R 2 = 0,747 2 x 2 =2-2( 1 0, 747) = 1,288 1 R 3 = 0,449 2 x 3 = 2( 0, 449) = 0,947 21

22 Distribuição Exponencial Uma variável aleatória x tem uma distribuição exponencial se sua fdp é dada por: x f ( x) = λe λ, x 0 O parâmetro é interpretado como sendo o número médio de ocorrências por unidade de tempo, enquanto a razão representa o tempo médio entre as ocorrências. Aplicando-se o método da transformação inversa para a obtenção de uma variável aleatória x com distribuição exponencial resulta na seguinte relação: x i = λ ln( 1 R i ) Uma vez que (1-R i ), da mesma forma que R i, possui distribuição uniforme no intervalo [0, 1], podemos substituir (1-R i ) por R i na expressão acima. 22

23 Exemplo Gerar valores de uma distribuição exponencial com parâmetro =1. λ x i = λ ln( 1 R i ) i Ri 0,1306 0,0422 0,6597 0,7965 0,7696 xi 0, , , , ,

24 Distribuição Normal Uma variável aleatória x tem uma distribuição normal se sua fdp é dada por: ( x µ ) 1 2 2σ f ( x) = e, < x < σ 2π 2 Método de Box-Muller Z 1 =B cos θ Z 2 =B sen θ Z = 2ln R cos( 2πR ) Z = 2 ln R sen( 2πR )

25 Exemplo Considerando as equações anteriores, gerar dois valores com distribuição normal padronizada a partir de R 1 = 0,1758 e R 2 = 0,1489. Z 1 = [-2 ln (0,1758)]½ cos ( 0,1489) = 1,11 Z 2 = [-2 ln (0,1758)]½ sen ( 0,1489) = 1,50 Para a obtenção de uma variável aleatória normal com média µ e desvio padrão σ, deve-se aplicar a transformação x i = µ + σ.z i aos valores da normal padronizada. Por exemplo, para transformar os valores obtidos de Z 1 e Z 2 em uma Normal (10; 2), calcula-se: x 1 = (1,11) = 12,22 x 2 = (1,50) = 13,00 25

26 Exercício Use o MCL x para ( ax gerar + 1 b) mod uma m seqüência de números = n n aleatórios entre zero e 1, com os seguintes parâmetros: x 0 = 23, a = 17, b = 43 e m = 100. Considere os necessários valores gerados e determine um valor para cada uma das seguintes variáveis: Uniforme (15, 35); Exponencial (10); Triangular (5, 8, 13); Normal (12, 2). 26

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Objetivos. fim de servir de entrada na simulação de um modelo.

Objetivos. fim de servir de entrada na simulação de um modelo. Geração de variáveis aleatórias Objetivos Geração de amostras para uma distribuição em específico a fim de servir de entrada na simulação de um modelo. Ilustrar algumas técnicas usadas para geração de

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

UMA INTRODUÇÃO AOS MÉTODOS DE GERAÇÃO DE NÚMEROS E VARIÁVEIS ALEATÓRIAS PARA APLICAÇÕES EM SIMULADORES

UMA INTRODUÇÃO AOS MÉTODOS DE GERAÇÃO DE NÚMEROS E VARIÁVEIS ALEATÓRIAS PARA APLICAÇÕES EM SIMULADORES UMA INTRODUÇÃO AOS MÉTODOS DE GERAÇÃO DE NÚMEROS E VARIÁVEIS ALEATÓRIAS PARA APLICAÇÕES EM SIMULADORES A geração de números e variáveis aleatórias é um ingrediente fundamental em qualquer programa de simulação,

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Análise de dados em Fisica de Particulas

Análise de dados em Fisica de Particulas Análise de dados em Fisica de Particulas Magno V.T. Machado Instituto de Fisica - UFRGS Escola de Fisica de Particulas e Campos. Agosto 05-09, 2013 Números aleatórios e Monte Carlo Muitas aplicações computacionais

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I Conceitos básicos Probabilidade Experiência aleatória Acontecimentos

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Vimos que a função geradora de momentos é uma ferramenta

Leia mais

Cálculo da energia média classicamente

Cálculo da energia média classicamente Cálculo da energia média classicamente Probabilidade de encontrar um ente com uma energia entre ε e ε +dε em um sistema em equilíbrio térmico à temperatura T : P ε = e ε Distribuição de Boltzmann (K =

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Solução Prova 2 (Queda do Gato)

Solução Prova 2 (Queda do Gato) Departamento de Física Experimental Solução Prova 2 (Queda do Gato) 13-14 de maio de 2014 Queda do Gato La Recherche 487 (2014) pag. 54 Nesta apresentação são mostradas as soluções da prova 2 das turmas

Leia mais

Redes Complexas Aula 7

Redes Complexas Aula 7 Redes Complexas Aula 7 Aula retrasada Lei de potência Distribuição Zeta Propriedades Distribuição Zipf Exemplo Wikipedia Aula de hoje Distribuição de Pareto Medindo lei de potência Estimando expoente Exemplos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

HIDROLOGIA BÁSICA Capítulo 5 - Hidrologia Estatística 5 HIDROLOGIA ESTATÍSTICA 5.1

HIDROLOGIA BÁSICA Capítulo 5 - Hidrologia Estatística 5 HIDROLOGIA ESTATÍSTICA 5.1 5 HIDROLOGIA ESAÍSICA 5.1 5 - HIDROLOGIA ESAÍSICA 5.1 - Considerações Iniciais Séries de variáveis hidrológicas como precipitações, vazões, evaporação e outras, quando observadas ao longo do tempo, apresentam

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Restauração de Imagens

Restauração de Imagens Restauração de Imagens Disciplina: Tópicos em Computação (Processamento Digital de Imagens) 1 / 30 Conceitos Preliminares O principal objetivo das técnicas de restauração é melhorar uma imagem em algum

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3 Forecasting e Otimização i de Carteiras com Matlab AULA 3 Guia de Estudo para Aula 03 Modelos Discretos Exercícios - Formulação de um modelo - Programação de modelos com for - A simulação de um modelo

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

28 de dezembro de 2007

28 de dezembro de 2007 Curso de UFRPE e UFPE 28 de dezembro de 2007 1 2 3 4 5 6 Seja f (y) uma função densidade conhecida, cujos cumulantes são dados por κ 1, κ 2,.... O interesse reside em usar f (y) para aproximar uma função

Leia mais

Energia potencial elétrica

Energia potencial elétrica Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre

Leia mais

Prof. MSc. Herivelto Tiago Marcondes dos Santos

Prof. MSc. Herivelto Tiago Marcondes dos Santos Prof. MSc. Herivelto Tiago Marcondes dos Santos E-mail: herivelto@fatecguaratingueta.edu.br http://herivelto.wordpress.com Ementa Fundamentos da estatística. Coleta e Apresentação de dados. Medidas de

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS Dada uma experiência aleatória Ei e um conjunto de resultados associado a essa experiência, define-se variável aleatória como uma regra bem definida (ou seja, como uma função) que

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais