Distribuições de Probabilidade. Variáveis aleatórias contínuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Distribuições de Probabilidade. Variáveis aleatórias contínuas"

Transcrição

1 Distribuições de Probabilidade Variáveis aleatórias contínuas 1

2 Variáveis contínuas Uma variável aleatória contínua toma um nº infinito não numerável de valores (intervalos de números reais), os quais podem ser associados com medidas numa escala contínua. 2

3 Variáveis contínuas Ficam completamente definidas por qualquer uma das seguintes funções: Função densidade de probabilidade f(x) definida para todo o x em que a variável está definida. Notar que f(x) não representa P(X=x). Numa variável contínua P(X=x)=0 para todo o x. Função de distribuição F(x)=P(X x), para todo o x real. Notar que F(x) representa a probabilidade acumulada até x. 3

4 Função densidade de probabilidade, f.d.p. O gráfico da f.d.p.(ou curva da densidade) é um gráfico que traduz a distribuição de probabilidade de uma variável contínua. Todos os pontos sob a curva têm de ter uma ordenada maior ou igual a zero. A área total sob a curva tem de ser unitária. As probabilidades obtêm-se a partir de áreas sob partes da curva. 4

5 Exemplos de curvas de densidade 5

6 Função densidade de probabilidade, f.d.p. Probabilidade num intervalo Relação com a função de distribuição, F(x). 6

7 Cálculo de probabilidades em variáveis contínuas P(X a) = F(a) P(a X b) = F(b) F(a) P(X > a) = 1- F(a) P(X = a) = 0, para todo o valor de a. Atenção: em variáveis contínuas P(X a) = P(X < a); P(a X b) = P(a < X b) = P(a X < b) = P(a < X < b) P(X > a) = P(X a) 7

8 Variáveis contínuas População Amostra Probabilidade de uma classe (intervalo de valores) Frequência relativa de uma classe (intervalo de valores) F(x) Frequência relativa acumulada 8

9 Parâmetros de uma variável contínua À semelhança do que foi feito para variáveis discretas podemos definir parâmetros para variáveis contínuas. µ = Média σ 2 = Variância σ = Desvio Padrão 9

10 Parâmetros de uma variável contínua O valor médio de uma variável aleatória X é também designado por valor esperado e representado por E[X] E[X] = µ A variância de uma variável aleatória X é também representada por Var[X] Var[X] = σ 2 10

11 Propriedades da média e da variância Sejam X e Y duas variáveis aleatórias e a uma constante real. E[a] = a E[aX] = ae[x] E[X+Y] = E[X] + E[Y] Sejam X e Y duas variáveis aleatórias independentes e a uma constante real. Var[a] = 0 Var[aX] = a 2 Var[X] Var[X+Y] = Var[X] + Var[Y] 11

12 Parâmetros de uma variável contínua Quantil: o quantil de ordem p é o valor x p que acumula à sua esquerda probabilidade p. Dito de outra forma, é o valor x p tal que F(x p )=p. 12

13 Parâmetros de variáveis contínuas e discretas Podemos definir outros parâmetros de distribuições (contínuas ou discretas). Por exemplo: A moda de uma distribuição é o valore que maximiza a função f(x). A mediana de uma distribuição (quantil de ordem 0.5) é o valor que divide ao meio a probabilidade. F(mediana)=1/2. (Nota: nas distribuições discretas esta divisão pode não ser exacta.) 13

14 Parâmetros de variáveis contínuas e discretas Se tivermos n variáveis aleatórias X 1,X 2,X n independentes e com a mesma distribuição de média µ e variância σ 2,então observa-se sempre que: E[X] = µ Var[X]= σ 2 / n Isto significa que a média de um conjunto de variáveis é igual à média de cada uma delas e a variância vem reduzida de um factor 1/n. 14

15 Distribuições contínuas no SPSS O SPSS tem disponíveis várias funções relacionadas com distribuições contínuas conhecidas, todas no menu Transform / Compute. A função densidade de probabilidade, f(x), está disponível através da expressão Pdf.xxx(x,?...) disponível na opção PDF & Noncentral PDF da janela Function Group. A função de distribuição, F(x), está disponível através da expressão Cdf.xxx(x,?...) disponível na opção CDF & Noncentral CDF da janela Function Group. 15

16 Distribuições contínuas no SPSS Os quantis estão disponíveis através da expressão Idf.xxx(p,?...) disponível na opção Inverse DF da janela Function Group. A geração de valores aleatórios extraídos de populações com determinada distribuição está disponível através da expressão RV.xxx(?...) disponível na opção Random Numbers da janela Function Group. 16

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais índice MENSAGEM DO AUTOR 11 AGRADECIMENTOS 13 Capítulo 1 Introdução Importância da estatística 17 O que é a Estatística? Escalas de medida Escala de medida qualitativa Escalas Nominais Escalas Ordinais

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas

Aula de Exercícios - Variáveis Aleatórias Discretas Aula de Exercícios - Variáveis Aleatórias Discretas Organização: Airton Kist Digitação: Guilherme Ludwig Valor Médio de uma variável aleatória Considere uma urna contendo três bolas vermelhas e cinco pretas.

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

TOM, SEMITOM, SUSTENIDO, BEMOL.

TOM, SEMITOM, SUSTENIDO, BEMOL. TOM, SEMITOM, SUSTENIDO, BEMOL. Tom e semitom (ou tono e semitono): são diferenças específicas de altura, existentes entre as notas musicais, isto é, são medidas mínimas de diferença entre grave e agudo.

Leia mais

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA Conceitos sob a ótica de Avaliação de Desempenho de Sistemas Marcos Portnoi Edição 26.6.2010 Universidade Salvador

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires cpires@uevora.pt Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

ENG1000 Introdução à Engenharia

ENG1000 Introdução à Engenharia ENG1000 Introdução à Engenharia Aula 09 Vetores e Matrizes Edirlei Soares de Lima Introdução Até agora nós temos usado variáveis simples para armazenar valores usados por nossos

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FACULDADE DE CIÊNCIAS E TECNOLOGIA Redes de Telecomunicações (2006/2007) Engª de Sistemas e Informática Trabalho nº4 (1ª aula) Título: Modelação de tráfego utilizando o modelo de Poisson Fundamentos teóricos

Leia mais

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR Estatística Biologia Ano lectivo: 2011 /2012 Docentes Responsável Júri Vogal Vogal Responsável pela pauta Docentes que leccionam a UC Ana Maria Caeiro Lebre

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

LOGO DO WEBSITE DA FUTURA APP

LOGO DO WEBSITE DA FUTURA APP LOGO DO WEBSITE DA FUTURA APP LexiZi é uma aplicação mobile e web que é simultaneamente uma ferramenta e um serviço. a) Ferramenta É uma ferramenta porque permite a criação de Notas em cada um dos artigos

Leia mais

Funções de Distribuição

Funções de Distribuição Funções de Distribuição Menu DISTR Para visualizar o menu DISTR, prima. DISTR DRAW 1: normalpdf( Densidade de probabilidade normal 2: normalcdf( Probabilidade de distribuição normal 3: invnorm( Distribuição

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

3 - Bacias Hidrográficas

3 - Bacias Hidrográficas 3 - Bacias Hidrográficas A bacia hidrográfica é uma região definida topograficamente, drenada por um curso d água ou um sistema interconectado por cursos d água tal qual toda vazão efluente seja descarregada

Leia mais

Funções de Distribuição

Funções de Distribuição Funções de Distribuição Menu DISTR Para visualizar o menu DISTR, prima y =. DISTR DRAW 1:normalpdf( Densidade de probabilidade normal 2:normalcdf( Probabilidade de distribuição normal 3:invNorm( Distribuição

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

EXAME DE MACS 2º FASE 2014/2015 = 193

EXAME DE MACS 2º FASE 2014/2015 = 193 EXAME DE MACS 2º FASE 2014/2015 1. Divisor Padrão: 00+560+80+240 200 = 190 = 19 200 20 Filiais A B C D Quota Padrão 1,088 58,01 86,010 24,870 L 1 58 86 24 L(L + 1) 1,496 58,498 86,499 24,495 Quota Padrão

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

Curso de Análise Estatística Comparação entre variáveis contínuas: correlação e regressão Linear

Curso de Análise Estatística Comparação entre variáveis contínuas: correlação e regressão Linear NÚCLEO DE ESTATÍSTICA E METODOLOGIA APLICADAS Desenvolvendo conhecimento para a excelência dos cuidados em saúde mental UNIVERSIDADE FEDERAL DE SÃO PAULO Curso de Análise Estatística Comparação entre variáveis

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Graphing Basic no Excel 2007

Graphing Basic no Excel 2007 Graphing Basic no Excel 2007 Tabela de Conteúdos 1. Inserindo e formatando os dados no Excel 2. Criando o gráfico de dispersão inicial 3. Criando um gráfico de dispersão de dados de titulação 4. Adicionando

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA LISTA N O 4 Prof.: William Morán Sem. I - 0 ) Duas máquinas são usadas para encher garrafas de plástico que têm um volume

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Teste SEMESTREPAR 28/29 Data: 9 demaiode 29 Duração: 2hm Tópicos de

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

Microeconomia. Prof.: Antonio Carlos Assumpção

Microeconomia. Prof.: Antonio Carlos Assumpção Microeconomia Efeitos Renda e Substituição Prof.: Antonio Carlos Assumpção Efeito Renda e Efeito Substituição Uma queda no preço de um bem ou serviço tem dois efeitos: Substituição e Renda Efeito Substituição

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Conceitos de Gestão de Estoques. Prof. Ruy Alexandre Generoso

Conceitos de Gestão de Estoques. Prof. Ruy Alexandre Generoso Conceitos de Gestão de Estoques Análise Numérica Prof. Ruy Alexandre Generoso Cálculo do Nível N de Serviço Ótimo Nível de Serviço o (NS): Determinado nível n de estoque E. É a probabilidade de que a demanda

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística Lições nº e Data /05/2011 Estatística A Estatística é um ramo da Matemática que tem por objectivo:

Leia mais

Trabalho 4 - Traçado de linhas equipotenciais e linhas de força.

Trabalho 4 - Traçado de linhas equipotenciais e linhas de força. Trabalho 4 - Traçado de linhas euipotenciais e linhas de força. Objectivo:Obtenção e análise de curvas euipotenciais numa superfície a duas dimensões, para duas distribuições de carga. Pretende-se ainda

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Conceitos Básicos em Estatística

Conceitos Básicos em Estatística Introdução à Estatística Conceitos Básicos em Estatística 1 Conceitos Básicos em Estatística Definição Uma população é uma colecção de unidades individuais, que podem ser pessoas, animais, resultados experimentais,

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

PRINCIPAIS FATORES DE ANÁLISES. INVESTIMENTOS e RISCOS

PRINCIPAIS FATORES DE ANÁLISES. INVESTIMENTOS e RISCOS PRINCIPAIS FATORES DE ANÁLISES INVESTIMENTOS e RISCOS RENTABILIDADE A rentabilidade é a variação entre um preço inicial e um preço final em determinado período. É o objetivo máximo de qualquer investidor,

Leia mais