Distribuições de Probabilidade Contínuas 1/19

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Distribuições de Probabilidade Contínuas 1/19"

Transcrição

1 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo DCEL Departamento de Computação e Eletrônica Distribuições de Probabilidade Contínuas 1/19

2 Distribuição Uniforme Uma VA X tem distribuição uniforme com parâmetros α e β (com β > α), se a sua função densidade de probabilidade é dada por: f (x) = { 1 β α, para x [α, β] 0, para x [α, β] Distribuições de Probabilidade Contínuas 2/19

3 Distribuição Uniforme Uma VA X tem distribuição uniforme com parâmetros α e β (com β > α), se a sua função densidade de probabilidade é dada por: f (x) = { 1 β α, para x [α, β] 0, para x [α, β] Distribuição acumulada: 0, para x < α x α F (x) = β α, para α x < β 1, para x β Distribuições de Probabilidade Contínuas 2/19

4 Distribuição Uniforme Uma VA X tem distribuição uniforme com parâmetros α e β (com β > α), se a sua função densidade de probabilidade é dada por: f (x) = { 1 β α, para x [α, β] 0, para x [α, β] Distribuição acumulada: 0, para x < α x α F (x) = β α, para α x < β 1, para x β Exemplo: aula anterior, ponteiro girando num círculo. X: ângulo formado com o eixo x. Distribuições de Probabilidade Contínuas 2/19

5 Distribuição Uniforme (cont.) Gráficos 1 β α f (x) 1 F (x) α β x α β x Distribuições de Probabilidade Contínuas 3/19

6 Distribuição Uniforme (cont.) Gráficos 1 β α f (x) 1 F (x) α β x α β x Métricas E[X] = α + β 2 V (X) = (β α)2 12 Distribuições de Probabilidade Contínuas 3/19

7 Distribuição Exponencial Forte relação com o modelo discreto de Poisson. Poisson: modela o número de ocorrências em um período contínuo. Exponencial: VA contínua representa o intervalo de tempo entre ocorrências. 0 }{{} t Número X de ocorrências do Poisson evento em [0, t) Tempo T até a ocorrência Exponencial do evento Distribuições de Probabilidade Contínuas 4/19

8 Distribuição Exponencial (cont.) Exemplos a b c Tempo em minutos até a próxima consulta a um BD. Tempo em segundos entre requisições a um servidor. Distância em metros entre defeitos de um cabo. Distribuições de Probabilidade Contínuas 5/19

9 Distribuição Exponencial (cont.) Exemplos a b c Tempo em minutos até a próxima consulta a um BD. Tempo em segundos entre requisições a um servidor. Distância em metros entre defeitos de um cabo. Suposições As mesmas da distribuição de Poisson: a b Independência entre ocorrências. Taxa média de ocorrência constante no intervalo considerado. Distribuições de Probabilidade Contínuas 5/19

10 Distribuição Exponencial Formulação Sejam os dois eventos equivalentes: A primeira ocorrência ser depois do tempo t. Nenhuma ocorrência em [0, t). Distribuições de Probabilidade Contínuas 6/19

11 Distribuição Exponencial Formulação Sejam os dois eventos equivalentes: A primeira ocorrência ser depois do tempo t. Nenhuma ocorrência em [0, t). Sejam as VAs: X: número de ocorrências no intervalo [0, t). T : intervalo de tempo entre as ocorrências. Distribuições de Probabilidade Contínuas 6/19

12 Distribuição Exponencial Formulação Sejam os dois eventos equivalentes: A primeira ocorrência ser depois do tempo t. Nenhuma ocorrência em [0, t). Sejam as VAs: X: número de ocorrências no intervalo [0, t). T : intervalo de tempo entre as ocorrências. λ: taxa média de ocorrência por unidade de tempo. X tem distribuição de Poisson com parâmetro λt. Distribuições de Probabilidade Contínuas 6/19

13 Distribuição Exponencial Formulação Sejam os dois eventos equivalentes: A primeira ocorrência ser depois do tempo t. Nenhuma ocorrência em [0, t). Sejam as VAs: X: número de ocorrências no intervalo [0, t). T : intervalo de tempo entre as ocorrências. λ: taxa média de ocorrência por unidade de tempo. X tem distribuição de Poisson com parâmetro λt. Logo T > t X = 0. Distribuições de Probabilidade Contínuas 6/19

14 Distribuição Exponencial Formulação (cont.) Usando a definição da função de probabilidade para a distribuição de Poisson, tem-se: P(T > t) = P(X = 0) = (λt)0 e λt 0! = e λt. Distribuições de Probabilidade Contínuas 7/19

15 Distribuição Exponencial Formulação (cont.) Usando a definição da função de probabilidade para a distribuição de Poisson, tem-se: P(T > t) = P(X = 0) = (λt)0 e λt 0! = e λt. Usando o evento complementar, define-se para todo t 0 a distribuição acumulada de uma VA T com distribuição exponencial: F (t) = P(T t) = 1 e λt. Distribuições de Probabilidade Contínuas 7/19

16 Distribuição Exponencial Formulação (cont.) Usando a definição da função de probabilidade para a distribuição de Poisson, tem-se: P(T > t) = P(X = 0) = (λt)0 e λt 0! = e λt. Usando o evento complementar, define-se para todo t 0 a distribuição acumulada de uma VA T com distribuição exponencial: F (t) = P(T t) = 1 e λt. Assim, a função densidade de probabilidade é dada por: f (t) = d dt F (t) = λe λt. Distribuições de Probabilidade Contínuas 7/19

17 Distribuição Exponencial Formulação (cont.) Usando a definição da função de probabilidade para a distribuição de Poisson, tem-se: P(T > t) = P(X = 0) = (λt)0 e λt 0! = e λt. Usando o evento complementar, define-se para todo t 0 a distribuição acumulada de uma VA T com distribuição exponencial: F (t) = P(T t) = 1 e λt. Assim, a função densidade de probabilidade é dada por: f (t) = d dt F (t) = λe λt. Para t < 0 define-se F (t) = f (t) = 0. Distribuições de Probabilidade Contínuas 7/19

18 Distribuição Exponencial (cont.) Gráfico f (t) = λe λt λ P(T > t) = e λt t t Distribuições de Probabilidade Contínuas 8/19

19 Distribuição Exponencial (cont.) Gráfico f (t) = λe λt λ P(T > t) = e λt t t Métricas E[T ] = 1 λ V (T ) = 1 λ 2 Distribuições de Probabilidade Contínuas 8/19

20 Distribuição Exponencial Exemplo T : VA indicando o tempo de resposta para uma consulta em um BD, em segundos. Função densidade de probabilidade: { 2e f (t) = 2t, para t 0 0, para t < 0 P(2 T 3) =? Distribuições de Probabilidade Contínuas 9/19

21 Distribuição Exponencial Exemplo T : VA indicando o tempo de resposta para uma consulta em um BD, em segundos. Função densidade de probabilidade: { 2e f (t) = 2t, para t 0 0, para t < 0 P(2 T 3) =? P(2 T 3) = 3 2 2e 2t dt Distribuições de Probabilidade Contínuas 9/19

22 Distribuição Exponencial Exemplo T : VA indicando o tempo de resposta para uma consulta em um BD, em segundos. Função densidade de probabilidade: { 2e f (t) = 2t, para t 0 0, para t < 0 P(2 T 3) =? ou P(2 T 3) = 3 2 2e 2t dt P(2 T 3) = P(T 2) P(T 3) = e 2(2) e 2(3) = e 4 e 6 = Distribuições de Probabilidade Contínuas 9/19

23 Distribuição Normal Importância Permite modelar variados fenômenos naturais. Pode ser usada para aproximar outras distribuições de probabilidade. Útil para inferência estatística. Distribuições de Probabilidade Contínuas 10/19

24 Distribuição Normal Importância Permite modelar variados fenômenos naturais. Pode ser usada para aproximar outras distribuições de probabilidade. Útil para inferência estatística. Características A função densidade de probabilidade f tem forma de sino. Evidência de que é mais provável que uma VA assuma valores próximos da média. Distribuições de Probabilidade Contínuas 10/19

25 Distribuição Normal (cont.) Função densidade de probabilidade f (x) = 1 σ 2π e 1 2 ( x µ ) 2 σ, < x < + onde µ R e σ > 0 são os parâmetros da distribuição. Distribuições de Probabilidade Contínuas 11/19

26 Distribuição Normal (cont.) Função densidade de probabilidade f (x) = 1 σ 2π e 1 2 ( x µ ) 2 σ, < x < + onde µ R e σ > 0 são os parâmetros da distribuição. Métricas E[X] = µ V (X) = σ 2 Distribuições de Probabilidade Contínuas 11/19

27 Distribuição Normal Gráficos f (x) µ µ σ µ + σ x Distribuições de Probabilidade Contínuas 12/19

28 Distribuição Normal Gráficos f (x) µ µ σ µ + σ x f (x) µ 1 µ 2 e σ 1 = σ 2 µ 1 = µ 2 e σ 1 σ 2 f (x) x x Distribuições de Probabilidade Contínuas 12/19

29 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. Distribuições de Probabilidade Contínuas 13/19

30 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. P(X < µ α) = P(X > µ + α), α R (curva simétrica). Distribuições de Probabilidade Contínuas 13/19

31 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. P(X < µ α) = P(X > µ + α), α R (curva simétrica). lim x ± f (x) = 0. Distribuições de Probabilidade Contínuas 13/19

32 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. P(X < µ α) = P(X > µ + α), α R (curva simétrica). lim x ± f (x) = 0. + f (x)dx = 1. Distribuições de Probabilidade Contínuas 13/19

33 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. P(X < µ α) = P(X > µ + α), α R (curva simétrica). lim x ± f (x) = 0. + f (x)dx = 1. Se X 1 : N(µ 1, σ1 2) e X 2 : N(µ 2, σ2 2 ) são VAs independentes, então a, b R, Y = ax 1 + bx 2 tem distribuição normal com E[Y ] = aµ 1 + bµ 2 V (Y ) = a 2 σ b 2 σ 2 2 Distribuições de Probabilidade Contínuas 13/19

34 Distribuição Normal Observações X : N(µ, σ 2 ) X é uma VA com distribuição normal de média µ e variância σ 2. P(X < µ α) = P(X > µ + α), α R (curva simétrica). lim x ± f (x) = 0. + f (x)dx = 1. Se X 1 : N(µ 1, σ1 2) e X 2 : N(µ 2, σ2 2 ) são VAs independentes, então a, b R, Y = ax 1 + bx 2 tem distribuição normal com E[Y ] = aµ 1 + bµ 2 V (Y ) = a 2 σ b 2 σ 2 2 Afastamentos da média, em unidades de desvio padrão, preservam a mesma área sob a curva, independente dos valores de µ e σ: 2σ = 0.683, 4σ = 0.955, 6σ = Distribuições de Probabilidade Contínuas 13/19

35 Distribuição Normal Padrão Seja X : N(µ, σ 2 ), então a VA Z = X µ σ tem distribuição normal com média zero e desvio padrão unitário. Z : N(0, 1) é dita distribuição normal padrão. Qualquer probabilidade de X pode ser calculada usando a função densidade de probabilidade de Z. Distribuições de Probabilidade Contínuas 14/19

36 Distribuição Normal Padrão Exemplo X: VA normal com µ = 170 e σ = 10. Z: VA com distribuição normal padrão. Transformação do evento X > 180 no evento Z > 1: Distribuições de Probabilidade Contínuas 15/19

37 Distribuição Normal Padrão Exemplo X: VA normal com µ = 170 e σ = 10. Z: VA com distribuição normal padrão. Transformação do evento X > 180 no evento Z > 1: f (x) f (z) P(X > 180) P(Z > 1) x z z = x µ σ = = 1 Distribuições de Probabilidade Contínuas 15/19

38 Distribuição Normal Padrão Tabela Tabela 3, pág. 377, Barbetta et al. (área na cauda superior) segundo decimal de z z P(Z > 0.21) P(Z > 0.21) = 1 Φ(0.21) onde Φ é a função de distribuição acumulada da normal padrão. Tabela 3 fornece os valores 1 Φ(z), para z = 0.01,..., Distribuições de Probabilidade Contínuas 16/19

39 Distribuição Normal Padrão Tabela (cont.) P( 0.42 < Z < 0.42) =? = P( 0.42 < Z < 0.42) = 1 2(0.3372) = Distribuições de Probabilidade Contínuas 17/19

40 Aproximando a Distribuição Binomial pela Normal Condições: n grande e ˆp não muito próximo de 0 ou 1. Parâmetros: µ = nˆp σ = nˆp(1 ˆp) Distribuições de Probabilidade Contínuas 18/19

41 Aproximando a Distribuição de Poisson pela Normal Condições: λ grande. Parâmetros: µ = λ σ = λ Distribuições de Probabilidade Contínuas 19/19

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Sistemas Reparáveis - Processo de Contagem

Sistemas Reparáveis - Processo de Contagem Sistemas Reparáveis - Processo de Contagem Enrico A. Colosimo Colaboração: Rodrigo C. P. dos Reis e Maria Luiza Toledo Programa de Pós-Graduação em Estatística - UFMG Teoria básica de Processos de Contagem

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Universidade Federal Fluminense Instituto de Matemática e Estatística GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana

Leia mais

Coleta e Modelagem dos Dados de Entrada

Coleta e Modelagem dos Dados de Entrada Slide 1 Módulo 02 Coleta e Modelagem dos Dados de Entrada Prof. Afonso C. Medina Prof. Leonardo Chwif Três Etapas Coleta Tratamento Inferência Coleta dos Dados 1. Escolha adequada da variável de estudo

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu

Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

SÉRIE: Probabilidade Univariada Parte 2: Variáveis Contínuas 2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS EXERCÍCIOS...

SÉRIE: Probabilidade Univariada Parte 2: Variáveis Contínuas 2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS EXERCÍCIOS... SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 1.. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA...3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)...4 1.3.1. Expectância,

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Distribuições de probabilidade

Distribuições de probabilidade Distribuições de probabilidade Distribuições contínuas Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT)

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas Universidade Federal Fluminense Instituto de Matemática e Estatística Métodos Estatísticos Aplicados à Economia II GET118) Variáveis Aleatórias Contínuas Ana Maria Lima de Farias Departamento de Estatística

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Simulação de Sistemas Simulação é a técnica de solução de um problema pela análise de

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

Distribuições Truncadas e Aplicações

Distribuições Truncadas e Aplicações Distribuições Truncadas e Aplicações Raydonal Ospina Departamento de Estatística - CCEN/UFPE Gustavo H. Esteves Departamento de Estatística - CCT/UEPB 58ª RBRAS - 15º SEAGRO Campina Grande - Paraíba -

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Variável aleatória É uma função, com propriedades especiais, que transforma eventos em números,

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais