Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Tamanho: px
Começar a partir da página:

Download "Capítulo 3. Introdução à Probabilidade E à Inferência Estatística"

Transcrição

1 Capítulo 3 Introdução à Probabilidade E à Inferência Estatística

2 definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos que algum outro evento tenha ocorrido. Exemplo: A probabilidade de que um dia nublado resulte em chuva é diferente se você vive no Nordeste ou se você vive no Sul do Brasil.

3

4 definições e propriedades: Se A e B são independentes: Desta forma, se A e B são independentes:

5

6

7

8 definições e propriedades: Uso de Internet 0.47 Qual a probabilidade de encontrarmos um indivíduo que utiliza o bate-papo na internet? P(Utilizar e ter idade A1) + P(Utilizar e ter idade A2) + P(Utilizar e ter idade A3) = = P(C A1) + P(C A2) + P(C A3) = P(A1) P(C/A1) + P(A2) P(C/A2) + P(A3) P(C/A3) = = 0.29 * * * 0.07 = = 0.252

9 MODELOS DE PROBABILIDADE: Queremos descrever o comportamento aleatório de uma característica (variável). Vamos nos concentrar no estudo de variáveis quantitativas. Em um modelo de probabilidade, é preciso determinar: Os valores que a variável de interesse pode assumir. As probabilidades associadas a cada um desses valores.

10 MODELOS DE PROBABILIDADE: Dizemos então que variáveis que apresentam um mesmo padrão de comportamento seguem um mesmo modelo (ou distribuição) de probabilidade. Um modelo de probabilidade pode então ser definido como uma descrição matemática de um fenômeno aleatório (ou variável aleatória, de maneira mais formal).

11 MODELOS DE PROBABILIDADE: MODELOS DISCRETOS DOIS TIPOS DE MODELOS: MODELOS CONTÍNUOS

12 MODELOS DE PROBABILIDADE: MODELOS DISCRETOS: Os modelos discretos são adequados a variáveis que podem assumir um número finito ou enumerável de valores. MODELOS CONTÍNUOS: São aqueles relacionados às variáveis que podem assumir qualquer valor em um intervalo de números reais.

13 MODELOS DE PROBABILIDADE: Um histograma é a forma mais usual de se representar frequências/probabilidades associadas a determinados valores. Dados contínuos frequências associadas a intervalos. Quanto menores os intervalos, mais próximo o histograma fica de uma curva idealizada. Essa curva é um modelo matématico para a distribuição.

14 MODELOS DE PROBABILIDADE:

15 MODELOS DE PROBABILIDADE: A figura apresenta o histograma do peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O peso apresenta uma distribuição muito regular. O histograma é simétrico e decresce suavemente a partir de um pico central único na direção de ambas as caudas. A curva suave traçada através do topo das barras do histograma é uma boa descrição do padrão geral dos dados.

16 MODELOS DE PROBABILIDADE: A análise do histograma indica que: 1. a distribuição dos valores é aproximadamente simétrica em torno de 70kg; 2. a maioria dos valores (88%) encontra-se no intervalo (55; 85); 3. existe uma pequena proporção de valores abaixo de 48kg (1,2%) e acima de 92kg (1%).

17 MODELOS DE PROBABILIDADE: Essa curva é chamada de Função Densidade de Probabilidade. Nenhum conjunto de dados reais é descrito exatamente por uma dessas curvas. Trata-se de uma boa aproximação de fácil utilização e com precisão suficiente para ser considerada na prática.

18 MODELOS DE PROBABILIDADE: Sabemos que características (variáveis) em estudo para determinados problemas apresentam um mesmo padrão de comportamento. Portanto, estas variáveis podem ser aproximadas por uma mesma curva (ou pelo mesmo formato de histograma).

19 MODELOS DE PROBABILIDADE: Tipos de Modelo Modelo Característica Discretos Binomial Variável em estudo somente pode assumir dois possíveis valores em cada uma das n repetições do experimento e a probabilidade de ocorrência de cada um é constante. Poisson A variável observada identifica o resultado de uma contagem no experimento (número de insetos em uma determinada área, por exemplo). Geométrico Número de experimentos necessários até a ocorrência de um dado resultado de interesse. Binomial Negativa Número de experimentos necessários até a ocorrência de certo número de vezes do resultado de interesse. Hipergeométrico Variável em estudo somente pode assumir dois possíveis valores em cada uma das n repetições do experimento e a probabilidade de ocorrência de cada um não é constante (usualmente experimentos sem reposição).

20 MODELOS DE PROBABILIDADE: Tipos de Modelo Modelo Característica Contínuos Uniforme A variável pode assumir, com igual probabilidade, qualquer valor em um intervalo, região,... Exponencial Normal A variável observa o tempo necessário até a ocorrência de um determinado resultado de interesse. Variáveis com distribuições simétricas em relação a um ponto central.

21 MODELOS DE PROBABILIDADE: Observações: 1. Para determinadas situações, modelos discretos podem ser aproximados (representados) por um modelo contínuo. Por exemplo, num caso binomial em que o número de repetições do experimento é grande, pode-se analisar a variável em estudo pelo modelo normal. 2. Os modelos aqui apresentados referem-se à distribuição de uma única variável. Podemos em alguns casos ter interesse no comportamento conjunto de duas ou mais variáveis. Nesses casos, temos os chamados modelos multidimensionais ou multivariados, que não serão objetos de estudo nesse curso.

22 MODELO (DISTRIBUIÇÃO) NORMAL Muitos fenômenos que ocorrem na natureza, na indústria e nas pesquisas podem ser representadas por MODELO (OU DISTRIBUIÇÃO) NORMAL. Medições físicas em áreas como experimentos meteorológicos, estudos sobre chuvas, medições de peças manufaturadas são explicadas de forma adequada pela distribuição normal, e erros em medições científicas são bem aproximados pela distribuição normal.

23 MODELO (DISTRIBUIÇÃO) NORMAL CARACTERÍSTICA DO MODELO NORMAL: Os modelo padrão é resultado de uma curva aproximada do histograma dos dados, tem um único pico e apresenta uma forma de sino (simetria em torno do ponto de pico).

24

25 MODELO (DISTRIBUIÇÃO) NORMAL 1 x µ 2 1 ( ) σ f x = e, < x < + 2πσ 2 Para dados X que podem ser representados pelo modelo acima, dizemos que: X ~ N (µ ; σ).

26 MODELO (DISTRIBUIÇÃO) NORMAL 1 x µ 2 1 ( ) σ f x = e, < x < + 2πσ 2 As distribuições Normais (ou Gaussianas, como também são conhecidas) são famílias de distribuições simétricas, com a mesma forma geral. A curva de densidade é bem caracterizada por sua média µ ( mi ) e seu desvio-padrão σ ( sigma ).

27 MODELO (DISTRIBUIÇÃO) NORMAL 1 x µ 2 σ 1 f ( x) = e, < x < + 2πσ 2

28 MODELO (DISTRIBUIÇÃO) NORMAL Algumas Diferentes Situações: Mesma média e diferentes variâncias (2, 4 e 6, respectivamente)!

29

30 MODELO (DISTRIBUIÇÃO) NORMAL PROPRIEDADES: X ~ N (µ ; σ) 1. E(X) = µ (média ou valor esperado); 2. Var(X) = σ 2 (e, portanto, DP(X) = σ ); 3. x = µ é ponto de máximo de f (x); 4. µ - σ e µ + σ são pontos de inflexão de f (x); 5. A curva Normal é simétrica em torno da média µ; 6. A distribuição Normal depende dos parâmetros µ e σ.

31 MODELO (DISTRIBUIÇÃO) NORMAL IMPORTANTE: Embora haja muitas curvas Normais, todas têm propriedades em comum. Em particular, todas as distribuições normais obedecem à seguinte regra: Na distribuição normal com média µ e desvio-padrão σ : 68% das observações estão no intervalo ( µ - σ ; µ + σ ) 95,4% das observações estão no intervalo ( µ - 2σ ; µ + 2σ ) 99,7% das observações estão no intervalo ( µ - 3σ ; µ + 3σ )

32

33 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? PROBLEMA: Um bom indicador do nível de intoxicação por benzeno é a quantidade de fenol encontrada na urina. A quantidade de fenol na urina de moradores de certa região segue, aproximadamente, uma distribuição normal de média 6 mg/l e desvio padrão 2 mg/l. Considere a seguinte definição em termos da variável quantidade de fenol na urina: Uma pessoa é considerada atípica se a quantidade de fenol em sua urina for superior a 9 mg/l ou inferior a 3 mg/l.

34 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? QUESTÃO: Qual é a probabilidade de ser encontrado um indivíduo atípico? Seja X: quantidade de fenol encontrada na urina. Indivíduo Atípico Indivíduo com X < 3 ou X > 9 Probabilidade desejada: P [ X < 3 OU X > 9] = P[ X < 3 X > 9 ] = P[X < 3 ] + P[X > 9]

35 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? Como calcular esta probabilidade, considerando que a variável de interesse pode ser representada pela distribuição normal? O cálculo de uma probabilidade na distribuição normal é dado pela área sob a curva normal na região de interesse, isto é, a área sob a curva de densidade fornece a proporção de observações que estão numa região de valores de interesse.

36

37 ( ) ( )

38 ( ) ( )

39

40 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? IMPORTANTE: Probabilidades não se alteram!

41 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? Características da Normal Padrão: Quando x está 1 desvio-padrão maior do O escore padronizado z que a média, então z = 1. resultante diz de quantos µ + σ µ σ para x = µ + σ, z = = = 1 desvios-padrão cada valor σ σ x está afastado da média da Quando x está 2 desvios-padrão acima distribuição, µ. da média, então z = 2. µ + 2σ µ 2σ para x = µ + 2 σ, z = = = σ σ Quando x é maior do que a média, z é positivo. Quando x é menor do que a média, z é negativo. 2

42 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? De que forma a transformação da variável X em Z, normal padrão, facilita o cálculo de probabilidades? A solução desta integral é mais simples que no caso anterior, e seus valores estão tabelados.

43 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL?

44 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? Como utilizar esta tabela? SIGNIFICADO DOS VALORES TABELADOS

45

46

47 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? Uma segunda situação: P [0 < Z < 1.71 ] =? P(0 < Z < 1.71) = P(Z < 1.71) P(Z < 0) = =

48

49

50 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? Retornando ao Problema Inicial: X: a quantidade de fenol encontrada na urina. X ~ N (6 ; 2) P [ X < 3 OU X > 9] = P[X < 3 ] + P[X > 9]

51 COMO CALCULAR PROBABILIDADES NO MODELO NORMAL? X ~ N (6 ; 2) P [ X < 3 OU X > 9] = P[X < 3 ] + P[X > 9] Portanto, a probabilidade de ser encontrada uma pessoa considerada atípica é de 13.36%

52

53

54 O National Collegiate Athletic Association (NCAA) exige que atletas da 1a divisão tenham pontuação de no mínimo 820 no SAT (Scholastic Aptitude Test ou Scholastic Assessment Test) combinado de matemática e verbal para competir no seu primeiro ano colegial. A pontuação SAT de 2003 foi aproximadamente normal com média 1026 e desvio-padrão 209. Que proporção de todos os estudantes seriam qualificados (SAT 820)? x = 820µ = 1026 σ = 209 ( x µ ) z = σ ( ) z = z = Tabela: a área sob a N(0,1) à esquerda de z = é ou aprox. 16%. Área direita 820 = Área Total Área a esquerda de 820 = % Nota: Os dados reais podem conter estudantes que pontuaram exatamente 820 no SAT. No entanto, a proporção das pontuações exatamente igual a 820 é 0 para uma distribuição normal. É uma consequência da idealizada suavização das curvas de densidade.

55 Exercício: A vida de um semicondutor a laser, a uma potência constante, segue um modelo normal com média de 7000 horas e desvio-padrão de 600 horas. a) Qual a probabilidade do laser falhar antes de completar 5000 horas? b) Qual deve ser o tempo de vida em horas de tal forma que 95% dos lasers excedem a esse tempo? c) Se três lasers forem usados em certo produto e se eles falharem independentemente, qual a probabilidade de todos os três estarem ainda operando após 7000 horas?

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

5- Variáveis aleatórias contínuas

5- Variáveis aleatórias contínuas 5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, associamos probabilidades a intervalos de valores da variável. Exemplo 5.1 Seja a variável correspondente ao tempo até a cura de pacientes

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

5- Variáveis aleatórias contínuas

5- Variáveis aleatórias contínuas 5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

Introdução à Bioestatística

Introdução à Bioestatística Instituto Nacional de Cardiologia February 22, 2016 1 2 3 4 Existem dois tipos de variáveis aleatórias Variáveis aleatórias discretas Variáveis aleatórias contínuas discreta Assume um número nito ou innito

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

Lucas Santana da Cunha 12 de julho de 2017

Lucas Santana da Cunha   12 de julho de 2017 DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Distribuição Normal Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 de junho de 2018 Londrina 1 / 17 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PONTA GROSSA METROLOGIA II

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PONTA GROSSA METROLOGIA II METROLOGIA II Professor: Eng. PAULO ROBERTO CAMPOS ALCOVER JUNIOR Curso de Tecnologia em Fabricação Mecânica 2 Período ; ; Cálculo de Probabilidades; ; ;. 2 : Coeficiente de Variação: Baixa dispersão:

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo dos números

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

AULA 02 Distribuição de probabilidade normal

AULA 02 Distribuição de probabilidade normal 1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item

Leia mais

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60

UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60 INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω

Leia mais

MAE 116 Distribuição Normal FEA - 2º Semestre de 2018

MAE 116 Distribuição Normal FEA - 2º Semestre de 2018 MAE 116 Distribuição Normal FEA - 2º Semestre de 2018 1 Introdução Até aqui estudamos variáveis aleatórias discretas que são caracterizadas por ter uma distribuição de probabilidade dada por uma tabela

Leia mais

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Cap. 8 Distribuições contínuas e modelo normal

Cap. 8 Distribuições contínuas e modelo normal Estatística Aplicada às Ciências Sociais Seta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 8 Distribuições contínuas e modelo normal Variável aleatória discreta variável aleatória

Leia mais

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley.

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Ensino de Estatística

Ensino de Estatística Ensino de Estatística Distribuição Normal Lupércio França Bessegato Ronaldo Rocha Bastos Departamento de Estatística/UFJF Exploração de Dados Univariados Visualize graficamente seus dados Busque padrão

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Probabilidade Aula 08

Probabilidade Aula 08 332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,

Leia mais

Variáveis aleatórias contínuas

Variáveis aleatórias contínuas Variáveis aleatórias contínuas Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 20/04/2018 WB, FM,

Leia mais

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu

Leia mais

DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL

DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Variável Aleatória Contínua e Distribuição Contínua da Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #04 de Probabilidade: 26/10/2018 1 Variáveis Aleatórias Contínuas De modo informal as variáveis aleatórias são contínuas quando resultam de algum tipo

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados. Capítulo 5 Distribuições de probabilidade normal slide 1 Descrição do capítulo 5.1 Introdução à distribuição normal e distribuição normal padrão 5.2 Distribuições normais: encontrando probabilidades 5.3

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

2. Distribuições amostrais

2. Distribuições amostrais 2. Distribuições amostrais USP-ICMC-SME 203 USP-ICMC-SME () 2. Distribuições amostrais 203 / 22 Amostra aleatória Notação. X: variável aleatória (v.a.). f(x; θ): função densidade de probabilidade (X contínua)

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G. EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P2 Profa. Ana Maria Farias

GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P2 Profa. Ana Maria Farias GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P Profa. Ana Maria Farias 1. Em 00, Kaspersky Lab relatou que aproximadamente 0% de todos os e-mails são lixo ou spam.

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

Distribuição de Probabilidade. Prof.: Joni Fusinato

Distribuição de Probabilidade. Prof.: Joni Fusinato Distribuição de Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Variáveis Aleatórias Contínuas Distribuição de Probabilidade Contínua Modelo Normal Modelo t de Student

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1).

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1). A distribuição normal Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f (x) =.e π. σ x µ. σ, x R Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ com

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Avaliação de Desempenho de Sistemas Discretos Probabilidade Professor: Reinaldo Gomes reinaldo@dsc.ufcg.edu.br Planejamento Experimental 2 fatores manipuláveis x 1 x 2 x p entradas Processo...... saídas

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

DISCIPLINA: EPIDEMIOLOGIA E BIOESTATÍSTICA LICENCIATURA: ENFERMAGEM; FISIOTERAPIA

DISCIPLINA: EPIDEMIOLOGIA E BIOESTATÍSTICA LICENCIATURA: ENFERMAGEM; FISIOTERAPIA Aula nº 1 Data: 3 de Outubro de 2002 1. INTRODUÇÃO: POPULAÇÕES, AMOSTRAS, VARIÁVEIS E OBSERVAÇÕES Conceito de Bioestatística e importância da disciplina no âmbito da investigação biológica. Limitações

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais