14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas"

Transcrição

1 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo, a altura de uma pessoa:,7 m;,7 m;,73 m; pois o resultado depende da precisão do instrumento utilizado na medição. Na prática, não nos resta outra escolha que não seja arredondar as medidas para o inteiro mais próximo ou para algumas casas decimais. No caso das variáveis aleatórias discretas, as probabilidades eram representadas pelas alturas dos retângulos do histograma. Nas variáveis aleatórias contínuas, representamos probabilidades por áreas, não por áreas de retângulos, mas por áreas sob a curva ajustada aos dados como na Figura 4., que apresenta os dados referentes à altura dos empregados de uma empresa. Figura 4. - Histograma da variável contínua altura O gráfico de uma variável aleatória contínua pode apresentar diversas formas, como nos gráficos a seguir: UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 8

2 A maioria das distribuições dos salários das empresas possui uma assimetria à direita, pois poucos recebem salários altos Um professor espera que as notas de seus alunos apresentem uma distribuição assimétrica à esquerda, ou seja, muitos alunos com notas altas ,0,5 3,0 4,5 6,0 7,5 9,0 0, A altura das pessoas costuma apresentar uma distribuição simétrica A probabilidade de uma variável aleatória assumir um valor no intervalo de a a b é dada pela área sob a curva entre esses dois valores. A probabilidade ou a área abaixo da curva é calculada pela seguinte expressão: P(a X b) b a f(x) dx, onde f(x) é a função que gera a curva. Existem várias distribuições de probabilidade contínuas que variam de acordo com suas características e sua forma da curva. Nesta disciplina, estudaremos especificamente a Distribuição Normal. UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 8

3 0. Distribuição Normal Muitos fenômenos sociais, psicológicos, físicos entre outros, apresentam uma distribuição normal. Uma das propriedades das distribuições normais é a simetria da curva, como na Figura 4.. No que diz respeito às características humanas, a maioria dos adultos se enquadra entre 55 a 85 cm de altura; poucos são muito baixos (menos de 55 cm de altura) ou muito altos (mais de 85 cm). A maior parte dos coeficientes de inteligência (QI) está entre 85 e 5. Há uma queda gradativa dos escores (medida) em ambas as extremidades, com uns poucos gênios obtendo QI maior que 45 e com poucas pessoas com QI inferior a 55. Portanto, podemos verificar que diversas variáveis contínuas apresentam um comportamento semelhante independente do experimento de que são provenientes. As distribuições normais são importantes em estatística, pois muitas das técnicas de inferência estatística baseadas nas distribuições normais também funcionam bem, quando aplicadas a outras distribuições que são aproximadamente simétricas. Gauss estudando este comportamento chegou à conclusão que a equação dessa curva seria: f(x) x µ..e para -8 < x < 8, π onde desvio padrão populacional µ média da população e número de euler π constante pi Notação: X:N (µ, ) lê-se: a variável aleatória X tem distribuição normal com média µ e variância. Exemplo: X:N(00, 5) lê-se: a variável aleatória X apresenta distribuição normal com média igual a 00 e variância igual a 5. UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 83

4 Características da curva normal É simétrica em relação à média µ; O ponto máximo (moda) de f(x) é o ponto x µ; Os pontos de inflexão da função são: µ - e µ + ; A área total limitada pela curva e pelo eixo das abscissas é ou 00%; A curva é assintótica em relação ao eixo dos x, ou seja, prolonga-se em ambas direções, aproximando-se do eixo horizontal, sem jamais tocá-lo. Para obter a probabilidade indicada na figura acima, devemos calcular: P(a X b) b a.e π x µ. dx Como os valores de probabilidade são obtidos por integração numérica, seria muito trabalhoso utilizar essa função. Para facilitar, usaremos a variável normal padrão ou variável padronizada, z. 0. Variável Normal Padrão ou Variável Padronizada A distribuição normal padrão é uma distribuição com forma normal (de sino), de média 0 (zero) e desvio padrão igual a (um). Devido a essas e outra características, a distribuição normal padrão é muito útil. Para podermos utilizar a distribuição normal padrão na análise de dados, basta calcular o escore padrão ou a variável padronizada (z) que indica a direção e o quanto qualquer escore padrão se desvia da média de uma distribuição em uma escala de unidades de desvios padrões. z x µ UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 84

5 Exemplo: A média para valores de QI em testes de inteligência é 00, com um desvio padrão de 5. Se você tem um QI de 30, qual seria seu valor z? Interprete esse resultado Solução: µ 00 5 z, 0 5 Uma pessoa com QI igual a 30 está dois desvios padrões acima da média, pois o valor de z é positivo. 0.3 A Curva Normal Padrão A função normal padrão é dada pela seguinte expressão: f(z).e π z Para obter a probabilidade, nesse caso, devemos calcular: P(a z b) b a.e π z dz A vantagem de usar a variável padronizada z, é que os valores da área, ou as probabilidades, podem ser calculados e organizados em uma única tabela. P (x x x ) A probabilidade de um determinado valor x estar entre dois limites, x e x, é igual a probabilidade de um determinado valor z estar entre dois limites z e z : P (x x x ) P ( z z z ) x x P (z z z ) z z UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 85

6 0.3 Uso da tabela da curva normal padrão Para usar a tabela z, da curva normal padrão, deve-se usar o fato de que a curva é simétrica e centrada na média. O corpo da tabela é constituído das probabilidades (área sob a curva entre os limites de zero a z). Os valores de z estão nas margens da tabela, na primeira coluna está o valor inteiro e a primeira casa decimal, na primeira linha está a segunda casa decimal. Por exemplo, o valor de z,5 é obtido pela intersecção da linha que contém o valor, e a coluna que contém a segunda casa decimal, o 5, do valor de z procurado: A área abaixo da curva entre zero e o valor de z igual a,5 é de 0,3944. Como mostrado na tabela abaixo: Segunda casa decimal Valor inteiro e a primeira casa decimal z ,0 0,0000 0,0040 0,0080 0,00 0,060 0,099 0,039 0,079 0, 0,0398 0,0438 0,0478 0,057 0,0557 0,0596 0,0636 0,0675 0, 0,0793 0,083 0,087 0,090 0,0948 0,0987 0,06 0,064 0,3 0,79 0,7 0,55 0,93 0,33 0,368 0,406 0,443 0,4 0,554 0,59 0,68 0,664 0,700 0,736 0,77 0,808 0,5 0,95 0,950 0,985 0,09 0,054 0,088 0,3 0,57 Probabilidade entre a 0,6 0,58 0,9 0,34 0,357 0,389 0,4 0,454 0,486 média zero e o valor 0,7 0,580 0,6 0,64 0,673 0,704 0,734 0,764 0,794 z,5 0,8 0,88 0,90 0,939 0,967 0,996 0,303 0,305 0,3078 0,9 0,359 0,386 0,3 0,338 0,364 0,389 0,335 0,3340,0 0,343 0,3438 0,346 0,3485 0,3508 0,353 0,3554 0,3577, 0,3643 0,3665 0,3686 0,3708 0,379 0,3749 0,3770 0,3790, 0,3849 0,3869 0,3888 0,3907 0,395 0,3944 0,396 0,3980,3 0,403 0,4049 0,4066 0,408 0,4099 0,45 0,43 0,447,4 0,49 0,407 0,4 0,436 0,45 0,465 0,479 0,49,5 0,433 0,4345 0,4357 0,4370 0,438 0,4394 0,4406 0,448 UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 86

7 Exemplo de uso da tabela: Dados os valores de z, determine as probabilidades indicadas abaixo: a-) P( 0 z ) Estamos procurando a probabilidade de um valor z estar entre zero e dois. A tabela fornece a área entre a média de z (zero) e o valor de z procurado. Obtemos esse valor, procurando na primeira coluna da tabela o valor de z,0 e na primeira linha o valor 0 que é a segunda casa decimal. O valor da área é 0,477. P( 0 z ) 0,477 b-) P(z ) Como a curva é simétrica e a área abaixo da curva é igual a um, cada metade vale 0,5. Estamos procurando a probabilidade de um valor z ser maior ou igual a. A tabela fornece a área entre a média de z (zero) e o valor de z procurado. Portanto, é necessário subtrair o valor encontrado na tabela de 0,5. 0,5 0,477 0,08 P(z ) 0,5 0,477 0,08 c-) P( z - ) Como a curva é simétrica à área entre z0 e z é a mesma entre z - e z0. Com raciocínio análogo ao item anterior, temos: P( z - ) 0,5 0,477 0,08 P( z - ) 0,08 UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 87

8 d-) P(,0 z,5 ) Dê z0 até o ponto z,5 a área é igual a 0,4938, subtraindo desse valor a área menor que é 0,477 e vai de z0 até o ponto z teremos a área procurada. 0,066 P(,0 z,5 ) 0,4938 0,477 P(,0 z,5 ) 0,066 e-) P( -,6 z,43 ) 0,9880 P( -,6 z,43 ) 0, ,495 P( -,6 z,43 ) 0,9880 f-) P(z -,63 ) P(z -,63 ) 0,5 + 0,4484 0,9484 P(z -,63 ) 0,9484 UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 88

9 Exemplos Exemplo : Voltando ao exemplo dos QIs. Qual a probabilidade de selecionarmos, ao acaso, uma pessoa e ela ter QI entre 90 e 5? Considere média populacional 00 e desvio padrão igual a 5. Solução: P(90 x 5 )? Padronizando a variável x, temos: z x µ ,67 Para x 90 o valor de z correspondente é z - 0,67 Padronizando a variável x, temos: z x µ Para x 5 o valor de z correspondente é z,0 P(90 x 5 ) P(0,67 z,0) 0, ,343 P(90 x 5) 0,5899 P(90 x 5) 0,5899,0 Exemplo : Em uma distribuição normal com média 30 e desvio padrão 4, determine a probabilidade de um indivíduo apresentar valor maior ou igual a 38. Solução: Padronizando a variável x, temos: x µ z 4,0 Para x 38 o valor de z correspondente é z,0 P(x 38 ) P(z ) 0,5 0,477 0,08 P(x 38 ) 0,08 P(x 38 ) 0,08 UAB/FURG --- Profª Suzi Samá Pinto e Profª Carla Silva da Silva --- Introdução à Estatística Econômica -- 89

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL Entre as distribuições teóricas de variável contínua, uma das mais empregadas é a distribuição normal. O aspecto gráfico de uma distribuição normal é o da figura abaio. Para uma perfeita

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

Inferência Estatística: Conceitos Básicos I

Inferência Estatística: Conceitos Básicos I Inferência Estatística: Conceitos Básicos I Introdução, Medidas de Tendência Central, Medidas de Variabilidade, Distribuições de Frequência e Probabilidade Flávia F. Feitosa BH1350 Métodos e Técnicas de

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu

Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

- desvio padrão, caracteriza a dispersão dos resultados

- desvio padrão, caracteriza a dispersão dos resultados O resultado da experiência, então, pode ser expresso na forma < x > ± x n (veja a explicação mais adiante) - desvio padrão, caracteriza a dispersão dos resultados Histograma de frequências Histograma

Leia mais

Exploração e Transformação de dados

Exploração e Transformação de dados Exploração e Transformação de dados A DISTRIBUIÇÃO NORMAL Normal 99% 95% 68% Z-score -3,29-2,58-1,96 1,96 2,58 3,29 Normal A distribuição normal corresponde a um modelo teórico ou ideal obtido a partir

Leia mais

A Estatística é uma ciência que se ocupa em grande parte do estudo das. Vamos imaginar uma população como um conjunto Π = {I 1, I 2,...

A Estatística é uma ciência que se ocupa em grande parte do estudo das. Vamos imaginar uma população como um conjunto Π = {I 1, I 2,... Capítulo 1 Distribuições de freqüências A Estatística é uma ciência que se ocupa em grande parte do estudo das distribuições de freqüência de variáveis definidas em populações. Vamos imaginar uma população

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos

Leia mais

Distribuições de probabilidade

Distribuições de probabilidade Distribuições de probabilidade Distribuições contínuas Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT)

Leia mais

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média µ = 505g e desvio padrão σ = 9g. a) Selecionado ao acaso um pacote embalado

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Distribuição T - Student. Prof. Herondino S. F.

Distribuição T - Student. Prof. Herondino S. F. Distribuição T - Student Prof. Herondino S. F. Distribuição T-Student A distribuição T de Student é uma distribuição de probabilidade estatística, publicada por um autor que se chamou de Student, pseudônimo

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: medidas resumo Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: medidas resumo Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: medidas resumo Nome: GABARITO GRR: 1. Estime as medidas de centro (média, mediana, moda) para amostras de altura

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA

ENGENHARIA DA QUALIDADE A ENG AULA 2 REVISÃO DE ESTATÍSTICA ENGENHARIA DA QUALIDADE A ENG 09008 AULA REVISÃO DE ESTATÍSTICA PROFESSORES: CARLA SCHWENGBER TEN CATEN ROGÉRIO FEROLDI MIORANDO Introdução Em um ambiente industrial, os dados devem formar a base para

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Disciplina: AGR116 Bioestatística Professor: Celso Luiz Borges de Oliveira Assunto: Estatística Descritiva Tema: Distribuição

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma:

DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma: DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 2/2016 1 / 35 variáveis discretas vs variáveis contínuas

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

Estatística Aplicada Professor: André Luiz Araújo Cunha. Moda. Media

Estatística Aplicada Professor: André Luiz Araújo Cunha. Moda. Media Estatística Aplicada Professor: André Luiz Araújo Cunha Moda Define-se moda como sendo: o valor que surge com mais freqüência se os dados são discretos, ou, o intervalo de classe com maior freqüência se

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Simulação Monte Carlo

Simulação Monte Carlo Simulação Monte Carlo Nome do Prof. Fernando Saba Arbache Email do prof. fernando@arbache.com Definição Análise de risco faz parte da tomada de decisão Surgem constantemente incertezas, ambiguidades e

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Estatística Aplicada à Educação

Estatística Aplicada à Educação Estatística Aplicada à Educação Curvas de Frequência p. 75 Aprendemos na aula passada a representação gráfica por meio de histogramas e polígono de frequências. 27 24 21 18 15 12 9 6 3 0 150 154 158 162

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 5ª AULA: DISTRIBUIÇÃO DE PROBABILIDADE

Leia mais

Probabilidade e Estatística. Prof. Dr. Jhames Sampaio

Probabilidade e Estatística. Prof. Dr. Jhames Sampaio Probabilidade e Estatística Prof. Dr. Jhames Sampaio Medidas de Posição Moda observação mais frequente Medidas de Posição Moda observação mais frequente Vamos considerar a pesquisa do Twitter onde foram

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva Prof. Henrique Dantas Neder Instituto de Economia Universidade Federal de Uberlândia Typeset by FoilTEX 1 Tópicos introdutórios A estatística descritiva trata dos métodos estatísticos

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES

INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES DESCRIÇÃO DOS DADOS CONTÍNUOS Trazem informações que expressam a tendência central e a dispersão dos dados. Tendência Central: Média ( x ), Mediana ( Md ),

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais