1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)"

Transcrição

1 Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável aleatória. A palavra aleatória indica que só conhecemos aquele valor depois do experimento ter sido realizado. Desta forma, defini-se variável aleatória como sendo uma função que associa números reais aos eventos de um espaço amostral, ou seja, os resultados do experimento aleatório são dados numéricos. Usa-se as letras maiúscula (X, Y, Z...) para designar as variáveis aleatórias, e minúsculas (x, y, z...) para indicar particulares valores dessas variáveis. As variáveis aleatórias podem ser discreta e contínuas e o seu comportamento pode ser descrito por uma distribuição de probabilidade. No caso discreto, a distribuição de probabilidade pode ser caracterizada por uma função de probabilidade, que indica diretamente as probabilidades associada a cada valor. No caso contínuo, a distribuição é caracterizada pela função densidade de probabilidade. Uma Variável Aleatória é uma variável (geralmente representada por X) que tem um valor numérico único (determinado aleatoriamente) para cada resultado de um experimento Exemplos de Variáveis Aleatórias X = número de ovos de lagarta em uma folha X =numero de plantas por hectare. X = número de alunos que não compareceram a aula de estatística hoje. X = altura de um aluno de sexo masculino selecionado aleatoriamente. X = variação do preço do dólar durante o plano real. A seguir vermos variáveis aleatórias discretas e suas principais distribuições e as variáveis aleatórias contínuas assim como suas principais distribuições 2 Variáveis Aleatórias Discretas (VAD) Uma variável aleatória tem comportamento discreto quando ela admite um número finito de valores ou tem uma quantidade enumerável de valores (admite apenas valores inteiros). A definição de uma VAD só fica completa a partir do momento em que se define a função de probabilidade da variável aleatória X. Uma função de probabilidade é a função que associa a cada valor assumido pela variável aleatória a probabilidade do evento correspondente, ou seja: Seja X uma variável aleatória discreta. Portanto, o contradomínio de X será formado por um número finito ou enumerável de valores x 1 ; x 2 ;...A cada possível resultado x i, associaremos um número p(x i ) = P(X = x i ), i = 1; 2; 3;..., denominado probabilidade de xi. Ou seja Os números p(xi) devem satisfazer às seguintes condições: a) p( x i ) 0, i ;

2 Prof. Janete Pereira Amador 2 n b) p( i1 x i ) 1 Dessa forma função p, definida acima, é denominada função de probabilidade da variável aleatória X e a coleção de pares [xi; p(xi)] i = 1; 2;..., é denominada distribuição de probabilidade de X. Uma distribuição de probabilidades é uma distribuição de freqüências relativas para os resultados de um espaço amostral; mostra a proporção das vezes em que a variável aleatória tende a assumir cada um dos diversos valores. 2.3 Distribuições de Probabilidades para VAD Quando estudamos fenômenos observáveis o que se verifica é se este se adapta as condições de determinado modelo probabilístico conhecido, desta forma torna-se bem mais fácil descrever o comportamento do fenômeno. Assim nesta seção irmos estudar alguns desses modelos, procurando enfatizar as condições em que eles aparecem, sua função de probabilidade, parâmetros e como encontrar as probabilidades. Alguns modelos são mais importantes devido ao seu maior uso. No caso de variáveis aleatórias discretas as distribuições mais importantes são: a) a distribuição Binomial; b) a distribuição de Poisson Distribuição Binomial Consideramos n tentativas independentes, de um experimento aleatório. Cada tentativa admite dois resultados: sucesso com probabilidade p (quando ocorre o evento que estamos interessados) e fracasso com probabilidade q (quando o evento não ocorre), logo a probabilidade total de fracasso ou sucesso p q 1 sendo assim: a probabilidade de fracasso q 1 p Um experimento binomial deve satisfazer as seguintes condições: 1) O experimento deve comportar um número fixo de provas 2) As provas devem ser independentes, isto é, o resultado de qualquer prova não afeta as probabilidades das outras provas. 3) Cada prova deve ter todos os resultados classificados em duas categorias. 4) As probabilidades devem permanecer constantes para cada prova A probabilidade de ocorrer k sucessos em n provas será: k C n = n! k! n k P(X = k) = k C n p k q n-k sendo k = 0, 1, 2, 3,, n, que é a fórmula do Binômio de Newton (p + q) n, daí o nome Binomial. Desta forma tem-se: n x Px! p x q n. n x! x!. para x = 1, 2,..., n com n número de provas

3 Prof. Janete Pereira Amador 3 x número de sucessos em n provas p probabilidade de sucesso em qualquer prova q probabilidade de falha (fracasso) em qualquer prova ( q 1 p ) Parâmetros da distribuição: Média, Variância e Desvio padrão da distribuição binomial Média ou valor esperado E(X)= n. p Variância V(X)= 2 n. p. q Desvio padrão n. p. q Ex: Dado que 10% população são canhotos, suponha que se queira achar a probabilidade de obter exatamente três estudantes canhotos em uma turma de 15 estudantes. Isso se deve ao fato que algumas carteiras são adaptadas para estudantes canhotos, e a probabilidade resultante poderia afetar o número de tais carteiras a serem encomendadas para as salas de aulas. Calcule também a E(X), V(X) e o. Solução: Satisfazendo as condições para ocorrência de um experimento binomial verifica-se que: 1. O número de provas é fixo As provas são independentes, porque o fato de um estudante ser canhoto ou destro não afeta a probabilidade de outro estudante ser canhoto. 3. Cada prova tem duas categorias de resultado: o estudante é canhoto ou não é. 4. A probabilidade de um estudante ser canhoto (sucesso) é 0,1 e, assim, p =0,1 5. A probabilidade de falha (não-canhoto) é 0,9, logo q = 0,9. Calculando a probabilidade de 3 estudantes canhotos: Exercícios 1) A probabilidade de que um animal de uma determinada população seja do sexo feminino é de 0,20. Se seis animais são selecionados qual, a probabilidade de teremos exatamente quatro fêmeas. 2) Se a probabilidade de ocorrência de uma determinada doença é de 30%, determinar a média e o desvio padrão da distribuição desta doença em um total de 800 indivíduos 3) Suponha que a probabilidade de um individuo do sexo masculino, com mais de 60 anos, vida sedentária e tabagismo ativo de desenvolver uma doença cardiovascular nos próximos oito anos seja de 40%. A partir de um estudo controle com dez indivíduos com essas características responda. a) A probabilidade de que nenhum indivíduo desenvolva a doença. b) A probabilidade que no máximo dois indivíduos desenvolvam a doença 4) No hospital psiquiátrico 40% dos pacientes internados são alcoólatras. Qual a probabilidade de que seja internado pelo menos três pacientes alcoólatra em 20 internações. 5) A probabilidade de cura de lupus eritomatoso é de 25%. Considerando oito pacientes submetidos a tratamento, responda a) A probabilidade de que todos os indivíduos sejam curados. c) A probabilidade de que nenhum paciente seja curado

4 Prof. Janete Pereira Amador 4 d) A probabilidade de que no máximo um paciente seja curado e) A probabilidade de que pelo menos 50% dos pacientes sejam curados. 3 Variável Aleatória Contínua (VAC) Quando uma variável aleatória apresenta um grande número de resultados possíveis, ou quando a variável aleatória em questão é continua (pode assumir qualquer valor dentro de um intervalo definido de valores), não se pode usar distribuições discretas como a de Poisson ou Binomial para obter probabilidades. Como uma variável contínua inclui, em seus resultados, valores tanto inteiros como não inteiros, não pode ser adequadamente descrita por uma distribuição discreta. Sendo assim, abordagem mais conveniente é construir uma função densidade de probabilidade, ou curva de probabilidade, baseada na função matemática correspondente. Definição: É aquela que pode tomar qualquer valor em um determinado intervalo. Diz-se que X é uma VAC, se existir uma função f(x), denominada função densidade de probabilidade (fdp) de x que satisfaça às seguintes condições: a) f(x) 0 para todo o x; b) f ( x) dx 1; 3.3 Distribuições Contínuas de Probabilidade Em muitos problemas se torna matematicamente mais simples considerar um espaço amostral idealizado para uma variável X, no qual todos os números reais (em algum intervalo específico) passam ser considerados como resultados possíveis. Desta maneira somos levados as variáveis aleatórias contínuas, principalmente quando as observações referem-se a medidas como comprimento, peso, temperatura, etc. Entende-se por distribuição contínua de probabilidade a distribuição que estiver associada a uma variável aleatória contínua VAC. Assim se uma variável puder assumir um conjunto contínuo de valores de um certo conjunto de dados, então a distribuição de probabilidade P(X) é dita de probabilidade contínua. Desta forma, a seguir estudarmos as seguintes distribuições de probabilidade: Distribuição Normal Distribuição t de Student. Distribuição Qui-quadrado ( x 2 Distribuição F de Snedecor Distribuição Normal É mais importantes distribuição de probabilidade contínua, sendo aplicada em inúmeros fenômenos e utilizada para o desenvolvimento teórico da inferência estatística. A distribuição normal serve também como aproximação para um grande número de distribuições. A variável aleatória X que tome todos os valores reais X, tem distribuição normal com parâmetros e 2 se sua função densidade de probabilidade for dada por: f ( x 1 ) 2 e x 1/ 2, X

5 Prof. Janete Pereira Amador 5 A equação da curva Normal é especificada usando 2 parâmetros: a média populacional, e o desvio padrão populacional, ou equivalentemente a variância 2 populacional e devem satisfazer as seguintes condições: a) b) 2 > 0 Denotamos Quando uma variável aleatória X tiver distribuição normal anotaremos. X N (, 2 ) A distribuição normal é simétrica em torno da média o que implica que e média, a mediana e a moda são todas coincidentes. A distribuição Normal possui as seguintes características: 1. forma campanular, isto é, possui forma de sino, sendo simétrica em relação a média; 2. a variável aleatória pode assumir qualquer valor real; 3. a área total sob a curva é 1; porque essa área corresponde à probabilidade da variável aleatória assumir qualquer valor real; 4. é uma curva assintótica; 5. possui dois pontos de inflexão; A configuração da curva é dada por dois parâmetros: a média e a variância. Mudando a média, muda a posição da distribuição no sentido horizontal. Mudando a variância, muda a dispersão da distribuição fazendo com que o gráfico mais achatado ou mais alongado. Tias configurações estão representadas na figura a seguir:

6 Prof. Janete Pereira Amador 6 Na prática desejamos calcular probabilidades para diferentes valores de e. Para isso, a variável X cuja distribuição é N (, 2 ) é transformada numa forma padronizada com distribuição N (0, 1) (distribuição normal padrão) pois tal distribuição é tabelada. Nesse caso a função densidade de probabilidade é dada por: f ( z) 1. e z 2. Teorema: Se X tiver uma distribuição normal com média e variância 2 x e se Z então Z terá distribuição normal padronizada. X N (, 2 X ) ==> Z N(0,1) Esse teorema é usado da seguinte forma: P( x 1 < X < x 2 ) = P(z 1 < Z < z 2 ), onde: x1 x2 z1 z2 Desta forma a variável aleatória X transforma-se em variável normal reduzida Z, como podemos ver graficamente a seguir: 68,27% 95,45% 99,73% Vê-se que a nova origem é 0 e o desvio padrão é a unidade de medida. Essa transformação não altera a forma da distribuição, apenas refere-se a uma nova escala. A tabela da distribuição normal fornece a probabilidade de Z tomar um valor não superior a Z 0 : P(Z Z 0 ). Tal probabilidade é representada pela área hachurada na figura a seguir:

7 Prof. Janete Pereira Amador 7 A importância da distribuição normal padronizada reside no fato de que ela encontrase tabelada, facilitando o cálculo. Ex1: Determinar área sob a curva normal padronizada à esquerda de 1,72. Consultando a tabela, vemos que z = 1,72 corresponde área (probabilidade) 0,9573, ou seja, 95,73% da área sob a curva e acima do eixo da v.a. reduzida estão à esquerda de Z = 1,72. é o mesmo que dizermos que a probabilidade de Z ser menor que 1,72 é 0,9573: P(Z <1,72) = 0,9573. Ex2: Determinar a área sob a curva normal padronizada abaixo de Z= - 0,53. Na tabela, a Z = -0,53 corresponde a área (probabilidade) 0,2981: P(Z < 0,53) = 0,2981, isto é 29,81% da área sob a curva e acima do eixo da v.a. reduzida Z estão abaixo do valor z = -0,53. Ex3: A concentração de um poluente em água liberada por uma fábrica tem distribuição N(8,1.5). Qual a chance, de que num dado dia, a concentração do poluente exceda o limite regulatório de 10 ppm? : Ex4: Sabe-se que as alturas das plantas de milho de uma certa variedade se distribuem normalmente com média de 2,20m e desvio padrão de 0,20m. Qual a percentagem esperada de plantas com altura compreendida entre 2,30 e 2,35m? X = altura das plantas; X = N (2,20 ; 0,20 2 ); P (2,30 < X < 2,35) = P (z 1 < Z < z 2 ) 2, 30 2, 20 0, 10 2, 35 2, 20 z 1 = 0, 5 e z 2 = 0, 75 então; 0, 2 0, 2 0, 2 P (2,30 < X < 2,35 ) = P (0,5 < X < 0,75) = 0,0819 ou 8,19% corresponde a percentagem de plantas que espera se alcançar as alturas de 2,30 a 2,35m. Exercícios 1) Determinar a área sob a curva normal padronizada abaixo de Z= - 0,53.

8 Prof. Janete Pereira Amador 8 2) Calcule as seguintes probabilidades: a) P(- 2,3 < Z < 0) = b) P( 1,50 < Z < 2,32) = 3) As alturas dos alunos de uma determinada escola são normalmente distribuídos com =1,60 m e = 0,30 m. Encontre a probabilidade de 1 aluno medir: a) Entre 1,50 e 1,80 m R: 0,3747 b) Mais de 1,75 m R: 0,3085 c) Menos de 1,48m R: 0,3446 d) Qual deve ser a medida mínima para escolhermos 10% dos mais altos. R: 1,98 m 4) Suponha que o comprimento de recém nascidos do sexo feminino não portadores de anomalias congênitas seja uma variável aleatória com distribuição aproximadamente normal de média 48,54cm e desvio padrão 2,5 cm, N~(48,54; 6,25). a) Qual a probabilidade de um recém nascido ter o comprimento superior a 47,29 cm b) Qual a probabilidade de um recém nascido ter o comprimento inferior a 44,79 cm 5) Os salários dos diretores das empresas de São Paulo distribuem-se normalmente com média de R$ 8000,00 e desvio padrão de R$ 5000,00. Qual a percentagem de diretores que recebem. a) Menos de R$ 6470,00 R: 0, b) Entre R$ 8920, 00 e R$ 9380,00. R: 0,02994

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

1 Introdução. 2 Noções de Experimento, Espaço Amostral e Eventos

1 Introdução. 2 Noções de Experimento, Espaço Amostral e Eventos Prof. Janete Pereira Amador 1 1 Introdução A ciência manteve-se até pouco tempo atrás, firmemente apegada à lei da causa e efeito. Quando o efeito esperado não se concretizava, atribuía-se o fato ou a

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 5ª AULA: DISTRIBUIÇÃO DE PROBABILIDADE

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

CAPÍTULO 3 POPULAÇÃO E AMOSTRA

CAPÍTULO 3 POPULAÇÃO E AMOSTRA DEPARTAMENTO DE GEOCIÊNCIAS GCN 7901 ANÁLISE ESTATÍSTICA EM GEOCIÊNCIAS PROFESSOR: Dr. ALBERTO FRANKE CONTATO: alberto.franke@ufsc.br F: 3721 8595 CAPÍTULO 3 POPULAÇÃO E AMOSTRA As pesquisas de opinião

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 2/2016 1 / 35 variáveis discretas vs variáveis contínuas

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Distribuição de Probabilidade

Distribuição de Probabilidade Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

Variáveis Aleatórias Contínuas. Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria

Variáveis Aleatórias Contínuas. Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria Variáveis Aleatórias Contínuas Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria Roteiro Variável Aleatória Contínua O que é? Exemplos Função Densidade de

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Distribuições Estatísticas

Distribuições Estatísticas Distribuições Estatísticas Para darmos sequência ao estudo da estatística, será necessário conhecer um pouco mais sobre as distribuições mais utilizadas, como distribuição normal, distribuição Gama, distribuição

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Distribuição de Probabilidade Conjunta

Distribuição de Probabilidade Conjunta . DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL Entre as distribuições teóricas de variável contínua, uma das mais empregadas é a distribuição normal. O aspecto gráfico de uma distribuição normal é o da figura abaio. Para uma perfeita

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais