DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS"

Transcrição

1 VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável aleatória. A palavra aleatória indica que só conhecemos aquele valor depois do experimento ter sido realizado. Definição de Variável Aleatória Uma Variável Aleatória é uma variável (geralmente representada por X) que tem um valor numérico único (determinado aleatoriamente) para cada resultado de um experimento. Exemplos de Variáveis Aleatórias X = número de acidentes de aviões da VARIG dentre sete acidentes aéreos selecionados aleatoriamente. X = número de mulheres entre 10 empregados recém admitidos. X = número de alunos que não compareceram a aula de estatística hoje. X = altura de um aluno de sexo masculino selecionado aleatoriamente. X = variação do preço do dólar durante o plano real. 2 VARIÁVEL ALEATÓRIA DISCRETA (VAD) Uma variável aleatória tem comportamento discreto quando ela admite um número finito de valores ou tem uma quantidade enumerável de valores (admite apenas valores inteiros). Uma variável aleatória é considerada discreta quando toma valores que podem ser contados. Ex: números de acidentes numa semana, números de defeitos em sapatos, número de terremotos, Números de jogos empatados, números de livros numa estante etc. DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS As principais distribuições de probabilidade discretas, são a distribuição Binomial e a de Poisson. Estas distribuições apresentam expressões para o cálculo das probabilidades, isto é, as probabilidades f(x) podem ser avaliadas através de um modelo matemático conhecido. Distribuição Binomial Consideramos n tentativas independentes, de um experimento aleatório. Cada tentativa admite dois resultados:

2 2 sucesso com probabilidade p (quando ocorre o evento que estamos interessados) e fracasso com probabilidade q (quando o evento não ocorre), logo a probabilidade total de fracasso ou sucesso p q 1 sendo assim: a probabilidade de fracasso q 1 p Em um experimento binomial as probabilidades são calculadas utilizando-se a fórmula da probabilidade binomial: P com x n! x p x q n. n x! x!. para x = 1, 2,..., n n número de provas x número de sucessos em n provas p probabilidade de sucesso em qualquer prova q probabilidade de falha (fracasso) em qualquer prova ( q 1 p ) Média, Variância e Desvio padrão da distribuição binomial Média ou valor esperado Variância Desvio padrão n. p 2 n. p. q n. p. q Exercícios: 1. Aplicando a fórmula da probabilidade binomial, determine a probabilidade de obter três estudantes canhotos em uma turma de 15 estudantes, dado que 10% população são canhotos. 2. A probabilidade de um cliente aleatoriamente escolhido faça uma compra é 0,20. Se um vendedor visita seis clientes, a probabilidade de que ele fará exatamente quatro compras será. 3. Se a probabilidade de ocorrência de uma peça defeituosa é de 30%, determinar a média e o desvio padrão da distribuição de peças defeituosas de um total de 800 peças.

3 3 Distribuição de Poisson A distribuição de Poisson é gerada pela observação de experimentos que fornecem dados, para uma variável aleatória definida como o número de vezes que ocorre um dado evento em um intervalo de tempo ou em um determinado espaço. O intervalo de tempo considerado pode ter qualquer duração, como: ano, meses, dias, minutos. Exemplo: número de chamadas telefônicas em um dia de expediente de um escritório, número de acidentes de tráfego durante o carnaval; O espaço considerado pode ter qualquer dimensão, como: uma linha, um plano ou um volume. Exemplo: número de defeitos em uma chapa metálica; número de partículas dispersas em um litro de óleo. Na distribuição de Poisson a probabilidade de um evento ocorrer x vezes em um determinado intervalo é calculado pela formula: k e. P( x) onde e 2,718 k! é a freqüência média de sucessos num intervalo de tempo ou comprimento. k ocorrência de uma amostra Média, Variância e Desvio padrão da distribuição Poison Média ou valor esperado ou n. p Variância Desvio padrão 2 Exercícios: 1. Para fins de impactos de bombas V-1 na Segunda Guerra Mundial, o sul de Londres foi subdividido em 576 regiões com área de 0,25 km 2 cada. O número médio de impacto por região foi 0,929 bombas. Escolhida aleatoriamente uma região, determine de ela ter sido atingida exatamente duas vezes. 2. A revendedora XY vende em média () 0,5 carros por dia. Determine a probabilidade de que, em um dia qualquer, o número de carros vendidos seja igual a Esta sendo planejado a construção de um hospital para um determinado município de Roraima que ainda não tem hospital próprio. Se neste município tem uma média de 2,25 nascimento por dia, determine a probabilidade de que, em um dia, o número de nascimentos seja igual a 4.

4 4 3 VARIÁVEL ALEATÓRIA CONTÍNUA (VAC) Quando uma variável aleatória apresenta um grande número de resultados possíveis, ou quando a variável aleatória em questão é continua (pode assumir qualquer valor dentro de um intervalo definido de valores), não se pode usar distribuições discretas como a de Poisson ou Binomial para obter probabilidades. Uma variável discreta com muitos resultados possíveis exigiria um esforço muito grande na utilização de uma fórmula pra obtenção de probabilidades. Como uma variável contínua inclui, em seus resultados, valores tanto inteiros como não inteiros, não pode ser adequadamente descrita por uma distribuição discreta. Sendo assim abordagem mais conveniente é construir uma função densidade de probabilidade, ou curva de probabilidade, baseada na função matemática correspondente. DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE CONTÍNUA Algumas distribuições de probabilidade contínuas são a T-Studend, Qui-Quadrado e F-Snedecor Sendo a Distribuição Normal a mais importante das distribuições contínuas. Isto se deve ao fato da maioria dos fenômenos naturais ou dos processos práticos obedecerem a esta distribuição. Exemplos: a dispersão de medidas em uma produção seriada, as alturas das pessoas em uma população e vários outros fenômenos físicos. Distribuição Normal É mais importantes distribuição de probabilidade contínua, sendo aplicada em inúmeros fenômenos e utilizada para o desenvolvimento teórico da inferência estatística. É também conhecida como distribuição de Gauss, Lapalce ou Lapalce-Gauss. Seja X uma VAC, X terá distribuição normal se: 1 2 x 2 1 f ( x). e 2 onde os parâmetros e são respectivamente sua média e variância. Logo diz-se que N N(; 2 ) ou X: N(; 2 ). A distribuição Normal possui as seguintes características:

5 5 1. forma campanular, isto é, possui forma de sino, sendo simétrica em relação a média; 2. a variável aleatória pode assumir qualquer valor real; 3. a área total sob a curva é 1; porque essa área corresponde à probabilidade da variável aleatória assumir qualquer valor real; 4. possui dois pontos de inflexão; Parâmetros da distribuição - Média E(X) = ; - Variância Var(X) = 2 A configuração da curva é dada por dois parâmetros: a média e a variância. Mudando a média, muda a posição da distribuição. Mudando a variância, muda a dispersão da distribuição, conforme pode-se ver nas figuras a seguir: Duas distribuições normais de mesma variância e com médias diferentes Duas distribuições normais de mesma média e com variâncias diferentes Na prática é mais fácil trabalhar-se com uma transformação das variáveis. Esta nova variável denomina-se variável normal padronizada, ou reduzida. Sua média é 0 e seu desvio padrão, 1. Com esta transformação, basta construirmos uma única tabela, a da normal reduzida e, através dela, obtermos as probabilidades associadas a todas as distribuições X: N(; 2 ). Esta transformação é representada pela variável Z, a seguir: Z X z 2 N(0,1) f ( z). e 2 Desta forma a variável aleatória X transforma-se em variável normal reduzida Z, como podemos ver graficamente a seguir:

6 6 68,27% 95,45% 99,73% Vê-se que a nova origem é 0 e o desvio padrão é a unidade de medida. Essa transformação não altera a forma da distribuição, apenas refere-se a uma nova escala A tabela da distribuição normal fornece a probabilidade de Z tomar um valor não superior a Z 0 : P(Z Z 0 ). Tal probabilidade é representada pela área hachurada na figura a seguir: A importância da distribuição normal padronizada reside no fato de que ela encontra-se tabelada, facilitando o cálculo. Exercícios 1. Determinar área sob a curva normal padronizada à esquerda de 1, Determinar a área sob a curva normal padronizada abaixo de Z= - 0, Calcule as seguintes probabilidades: a) P(- 2,3 < Z < 0) = b) P( 1,50 < Z < 2,32) =

7 4. As alturas dos alunos de uma determinada escola são normalmente distribuídos com =1,60 m e = 0,30 m. Encontre a probabilidade de 1 aluno medir: a) Entre 1,50 e 1,80 m; 7 b) Mais de 1,75 m; c) Menos de 1,48m;

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Janete Pereira Amador 1

Janete Pereira Amador 1 Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman

Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL

ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL VARIÁVEIS ALEATÓRIAS Como já vimos no estudo das probabilidades, o conjunto de todos os possíveis resultados

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson

Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 5ª AULA: DISTRIBUIÇÃO DE PROBABILIDADE

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.

Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um

Leia mais

GABARITO DA AVALIAÇÃO 1 ESTATÍSTICA E PROBABILIDADES ENGENHARIA DE TELECOMUNICAÇÕES

GABARITO DA AVALIAÇÃO 1 ESTATÍSTICA E PROBABILIDADES ENGENHARIA DE TELECOMUNICAÇÕES GABARITO DA AVALIAÇÃO 1 ESTATÍSTICA E PROBABILIDADES ENGENHARIA DE TELECOMUNICAÇÕES 014-1 1- Ordene os dados. Indique o 1º, º e 3º quartil. Desenhe o diagrama de caixa. Calcule a média e a mediana dos

Leia mais

24/04/2017. Operações que podem ser aplicadas aos eventos

24/04/2017. Operações que podem ser aplicadas aos eventos Inferência estatística: processo de extrair conclusões de uma população inteira com base na informação de uma amostra A base para a inferência estatística é a teoria da probabilidade Evento: é o resultado

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Distribuição de Probabilidade Descreve a chance que uma variável pode assumir

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Distribuição de Probabilidade. Prof.: Joni Fusinato

Distribuição de Probabilidade. Prof.: Joni Fusinato Distribuição de Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou

Leia mais

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL

AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL Docente:

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Os exercícios a seguir são para resolver em sala

Os exercícios a seguir são para resolver em sala Os exercícios a seguir são para resolver em sala i) Uma mulher tem 1/3 de chance de ainda estar viva daqui a 30 anos e seu marido tem 2/5 de chance. Qual é a probabilidade de, daqui a 30 anos: a) Ambos

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Cap. 8 Distribuições contínuas e modelo normal

Cap. 8 Distribuições contínuas e modelo normal Estatística Aplicada às Ciências Sociais Seta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 8 Distribuições contínuas e modelo normal Variável aleatória discreta variável aleatória

Leia mais

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1).

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1). A distribuição normal Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f (x) =.e π. σ x µ. σ, x R Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ com

Leia mais

12 Distribuições de Probabilidades

12 Distribuições de Probabilidades 12 Distribuições de Probabilidades 12.1 Introdução Neste capítulo vamos dar continuidade ao estudo de probabilidades, introduzindo os conceitos de variáveis aleatórias e de distribuições de probabilidade.

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Métodos Quantitativos para a Gestão Ambiental Probabilidades e Distribuições Estatísticas Parte 1 (4/13) Luiz Carlos Estraviz Rodriguez

Métodos Quantitativos para a Gestão Ambiental Probabilidades e Distribuições Estatísticas Parte 1 (4/13) Luiz Carlos Estraviz Rodriguez Métodos Quantitativos para a Gestão Ambiental Probabilidades e Distribuições Estatísticas Parte 1 (4/13) Luiz Carlos Estraviz Rodriguez Distribuição de probabilidades Contexto O porquê desta aula Ao desenvolvermos

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

PARA A RESOLUÇÃO DO p-fólio, TENHA EM ATENÇÃO O SEGUINTE:

PARA A RESOLUÇÃO DO p-fólio, TENHA EM ATENÇÃO O SEGUINTE: Nome:... B.I. :... Nº de Estudante:... Curso:... Turma:... Unidade Curricular: Elementos de Probabilidade e Estatística... Código:..1037... Data:..9 de Julho de 009. Assinatura do Vigilante:... PARA A

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Distribuições Discretas de Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE Distribuições de Probabilidade

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Variável aleatória contínua: Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 13 de junho de 2018 Londrina 1 / 26 Esperança e variância de Y Função de distribuição acumulada

Leia mais

Aula 5. Variáveis Aleatórias Discretas

Aula 5. Variáveis Aleatórias Discretas Aula 5. Variáveis Aleatórias Discretas Definição formal : Variável aleatória é qualquer função definida em espaço Ω. Ω função é uma regra que para cada valor de domínio corresponde um valor de R R Definição

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Distribuição Normal Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES NORMAL Distribuição Normal É uma distribuição teórica de frequências onde

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

2. Distribuições amostrais

2. Distribuições amostrais 2. Distribuições amostrais USP-ICMC-SME 203 USP-ICMC-SME () 2. Distribuições amostrais 203 / 22 Amostra aleatória Notação. X: variável aleatória (v.a.). f(x; θ): função densidade de probabilidade (X contínua)

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Distribuições discretas de probabilidade

Distribuições discretas de probabilidade 4 Distribuições discretas de probabilidade x = número de respostas corretas x = número de chegadas pontuais Estatística Aplicada Larson Farber x = número de funcionários que alcançou a cota de vendas x

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II

UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda

Leia mais

Lucas Santana da Cunha 12 de julho de 2017

Lucas Santana da Cunha   12 de julho de 2017 DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Estatística I Aula 6. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 6. Prof.: Patricia Maria Bortolon, D. Sc. statística I Aula 6 Prof.: Patricia Maria Bortolon, D. Sc. VARIÁVIS ALATÓRIAS Variáveis Aleatórias xaminemos as seguintes situações: Um estudante que fez um teste do tipo verdadeiro ou falso está interessado

Leia mais

Distribuição de Probabilidade

Distribuição de Probabilidade Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os

Leia mais

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON

DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Distribuição Normal Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 de junho de 2018 Londrina 1 / 17 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Referências Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFinal 0,4

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)

Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam

Leia mais

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais