IND 1115 Inferência Estatística Aula 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "IND 1115 Inferência Estatística Aula 6"

Transcrição

1 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal A distribuição Lognormal é uma distribuição de probabilidade contínua usada para dados positivos. Esta distribuição é freqüentemente usada na modelagem do preço de ações e outros ativos financeiros, e também pode modelar o tempo até a ocorrência de um defeito de uma máquina. mbarros.com 3 A Distribuição Lognormal Como criar uma variável lognormal? Seja X ~ N(µ, σ ). Seja Y = exp(x). Então Y tem densidade Lognormal com parâmetros µ e σ. A densidade de Y pode ser facilmente encontrada pelos métodos usuais (por exemplo, o método do Jacobiano), e é dada por: ( log( y) µ ) f( y) =..exp onde y > 0 πσ y σ mbarros.com 4

2 A Distribuição Lognormal A Distribuição Lognormal Exemplo Lognormais com µ = 0.05 e 0.5 e σ = f( x, 0.05, 0.30) f( x, 0.5, 0.30) x 7 mbarros.com 5 Atenção: A distribuição Lognormal, ao contrário do que o nome indica, não significa a densidade do logaritmo de uma variável Normal, pois uma variável Normal admite valores negativos, onde o logaritmo não está definido. Uma variável aleatória com densidade Lognormal é encontrada tomando-se a exponencial de uma variável aleatória Normal! mbarros.com 6 Lognormal como modelo para o preço de uma ação Uma forma de descrever a incerteza sobre o preço de uma ação é supor que as variações no preço entre os instantes t e t+ t podem ser divididas em componentes, uma aleatória e a outra determinística, como a seguir: { ( µ σ )} S =.exp.. t t S + + t t Z t onde Z é uma variável N(0,) e µ e σ > 0 são parâmetros conhecidos. O parâmetro µ representa a taxa média de crescimento do preço ao longo do tempo. mbarros.com 7 Lognormal como modelo para o preço de uma ação Note que, se σ = 0, a evolução dos preços é puramente determinística, e então: S = t t St.exp { ( µ. + t) } Nesta expressão percebemos que a tendência determinística dos preços é crescente desde que µ > 0. Se σ > 0 então existe uma componente aleatória no comportamento dos preços. Esta componente aleatória é dada por uma variável aleatória N(0,), e assim o efeito desta variável pode ser o de atenuar o crescimento determinístico no preço, pois Z pode ser negativo. Note que a variável exp(z) é Lognormal. mbarros.com 8

3 Propriedades da distribuiçã ção Lognormal Teorema (média e variância da Lognormal) Se Y ~ Lognormal(µ, σ ) então: E(Y) = exp( µ + σ /) ( µ σ ) ( e ) σ VAR( Y ) = exp +. Demonstração faça em casa use a fgm de uma Normal. mbarros.com 9 Lognormal (para casa) Sejam Y e Y variáveis Normais independentes com médias 4 e e variâncias iguais a. Sejam X e X definidos como: X = exp(y ) e X = exp(y ). Defina uma nova variável W como: W = e. X. X a) Calcule E(W) b) Calcule VAR(W) 3 mbarros.com 0 Lognormal (para casa) Dicas: ) Se X tem densidade N(µ, σ ) então sua função geradora de momentos é: exp(µt + σ t /) ) Se U é uma variável qualquer então : VAR(U) = E(U ) - {E(U)} Não é necessário especificar completamente a densidade da variável W - você só precisa calcular sua média e variância. mbarros.com É uma distribuição conjunta para duas variáveis X e X, ambas Normais e, a princípio dependentes. A densidade conjunta é dada por: Onde R é: f ( x, x) =.exp. R π ( ρ ) σ ( ρ ) σ x µ x µ x µ x µ. ρ.. σ σ σ σ R = + mbarros.com

4 Esta densidade conjunta é chamada de densidade Normal com parâmetros µ, µ, ρ, σ, σ, onde µ e µ são números reais quaisquer, ρ está restrito ao intervalo (-,) e σ, σ são positivos. Se (X, X ) ~ N( µ, µ, ρ, σ, σ ) então: mbarros.com 3 A densidade marginal de X én(µ,σ ) A densidade marginal de X én(µ,σ ) As densidades condicionais também são Normais. A densidade condicional de X dado X = x é: σ ( X X = x)~ N µ + ρ.. ( x µ ), σ. ( ρ ) σ A densidade condicional de X dado X = x é: σ ( X X = x)~ N µ + ρ.. ( x µ ), σ. ( ρ ) σ mbarros.com 4 Dada uma densidade Normal bivariada, quais são as suas características mais importantes? Pr( a < X < b, c < X < d) é encontrada pela integral dupla da densidade Normal bivariada sobre os intervalos (a, b) e (c, d). A integral dupla sobre todos os valores de X e X da densidade Normal bivariada éum. O parâmetro ρ na densidade Normal é o coeficiente de correlação entre X e X. Se ρ = 0, X e X são descorrelatados, mas da expressão da densidade Normal bivariada podemos perceber que a densidade conjunta reduz-se ao produto das densidades marginais. Logo, no caso da distribuição Normal bivariada (e apenas nele!!!!), correlação zero é equivalente à independência entre as duas variáveis aleatórias. mbarros.com 5 mbarros.com 6

5 Os valores esperados das densidades condicionais são funções lineares. Por exemplo: EX ( X x). σ = = µ + ρ. x µ σ ( ) Note que este valor esperado é chamado de regressão de X em X e neste caso percebemos que a função de regressão é uma função linear de X. As variâncias das densidades condicionais são constantes, e não dependem do valor da variável em que se está condicionando. Por exemplo: ( ) VAR( X X = x ) = σ. ρ que não depende de X. Na verdade, quanto maior (em módulo) a correlação entre X e X, menor é a variância condicional (maior a informação que X trouxe para X ). mbarros.com 7 mbarros.com 8 Isto é, se a correlação entre as duas variáveis é grande (em módulo), o conhecimento de uma das variáveis (densidade condicional) implica numa redução substancial da incerteza (variância) da outra. Por outro lado, se a correlação entre as variáveis é pequena, o efeito de conhecer uma variável sobre a incerteza na densidade condicional é pequeno também, e a variância condicional está próxima da variância da variável "sozinha" ( variância da densidade marginal). No limite, se ρ = 0, as variáveis são independentes, e conhecer uma delas não traz qualquer informação sobre a outra variável. Sejam X ~ N(0, ) e X ~ N(0, 4). Escreva a densidade Normal bivariada neste caso em função de ρ e calcule as densidades condicionais quando ρ = 0.5, -0.5, 0, 0.8, Solução x x x x f( x, x) =.exp.. ρ.. + π()() ρ ( ρ ) mbarros.com 9 mbarros.com 0

6 Lembramos novamente que o caso ρ = 0 corresponde à independência entre X e X, pois neste caso a densidade conjunta anterior é apenas o produto das marginais, que são N(0,) e N(0,4). A densidade condicional de X dado X = x é Normal, com média e variância dadas por: EX ( x) = 0 + ρ.. ( x 0) =. ρ. x ( ) VAR( X x ) =.( ρ ) = 4.( ρ ) A densidade condicional de X dado X = x é Normal com média e variância dadas por: E( X x ) = 0 + ρ.. ( x 0 ) =. ρ. x () VAR( X x ) =.( ρ ) = ρ mbarros.com mbarros.com A próxima tabela exibe os valores das médias e variâncias condicionais para os valores de ρ especificados. ρ E(X x) VAR(X x) E(X x) VAR(X x) -0.8 (-.6)x 4(0.36) =.44 (-0.4)x (-.0)x 4(0.75) = 3.00 (-0.5)x (+.0)x 4(0.75) = 3.00 (+0.5)x (+.6)x 4(0.36) =.44 (+0.4)x 0.36 mbarros.com 3 Da tabela notamos que, a variância incondicional de X (quando X não é levado em consideração, ou quando as duas variáveis são independentes) é 4. Esta variância se reduz quando o coeficiente de correlação aumenta em módulo. A média condicional de X dado x não depende de x quando as variáveis são independentes, e é uma reta quando ρ 0. O coeficiente angular desta reta varia de acordo com o valor de ρ, podendo ser negativo ou positivo. Comentários semelhantes se aplicam à distribuição condicional de X dado x. mbarros.com 4

7 A seguir mostramos densidades Normais bivariadas com µ e µ = 0, σ = σ = (4) = 6 e ρ com diversos valores. ρ = -0.8 (Densidade ) Verifique e compare as curvas de nível destas densidades. mbarros.com 5 mbarros.com 6 ρ = -0.8 (Curvas de Nível são ELIPSES!) ρ = -0.8 (Densidade Condicional de X dado X ) mbarros.com 7 mbarros.com 8

8 ρ = -0.8 (Densidade Condicional de X dado X ) ρ = 0 (Densidade ) mbarros.com 9 mbarros.com 30 ρ = 0 (Curvas de Nível são CÍRCULOS) ρ = +0.8 (Densidade ) mbarros.com 3 mbarros.com 3

9 ρ = +0.8 (Curvas de Nível são ELIPSES!) Distribuição Normal bivariada (para casa) Num certo instante de tempo, as taxas de juros de 30 e 60 dias têm, conjuntamente, uma distribuição Normal bivariada com médias 6% e 6.8% ao ano, e desvios padrões 4% e 5% ao ano respectivamente. A correlação entre as taxas é 90%. Calcule: mbarros.com 33 mbarros.com 34 Distribuição Normal bivariada (para casa) a) A probabilidade da taxa de 30 dias estar entre 4% e 8%. b) A probabilidade da taxa de 60 dias estar entre 4% e 8%. c) A probabilidade da taxa de 30 dias estar entre 4% e 8% sabendo que a taxa de 60 dias está hoje em %. d) A probabilidade da taxa de 30 dias estar entre 4% e 8% sabendo que a taxa de 60 dias está hoje em 5%. e) A probabilidade da taxa de 60 dias estar entre 4% e 8% sabendo que a taxa de 30 dias está hoje em 8%. mbarros.com 35 Distribuição Normal bivariada (para casa) Fez-se uma pesquisa de preços de roupas masculinas num shopping center. Uma amostra dos produtos existentes revela que o preço das calças é uma variável Normal com média R$ 80 e desvio padrão R$ 30. O preço das camisas é, por sua vez, uma variável Normal com média R$ 60 e desvio padrão R$ 5. A correlação entre os preços de calças e camisas é 0.6. Calcule as seguintes probabilidades: a) De um par de calças custar entre R$ 60 e R$ 95. mbarros.com 36

10 Distribuição Normal bivariada (para casa) b) De um par de calças custar entre R$ 60 e R$ 95 sabendo que uma camisa custa R$ 75 nesta loja. c) De um par de calças custar entre R$ 60 e R$ 95 sabendo que uma camisa custa R$ 50 nesta loja. d) Qual é a distribuição condicional dos preços das camisas sabendo que o preço das calças é R$ 00? e) Qual é a distribuição condicional dos preços das camisas sabendo que o preço das calças é R$ 70? Distribuição Beta Definição (Função Beta) Sejam m e n > 0 (não necessariamente inteiros). A função Beta com argumentos m e n é definida por: / m n π m n o o β ( mn, ) = x ( x) dx= (sin θ) (cos θ) dθ Aqui usamos a transformação x = sin θ para obter a última integral do lado direito. mbarros.com 37 mbarros.com 38 Distribuição Beta Teorema - Propriedades da Funçã ção o Beta β(m, n) = β(n, m) Γ( m) Γ( n) β ( mn, ) = Γ(m+n) Esta última propriedade é importante por que relaciona as funções Gama e Beta, e será útil na derivação dos momentos da densidade Beta. mbarros.com 39 Distribuição Beta Definição (Densidade Beta) A densidade de probabilidade Beta deve ser aplicada a variáveis aleatórias definidas no intervalo [0,], e será importante no contexto de Estatística Bayesiana. A variável aleatória X tem densidade Beta(m, n), se sua densidade é: f x x x β ( mn, ) m n ( ) = ( ), 0 x, m,n > 0 mbarros.com 40

11 Distribuição Beta Distribuição Beta onde β(m, n) é a função Beta definida anteriormente. Note que, se m = n = a densidade Beta se reduz à Uniforme no intervalo (0,). Notação: X ~ Beta(m, n) Algumas densidades Beta Beta(,) Beta(,3) Beta(,) A densidade Beta é apropriada para modelar proporções, por causa do seu domínio (o intervalo (0,)) e também pela variedade de formas que a densidade pode assumir, de acordo com os valores especificados de m e n Beta(,) Beta(,3) mbarros.com 4 mbarros.com 4 Distribuição Beta Teorema - (Média e variância de uma v.a. Beta) Se X ~ Beta (m, n) então: E ( X ) m = m + n mn VAR( X ) = ( m+ n+ ) ( m+ n) Distribuição Beta Demonstração Segue do fato: k Γ ( k+ m) Γ ( m+ n) EX ( ) = Γ( m) Γ ( k+ m+ n) Para todo k inteiro mbarros.com 43 mbarros.com 44

12 Distribuição Beta e relação com a Uniforme(0,) Teorema Sejam X, X,..., X n variáveis aleatórias independentes com densidade Unif(0,). Seja Y r o r-ésimo maior número dentre os valores observados de X, X,..., X n. Então Y r tem densidade Beta com parâmetros r e n r +. Distribuição Beta e relação com a Uniforme(0,) Exemplo Um computador gera 0 números aleatórios uniformemente no intervalo (0,). Calcule a probabilidade de que o menor destes números será maior que 0.5. Solução Pelo teorema anterior, a densidade do menor dos 0 números é uma Beta com parâmetros e 0. Isto é, se Y denota este número temos: mbarros.com 45 mbarros.com 46 Distribuição Beta e relação com a Uniforme(0,) A densidade de Y é: ( ) Γ( ) () Γ( ) 0! ( ) ( ) 0( ) onde 0<y< Γ. 0 0!9! f y = y y = y = y A probabilidade deste número exceder 0.5 é: 9 Pr ( Y > 0.5) = 0( y) dy 0.5 Faça a mudança de variável: t = - y dt = - dy e se y 0.5, t 0.5 e se y, t 0. Logo: Pr ( Y > 0.5) = 0t ( dt) = 0 t dt = t = ( 0.5) = % Distribuição Beta (para casa) Considere uma amostra de tamanho n > 3 da densidade Uniforme(0,). Calcule, como função do tamanho da amostra, as seguintes probabilidades: a) De que o maior número na amostra exceda 0.8; b) De que o menor número na amostra seja menor que 0.. c) Faça um gráfico das probabilidades nos ítens a) e b) versus n. mbarros.com 47 mbarros.com 48

13 Distribuição Beta (para casa) Distribuição Beta (para casa) Um computador gera 6 números aleatórios uniformemente distribuídos no intervalo (0,). Calcule a probabilidade de que o menor destes números será maior que 0.. Calcule o valor esperado do menor destes números. Encontre a densidade do o. menor destes números e calcule a sua média e variância. Calcule a probabilidade de que o maior destes números exceda 0.6. Suponha que X tem distribuição Beta com parâmetros a e b. Mostre que Y = - X tem distribuição Beta com parâmetros b e a. mbarros.com 49 mbarros.com 50

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Modelos Lineares Generalizados - Família Exponencial

Modelos Lineares Generalizados - Família Exponencial Modelos Lineares Generalizados - Família Exponencial Erica Castilho Rodrigues 25 de Março de 2014 3 No modelo de Regressão Linear temos que onde Y i N(µ,σ 2 ) E(Y i ) = µ i = x T i β Yi são independentes;

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Processos de Poisson

Processos de Poisson Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Redes Complexas Aula 7

Redes Complexas Aula 7 Redes Complexas Aula 7 Aula retrasada Lei de potência Distribuição Zeta Propriedades Distribuição Zipf Exemplo Wikipedia Aula de hoje Distribuição de Pareto Medindo lei de potência Estimando expoente Exemplos

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

3 Dependência homogênea e heterogênea de cauda

3 Dependência homogênea e heterogênea de cauda 3 Dependência homogênea e heterogênea de cauda Neste trabalho, usaremos o conceito de dependência homogênea de cauda, introduzido na década de 60, em conjunto com o conceito de dependência heterogênea

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I Conceitos básicos Probabilidade Experiência aleatória Acontecimentos

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

2 CONCEITOS BÁSICOS DE PROBABILIDADE E ESTATÍSTICA

2 CONCEITOS BÁSICOS DE PROBABILIDADE E ESTATÍSTICA 22 2 CONCEITOS BÁSICOS DE PROBABILIDADE E ESTATÍSTICA 2.1. Introdução As propriedades físicas e mecânicas de solos e rochas são em geral naturalmente dispersas. Os métodos probabilísticos podem ajudar

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Modelos para dados de contagem

Modelos para dados de contagem O modelo de Poisson Sumário 1 Introdução 2 Regressão de Poisson Taxa de Incidência Inclusão de covariáveis Interpretação dos parâmetros 3 Exemplos 4 Superdispersão Dados de Contagem Podemos estar interessados

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Universidade Federal de Viçosa Departamento de Estatística

Universidade Federal de Viçosa Departamento de Estatística Universidade Federal de Viçosa Departamento de Estatística Prova Seletiva para o Programa de Pós-Graduação em Estatística Aplicada e Biometria. Nível Doutorado - 22/nov/2013 Nome: Assinatura:. Número do

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Distribuições de Probabilidade Conjuntas

Distribuições de Probabilidade Conjuntas Distribuições de Probabilidade Conjuntas 1. Duas variáveis aleatórias discretas Exemplo 1. No desenvolvimento de um novo receptor para transmissão digital de informação, cada bit é classificado como aceitável,

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista November, 5 Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Modelo de regressão estável aplicado a econometria

Modelo de regressão estável aplicado a econometria Modelo de regressão estável aplicado a econometria financeira Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio@ufpr.br 1 Objetivos

Leia mais

Avaliação e Desempenho Aula 18

Avaliação e Desempenho Aula 18 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x.

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x. Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções 1) Dada as funções de demanda p(x) = 40 x e de oferta p(x) = x 5, pede-se: a) O ponto

Leia mais

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas);

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); A duração de cada atividade na prática, contudo, pode ser diferente daquela prevista no projeto; Existem muitos fatores

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 4 O Processo Média-Móvel Muitas vezes, a estrutura auto-regressiva não é suficiente para descrever totalmente

Leia mais

6. Amostragem e estimação pontual

6. Amostragem e estimação pontual 6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I 2. o Ano/Gestão 2. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: 14231 05.06.2015 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a) 2.a) 3.a)

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

Introdução a Inferência Bayesiana

Introdução a Inferência Bayesiana Introdução a Inferência Bayesiana Helio S. Migon IM and COPPE - UFRJ migon@im.ufrj.br 2006 Conteúdo 1. Conceitos Básicos da Inferência 2. Distribuição a Priori 3. Sumariazação 4. Inferência Preditiva 1

Leia mais

Faturamento de Restaurantes

Faturamento de Restaurantes Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2016 1 / 29

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória

Leia mais

Exercícios Selecionados de Econometria para Concursos Públicos

Exercícios Selecionados de Econometria para Concursos Públicos 1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência

Leia mais

Análise de séries temporais financeiras

Análise de séries temporais financeiras Séries Temporais Financeiras Aula -1 Análise de séries temporais financeiras Em princípio, não haveria diferenças entre a análise de séries temporais financeiras e aquelas ocorrendo em outras áreas, como

Leia mais

Prof. MSc. David Roza José 1/44

Prof. MSc. David Roza José 1/44 1/44 Regressão Linear Objetivos: Familiarizar-se com estatística descritiva e distribuição normal; Saber como calcular coeficientes angular e linear da reta de melhor ajuste com regressão linear; Saber

Leia mais

Análise de Sobrevivência

Análise de Sobrevivência Análise de Sobrevivência Modelagem paramétrica Valeska Andreozzi 1 valeska.andreozzi@fc.ul.pt & Marilia Sá Carvalho 2 cavalho@fiocruz.br 1 Centro de Estatística e Aplicações da Universidade de Lisboa,

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais