Distribuições de Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Distribuições de Probabilidade"

Transcrição

1 Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Introdução Introdução Já vimos como caracterizar a distribuição de probabilidades de uma variável aleatória. Vamos estudar alguns tipos particulares de distribuições de probabilidades usadas numa grande diversidade de aplicações estatísticas. Distribuições discretas: distribuição de Bernoulli distribuição Binomial distribuição de Poisson Distribuições contínuas: distribuição Normal distribuição Lognormal (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

2 Distribuições Discretas Distribuição de Bernoulli Prova de Bernoulli Prova de Bernoulli Uma experiência aleatória que tem apenas dois resultados possíveis: S = Sucesso F = Fracasso é uma prova de Bernoulli, onde p = P(S) e q = 1 p = P(F) (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Distribuição de Bernoulli Distribuição de Bernoulli Seja X a v.a. que assume dois valores: o valor 1 quando o resultado da prova de Bernoulli é sucesso eovalor 0 quando o resultado é fracasso. Então a função de probabilidade de X é dada por: x 0 1 f X (x) 1 p p ou por f X (x) = { p x (1 p) 1 x, x = 0, 1 0, c.c. Definição Uma v.a. discreta com função de probabilidade assim definida diz-se que tem distribuição de Bernoulli de parâmetro p (0 p 1) E(X) =p Var (X) =p(1 p) =pq (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

3 Distribuições Discretas Considere-se a experiência aleatória caracterizada pelo seguinte: realizam-se n provas de Bernoulli em idênticas condições; cada prova tem apenas dois resultados possíveis: sucesso ou fracasso ; as provas são independentes umas das outras, isto é, o resultado de cada prova não influencia os resultados das restantes; as probabilidades de sucesso, p, e de fracasso, q = 1 p, mantêm-se inalteradas de prova para prova. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Definição Seja X on o de sucessos obtidos em n provas de Bernoulli. Então X tem distribuição Binomial de parâmetros n e p e a sua função de probabilidade é dada por: ( ) n p f X (x) = x x (1 p) n x, x = 0, 1, 2,..., n 0, c.c. Abreviadamente escreve-se: X B(n, p) E(X) =np Var (X) =np(1 p) =npq (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

4 Distribuições Discretas Exemplo OLuís joga o seguinte jogo: escolhe, ao acaso, um número de 1a6e em seguida lança 3 vezes um dado equilibrado com as faces numeradas de 1a6.Seonúmero escolhido pelo Luís sai x vezes (num total de 3 lançamentos) ele ganha x Euros. Em contrapartida, se onúmero escolhido pelo Luís nunca ocorre então ele perde 5 Euros. Determine o ganho médio do Luís ao jogar este jogo. Pretende-se calcular o valor esperado da v.a. Y Ganho do Luís (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Exemplo - cont. Considere-se também a v.a. X n o de vezes que ocorre o n o escolhido pelo Luís, em 3 lançamentos Cada lançamento é uma prova de Bernoulli onde o sucesso é: S saion o escolhido pelo Luís e a probabilidade de sucesso p = P(S) = 1 6 Então, X B(3, 1/6) (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

5 Exemplo - cont. Distribuições Discretas Para já vamos calcular a probabilidade de, em 3 lançamentos do dado, o n o escolhido pelo Luís ocorrer 2 vezes, i.e., P(X = 2). Sejam S i ocorre o n o escolhido pelo Luís no i ésimo lançamento F i não ocorre o n o escolhido pelo Luís no i ésimo lançamento De quantas maneiras pode ocorrer o acontecimento {X = 2}? i.e., num total de 3 lançamentos, de quantas maneiras se pode obter 2 vezeson o escolhido pelo Luís? ( 3 2 ) = 3 Então, P(X = 2) = P(SSF )+ P(SFS)+ P(FSS) S 1 S 2 F 3 SSF S 1 F 2 S 3 SFS F 1 S 2 S 3 FSS (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Exemplo - cont. Uma vez que os lançamentos são independentes, tem-se P(SSF) =P(S 1 S 2 F 3 )=P(S 1 )P(S 2 )P(F 3 )=p 2 (1 p) 1 = P(SFS) =P(S 1 F 2 S 3 )=P(S 1 )P(F 2 )P(S 3 )=p 2 (1 p) 1 = P(FSS) =P(F 1 S 2 S 3 )=P(F 1 )P(S 2 )P(S 3 )=p 2 (1 p) 1 = Logo, ( ) ( ) ( ) P(X = 2) =P(SSF )+P(SFS)+P(FSS) =3 p 2 (1 p) 1 = 3 ( ) ( ) 3 onde, 3 = éon 2 o de maneiras diferentes de se obterem 2 sucessos em 3 provas de Bernoulli e p 2 (1 p) é a probabilidade que corresponde a cada uma delas. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

6 Exemplo - cont. Distribuições Discretas Determinemos agora a função de probabilidade da v.a. Y. P(Y = 5) =P(X = 0) = ( 3 0 ( 3 P(Y = 1) =P(X = 1) = 1 ( 3 P(Y = 2) =P(X = 2) = 2 ( 3 P(Y = 3) =P(X = 3) = 3 )( ) ( ) 3 5 = )( ) 1 ( ) = )( ) 2 ( ) = )( ) 3 ( ) = y f Y (y) E(Y )= = (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas A distribuição de Poisson é usada para tratar fenómenos aleatórios que envolvem a contagem de ocorrências num dado intervalo, geralmente de tempo ou de espaço. Exemplos n o de chamadas telefónicas recebidas por uma empresa numa hora; n o de nós existentes num metro de tecido de uma peça acabada de fabricar; n o de clientes que entra numa loja de conveniência no período de almoço; n o de acidentes que ocorrem na A25 numa semana; n o de peixes doentes num metro quadrado de área de uma baía poluída. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

7 Distribuições Discretas Nem todos os fenómenos de contagem de ocorrências podem ser convenientemente modelados usando a distribuição de Poisson. No entanto, se: o número de ocorrências em determinado intervalo é independente do número de ocorrências noutro intervalo qualquer, não coincidente com o primeiro; a probabilidade de haver x ocorrências num intervalo de amplitude t, depende exclusivamente do n o x e da amplitude t. Isto é, considerando dois intervalos distintos mas com a mesma amplitude, são iguais as probabilidades de se registarem x ocorrências em cada um; a probabilidade de mais de uma ocorrência num intervalo suficientemente pequeno é aproximadamente igual zero, portanto desprezável; a probabilidade de haver exactamente uma ocorrência num intervalo suficientemente pequeno é aproximadamente proporcional ao tamanho do intervalo então, o número de ocorrências num intervalo qualquer de amplitude t, é uma variável aleatória X com distribuição de Poisson (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Se X tem distribuição de Poisson de parâmetro µ então a função de probabilidade de X é dada por { e µ µ x f X (x) = x!, x=0,1,2,... 0, outros valores Escreve-se abreviadamente X Po(µ) A média e a variância desta distribuição são iguais ao parâmetro µ: E(X) =µ e Var (X) =µ (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

8 Distribuições Discretas Sendo X n o de ocorrências num intervalo de amplitude t Se X tem distribuição de Poisson e se λ éonúmero médio de ocorrências por unidade, então µ = λt éonúmero médio de ocorrências num intervalo de amplitude t. Assim, f X (x) = e µ µ x x! = e λt (λt) x x!, x = 0, 1, 2, 3,... (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Discretas Exercício Suponhamos que os clientes entram num armazém àmédia de 60 por hora. Usando adequadamente a distribuição de Poisson: a) determine a probabilidade de que num intervalo de 5 minutos não entre ninguém no armazém; b) o intervalo de tempo tal que a probabilidade de que não entre ninguém no armazém durante o dito intervalo seja de 0.5. Sol: a)0.0067; b) Intervalo de aproximadamente 0.7 minutos. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

9 Distribuições Discretas Relação entre a e a A relação entre as duas distribuições pode expressar-se através da expressão seguinte: lim B(n, p) n (np = λ) Poisson(λ) O interesse prático de aproximar uma distribuição Binomial por uma de Poisson resulta do cálculo da função de probabilidade ser mais simples no segundo caso. Tal aproximação só é razoável quando n for grande (n 20) esó tem interesse quando a distribuição Binomial for assimétrica (np < 7). Se a distribuição Binomial for simétrica (ou quase simétrica), é mais prático aproxima-la pela distribuição Normal. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por: f X (x) = 1 σ (x µ) 2 2π e 2σ 2 onde µ e σ são os parâmetros da distribuição que obedecem a: σ>0 e <µ<+ Uma vez conhecidos estes parâmetros, a distribuição da v. a. X fica completamente definida e escreve-se X N(µ, σ 2 ) Tem-se E(X) =µ e Var (X) =σ 2 (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

10 Distribuições Contínuas Curva de Gauss O gráfico da função densidade de probabilidade de uma variável aleatória com distribuição N(µ, σ 2 ) é a famosa curva em forma de sino, também dita curva de Gauss ou curva normal, abaixo representada. Note que P(X <µ)=p(x >µ) (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Características da Curva de Gauss A curva é simétrica relativamente à recta vertical que passa pelo ponto (µ, 0); A curva prolonga-se de a + e nunca toca no eixo das abcissas (este eixo é uma assimptota); A curva tem dois pontos de inflexão de abcissas: µ σ e µ + σ; Aos intervalos (µ σ, µ + σ), (µ 2σ, µ + 2σ) e (µ 3σ, µ + 3σ) correspondem, respectivamente, 68%, 95% e 99.7% da área total sob a curva da função densidade: P(µ σ<x <µ+ σ) = P(µ 2σ <X <µ+ 2σ) = P(µ 3σ <X <µ+ 3σ) = (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

11 Distribuições Contínuas Curva de Gauss Distribuições normais com iguais desvios padrões mas com médias diferentes. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Curva de Gauss Distribuições normais com médias iguais mas com desvios padrões diferentes. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

12 Normal Padronizada Distribuições Contínuas Uma variável aleatória com distribuição normal de média zero e desvio padrão igual a um é dita uma variável aleatória normal estandardizada, reduzida ou padronizada: Z N(0, 1) Estandardização da v. a. X N(µ, σ 2 ) (mudança de origem e de escala): Z = X µ N(0, 1) σ Exemplo Seja X N(2, ). Calcule: P(X < 2.4) e P(1.8 < X < 2.5). Sol: P(X < 2.4) = e P(1.8 < X < 2.5) = (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Teorema da Aditividade da Teorema Sejam X 1, X 2,..., X n variáveis aleatórias independentes, cada uma com distribuição normal de média µ i e variância σi 2 (i=1,...,n). Então a variável aleatória X = a 1 X 1 + a 2 X a n X n com a i R (i = 1,..., n), tem distribuição normal de média µ X = a 1 µ 1 + a 2 µ a n µ n e variância σx 2 = a2 1 σ2 1 + a2 2 σ a2 nσn 2 (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

13 Distribuições Contínuas Teorema da Aditividade da Exemplo Suponha que o gestor de uma empresa desenvolve software por encomenda. Estudos recentes indicam que são 4 as fases principais da criação de um novo software. Os valores esperados (em dias) e o respectivo desvio-padrão são os indicados na tabela: Actividade Valor Esperado Desvio-Padrão Reunir com o cliente Desenhar o sistema 8 3 Fazerocódigo Testar o software Admita que o tempo gasto naquelas fases segue uma distribuição normal. Se assinar um contrato com um cliente que estipule uma grande penalização no caso de não entregar o software num período máximo de 40 dias calcule a probabilidade de pagar essa penalização. Sol.: (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Aproximação da à Normal Para n suficientemente grande, a distribuição binomial de parâmetros n e p pode aproximar-se à distribuição normal com a mesma média, np, e a mesma variância, npq. Isto é, sendo X uma v. a. com distribuição B(n, p) e n suficientemente grande, então, X E(X) = X np. N(0, 1) Var (X) npq Na prática fazemos esta aproximação quando n > 20 e tanto np como nq são superiores a 5. (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

14 Distribuições Contínuas Aproximação da à Normal Correcção de continuidade X B(n, p) e Y N(np, npq) P(X = k) = P(k 0.5 Y k + 0.5); P(X k) = P(Y > k 0.5); P(X > k) = P(Y > k + 0.5); P(a X b) = P(a 0.5 Y b + 0.5); P(a < X < b) = P(a Y b 0.5). (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Aproximação da à Normal Exemplo Um avião pode acomodar 300 passageiros, 30 dos quais em 1 a classe e 270 em classe turismo. A companhia aérea reservou 30 lugares em 1 a classe e 300 em turismo. Sabendo que a probabilidade de não comparecimento de quem faz reserva é de 0.15, qual éa probabilidade de que todos os passageiros que comparecem sejam acomodados, se os lugares em 1 a classe puderem ser utilizados pelos passageiros de turismo? Sol.: (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

15 Distribuições Contínuas Distribuição Lognormal Distribuição Lognormal Admita que X > 0 é uma variável aleatória contínua. Se X é uma variável aleatória cujo logaritmo é normalmente distribuído, isto é, Y = ln(x) N(µ, σ 2 ) então X tem uma distribuição lognormal e escreve-se X LN(µ X,σ 2 X ) A função densidade de probabilidade de X é dada pela expressão: ( ) f X (x) = 1 σ 1 2π x exp (ln(x) µ)2 2σ 2, 0 < x < +, <µ<+, σ>0 (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31 Distribuições Contínuas Distribuição Lognormal Distribuição Lognormal Tem-se ainda que e ) µ X = E(X) =exp (µ + σ2 2 σ 2 X = Var (X) =exp (2 ( µ + σ 2)) exp (2µ + σ 2) A distribuição lognormal é assimétrica à direita sendo a sua moda e mediana dadas, respectivamente, por η X = exp(µ) e ξ X = exp (µ σ 2) (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

16 Distribuições Contínuas Distribuição Lognormal Distribuição Lognormal A sua função densidade de probabilidade de uma distribuição lognormal tem o seguinte aspecto: Se X LN(µ X,σX 2 ) prova-se que Y = ln(x) tem valor médio e variância dados por: ) ) µ Y = 1 2 ln ( µ 4 X σ 2 X + µ2 X e σ 2 Y = ln ( σ 2 X µ 2 X + 1 (DepMAT ESTV) Distribuições de Probabilidade 2007/ / 31

Distribuições de probabilidade

Distribuições de probabilidade Distribuições de probabilidade Distribuições contínuas Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT)

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu

Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 Departamento de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 3 o Teste 4/6/2005 9h O Teste que vai realizar tem a duração total

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Modelos Probabiĺısticos Discretos

Modelos Probabiĺısticos Discretos Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

S I M U L A Ç Ã O 84

S I M U L A Ç Ã O 84 S I M U L A Ç Ã O 84 - 1 - Elabore uma rotina que lhe permita gerar números pseudo-aleatórios (NPA) com distribuição X ( f X ( x ) representa a função de densidade de probabilidade de X e F X ( x ) representa

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Ano Lectivo 2006/2007 Ficha nº5

Ano Lectivo 2006/2007 Ficha nº5 Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

Considere a variável aleatória Xi associada ao passo i do Sr. Bebetudo:

Considere a variável aleatória Xi associada ao passo i do Sr. Bebetudo: Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2008/2009 Ficha nº 4 1. O Sr Diogo das Contas é um contabilista com reputação. Dos últimos 20 clientes a quem ele tratou dos impostos,

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS Dada uma experiência aleatória Ei e um conjunto de resultados associado a essa experiência, define-se variável aleatória como uma regra bem definida (ou seja, como uma função) que

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

PROBABILIDADE & ESTATÍSTICA

PROBABILIDADE & ESTATÍSTICA PROBABILIDADE & ESTATÍSTICA Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar PROBABILIDADE & ESTATÍSTICA VARIÁVEIS ALEATÓRIAS DISTRIBUIÇÕES DE PROBABILIDADE Lilian

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais