MATEMÁTICA FINANCEIRA E INSTRUMENTOS DE GESTÃO

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA FINANCEIRA E INSTRUMENTOS DE GESTÃO"

Transcrição

1 MATEMÁTICA FINANCEIRA E INSTRUMENTOS DE GESTÃO LICENCIATURA EM GESTÃO [LGE103] EXERCÍCIOS #2 [Matemática Financeira] FACULDADE DE ECONOMIA DO PORTO

2 Exercício 1 Uma taxa de juro anual nominal capitalizável semestralmente de 8% equivale a: a) Uma taxa de juro anual efectiva de 8,16%. b) A uma taxa efectiva de 4,0% ao semestre. c) A uma taxa efectiva de 1,9804% ao trimestre. d) ***Todas as alíneas anteriores estão certas. Taxa semestral efectiva = 8%/2 = 4% Taxa anual equivalente = (1+4%) 2-1 = 8,16% Taxa trimestral equivalente = (1+4%) 0,5-1 = 1,9804% Exercício 2 Uma taxa de juro anual nominal capitalizável continuamente de 10% equivale a: a) ***Uma taxa de juro semestral efectiva de 5,127%. b) A uma taxa efectiva de 5,000% ao semestre. c) A uma taxa anual efectiva de 10,250%. d) Todas as alíneas anteriores estão certas. e 10% = (1+ r) 2, donde r = 5,127%. Notar que taxa anual efectiva é 10,5169% = (1+5,127%)2-1. Exercício 3 Na data de aposentação, um seu cliente tem de optar entre dois planos de reforma: uma anuidade de durante 20 anos vencendo-se a primeira daqui a um ano (Plano A); e um pagamento único de liquidado hoje (Plano B). Qual o plano que permite ao seu cliente aceder a um maior valor actual? a) O plano B, se a taxa de juro anual efectiva for 6%. b) ***O plano A, se a taxa de juro anual efectiva for 5%. c) O plano A, se a taxa de juro anual efectiva for 10%. d) Os planos são indiferentes, se a taxa de juro anual efectiva for 7%. VA(50 000; 20; 6%) = > VA(50 000; 20; 5%) = > VA(50 000; 20; 10%) = < VA(50 000; 20; 7%) = > [Taxa de indiferença é 7,7547%] Exercício 4 Qual dos seguintes montantes é mais próximo do valor final correspondente a investir por 14 meses a uma taxa de juro anual nominal de 6% capitalizável mensalmente? a) b) /18

3 c) d) *** Taxa mensal efectiva=(1+r/m) m -1 = [1+(0,06/12)] 12-1 = 0, Valor final = 5 000(1+0, ) 14/12 = 5 361,61 Exercício 5 A Shock Tech, é uma nova empresa de prestação de serviços de informática, cujas receitas correntes são de 0,5 milhões de euros por ano. Espera-se que as receitas venham a crescer à taxa de 20% ao ano durante os próximos 5 anos, e que depois disso cresçam ao ritmo de 3% ao ano. Qual o valor actual dos receitas futuras da empresa se a taxa de desconto apropriada for de 12%? a) 8,08 milhões de euros. b) ***11,7 milhões de euros. c) 4,22 milhões de euros. d) milhões de euros. Anos 1-5: (0,50(1,2) 1 /(1,12) 1 + (0,50(1,2) 2 /(1,12) 2 + (0,50(1,2) 3 /(1,12) 3 + (0,50(1,2) 4 /(1,12) 4 + (0,50(1,2) 5 /(1,12) 5 = 0, , , , ,70597 = 3,08955 Anos 6- : [(0,50(1,2) 5 (1,03)/(0,12-0,03)]/(1,12) 5 = (1,28148/0,09)/(1,12) 5 = 8,07943 Total: = 11,16898 Exercício 6 Um investidor aplicou EUR 100 num dado activo financeiro em Esse activo não pagou rendimentos durante todo o período do investimento. O investidor procedeu à sua alienação em por EUR 115. Por afirmar-se: a) Que a sua rendibilidade média anual foi de 15%. b) ***Que o retorno médio anual obtido, em termos geométricos, foi de 4,769%. c) Que o retorno médio anual obtido, em termos aritméticos, foi de 4,769%. d) Que o retorno médio anual obtido, em termos contínuos, foi de 13,976%. 100(1+R) 3 =115, donde R = 4,769%. Exercício 7 Admita que pretende aconselhar um seu cliente a fazer um depósito bancário com uma taxa de rendibilidade projectada de 3 por cento ao ano. O seu cliente pretende saber quanto terá (previsivelmente) acumulado ao fim de 7 anos, se investir um capital de EUR a) EUR b) ***EUR c) EUR d) EUR /18

4 EUR = EUR (1+3%) 7. Exercício 8 Tudo o resto constante, pode afirmar-se que: a) O valor actual de uma perpetuidade é tanto maior quanto maior o prazo de vencimento. b) ***O valor actual de uma dívida é tanto menor quanto maior a taxa de juro. c) O valor actual de um crédito é tanto menor quanto menor a taxa de juro. d) Quanto maior a inflação maior o valor actual de um pagamento futuro. Exercício 9 O Senhor Endividado contraiu um empréstimo de EUR por 3 anos, acumulando juros à taxa efectiva de 5% ao ano. Como no vencimento se encontrava com dificuldades financeiras, negociou o adiamento da amortização para data mais oportuna, passando a taxa a ser de 7,5% ao ano. À medida que foi recuperando passou a liquidar o empréstimo, tendo pago EUR 2500 no final do 1º ano, EUR 3000 no final do segundo ano e EUR 4000 passados dois anos e meio. Passados 3 anos pretende liquidar o remanescente. Qual a quantia a pagar? a) EUR 500. b) EUR c) ***EUR d) EUR Quantia em dívida na data do adiamento = (1+5%) 3 = , 25. Donde: ,25 = 2500(1+7,5%) (1+7,5%) (1+7,5%) -2,5 + X(1+7,5%) -3. X = Exercício 10 A taxa de juro anual nominal praticada por uma instituição de crédito é de 2,0 %. Podemos afirmar que: a) Se a capitalização for mensal, a taxa de juro efectiva trimestral é de 0,5 %. b) Se a capitalização for semestral, a taxa de juro efectiva trimestral é de 0,5 %. c) ***Se a capitalização for trimestral, a taxa de juro efectiva trimestral é de 0,5 %. d) Se a capitalização for anual, a taxa de juro efectiva trimestral é de 0,5 %. 2 % / 4 = 0,5 %. Exercício 11 O Sr. A fez um depósito num banco no valor de Sabendo que a taxa de juro anual efectiva praticada pelo banco é de 2,25%, daqui a 5 anos o Sr A terá na sua conta: 4/18

5 a) 5562,5. b) ***5588,4. c) 5542,5. d) 5572, (1 + 2,25%) 5 = 5588,4. Exercício 12 O Sr. A fez um depósito num banco no valor de Sabendo que a taxa de juro nominal anual praticada pelo banco é de 2% e que o depósito capitaliza semestralmente, daqui a meio ano o Sr A terá na sua conta: a) 5049,75. b) 5051,5. c) d) *** (1 + 2% / 2) = Exercício 13 A D. Rosa fez hoje um depósito o qual lhe irá permitir receber daqui a 1 ano e meio o valor de Como a taxa de juro anual efectiva em vigor é de 1,75 % o valor do depósito efectuado é de: a) 975. b) 976,563. c) ***974,313. d) 975, (1 + 1,75%) -3/2 = 974,313. Exercício 14 Um cliente de um banco solicitou um empréstimo para construção de casa própria, tendo acordado para a fase de construção as seguintes condições: - montante global do empréstimo de , o qual é entregue ao cliente parcelarmente. As entregas são semestrais e correspondem a 20% do montante global (a primeira entrega ocorre no momento 0); - taxa de juro anual nominal com capitalização mensal de 4,5%; - pagamento mensal dos juros devidos; - início do processo de amortização do capital decorrido um ano após a realização da última transferência pelo banco. A taxa de juro mensal efectiva praticada pelo banco é de: a) 0,38 %. b) 0,407%. c) ***0,375%. 5/18

6 d) 0,42%. 4,5% / 12 = 0,375%. Exercício 15 Na situação descrita no Exercício 14, no momento em que o cliente inicia a amortização do capital, o valor da dívida perante o banco é de: a) b) *** c) d) Como os juros são sempre pagos, o valor em dívida no momento em que inicia a amortização do capital é o valor inicial da dívida. Exercício 16 Na situação descrita no Exercício 14, até ao momento em que o cliente inicia a amortização do capital, o maior juro mensal pago foi de: a) 112,5. b) 225. c) 750. d) ***562,5. O maior juro mensal pago é o resultante do total do capital em dívida: (1 + 0,375%) = 562,5 Exercício 17 Na situação descrita no Exercício 14, até ao momento em que o cliente inicia a amortização do capital o montante total de juros pagos pelo cliente ao banco foi de: a) *** b) c) d) *30000*0,375% + 6*60000*0,375% + 6*90000*0,375% + 6*120000*0,375% + 12*150000*0,375% = Exercício 18 Na situação descrita no Exercício 14, o cliente inicia a amortização do capital no momento (mês): a) 30. b) 35. c) ***36. 6/18

7 d) 37. Exercício 19 Na situação descrita no Exercício 14, a partir do momento em que se inicia a amortização do capital foi acordado que o processo teria uma duração de vinte anos, em prestações mensais constantes, a uma taxa de juro mensal efectiva de 0,35%. O valor da prestação mensal paga pelo cliente é: a) ***921,630. b) 625. c) 850. d) 965, *(1+0,35%) -1 *0,35% / (1 1, ) = 921,630 ou PMT(0,35% ; 240 ; *(1+0,35%)^(-1)) = 921,630 Exercício 20 O Sr. ABC contraiu um empréstimo no valor de , o qual irá ser pago em 240 prestações postcipadas, iguais e mensais. A taxa anual nominal é de 1,8%. O valor da prestação a pagar é de: a) 833,(3). b) 902,245. c) 997,663. d) ***992,932. Tx efectiva mensal = 1,8% / 12 = 0,15% *0,15% / ( 1 1, ) = 992,932 ou PMT(0,15% ; 240 ; ) = 992,932 Exercício 21 O Sr. ABC contraiu um empréstimo no valor de , o qual irá ser pago em 240 prestações postcipadas, iguais e mensais. A taxa anual nominal é de 1,8%. O valor total dos juros pagos durante todo o processo de amortização é de: a) b) ***38 303,7. c) ,5. d) ,2. 240*992, = 38303,7. Exercício 22 Aquando do falecimento do avô, o Netinho recebeu uma herança de EUR que o seu pai e tutor aplicou à taxa de juro efectiva de 10% ao ano. Passados três anos, faleceu 7/18

8 a avó deixando uma herança de EUR Sabendo que quando o avô faleceu o netinho tinha 8 anos e que as taxas de juro não sofreram alterações, responda: a) Quem deixou maior herança, o avô ou a avó? b) Verifique se o pecúlio acumulado quando o Netinho perfizer 18 anos chegará aos EUR tidos como necessários para fazer face às suas despesas de formação numa prestigiada universidade? a) FV 3 (PV = EUR ) = EUR x (1 + 10%) 3 = EUR PV (FV 3 = EUR ) = EUR x (1 + 10%) -3 = EUR b) Valor futuro da herança da avó: EUR x (1 + 10%) 7 = EUR ,25. Ou : EUR x (1 + 10%) 10 = EUR ,25. Valor futuro da herança do avô: EUR x (1 + 10%) 7 = EUR ,22 Valor acumulado total: EUR ,25 + EUR ,22 = EUR ,47. Ou : EUR x (1 + 10%) 7 = EUR ,47. Donde: EUR ,47 > EUR Exercício 23 A Empresa da Luz, SA pratica actualmente (data zero) um dividendo de EUR 1,5 por acção. Os analistas esperam que o dividendo da empresa venha a crescer eternamente a um ritmo de 3 por cento ao ano. A taxa de juro anual efectiva adequada ao perfil de risco desta empresa, segundo os mesmos analistas, é de 9 por cento. a) Qual o dividendo esperado para o ano 5? b) Qual o valor actual dos dividendos da empresa? c) Qual o valor actual dos dividendos, considerando apenas os dividendos a distribuir nos próximos 50 anos? a) D(0) = 1,5 D(1) = 1,5x(1+3%) = 1,55 D(2) = 1,5x(1+3%) 2 = 1,59 D(3) = 1,5x(1+3%) 3 = 1,64 D(4) = 1,5x(1+3%) 4 = 1,96 D(5) = 1,5x(1+3%) 5 = 1,74 b) 1,55/(9%-3%) = 25,75. 8/18

9 c) PV(50 anos) = [1,55/(9%-3%)]x[1-((1+3%)/(1+9%)) 50 ] = 24,23. Exercício 24 O Senhor João é titular de uma poupança de EUR , mas planeia atingir um valor de EUR , fazendo aplicações com uma taxa de juro efectiva de 20% ao ano. 1) Quantos anos demora a empresa a atingir o seu objectivo? 2) Se o Senhor João atingir o seu objectivo em 10 anos, a que taxa de juro aplicou as suas poupanças? 1) = x (1+20%) n n = ln( / )/ln(1+20%) = 5,026. 2) = x (1+R) 10 R = 9,60%/ano. Exercício 25 O Senhor Sortudo acaba de ganhar uma lotaria no valor de EUR Depois de muito pensar decidiu proceder à sua aplicação num depósito bancário, com um prazo de 10 anos, vencendo juros à taxa efectiva de 10 por cento. (i) Na hipótese de os juros serem automaticamente capitalizados, responda: a) Qual o valor acumulado na data de vencimento? b) Qual o valor acumulado no início do oitavo ano? c) Qual o montante total dos juros de juros? d) Qual o montante dos juros de juros gerados no quinto ano? (ii) Qual o valor acumulado do capital do Senhor Sortudo, no caso de não haver lugar à capitalização automática de juros, mas havendo lugar à aplicação (numa outra aplicação) dos juros libertos à taxa anual efectiva de 8 por cento? (i) a) VF = (1+10%) 10 = b) Início do 8 ano igual a fim do 7º ano. Donde: VF (7) = (1+10%) 7 = Alternativa: VF(8)(1+10%) -1 = (1+10%) 8 (1+10%) -1 = c) Juros de Juros = x 10% x10 = /18

10 d) VF(4) = (1+10%) 4 = Juros Acumulados até final de 4 = = Juros de Juros (5) = x 10% = (ii) Retirando os juros mal se vencem no depósito 1, significa que no final apenas lá está o capital. O outro depósito equivale ao valor futuro de uma anuidade de [= x 10%] e um prazo de 10 anos. VF (A=10) = *((1+8%) 10-1)/8% = Capital = Total = = Exercício 26 A Senhora Dona deseja comprar uma casa nova. O valor da casa é de EUR e será totalmente financiada com um empréstimo bancário à taxa de juro nominal de 5% ao ano. Responda: 1) Se o prazo do empréstimo for 30 anos, quanto será a mensalidade? 2) Se a mensalidade for de EUR 1000 quantos anos demora a pagar a casa? 3) Admita que a senhora prevê poder pagar EUR 2000 por mês, excepto em Dezembro e Agosto, altura em que gasta todo o seu rendimento. Qual a mensalidade e o prazo que deve acordar com o banco? 1) PMT (5%/12; 30; ) = EUR ) NPER (5%/12; ; ) = 431 meses (36 anos). 3) 1º Passo VA(S) = PV(5%/12; 11; ) 2000 x (1+5%/12) -8 = EUR EUR 935 = EUR º Passo Mensalidade equivalente = PMT (5%/12; 12; ) = EUR º Passo N = NPER (5%/12; 1672; ) = 166 meses (14 anos). Exercício 27 Imagine que é um consultor financeiro que foi abordado por um cliente que lhe pediu ajuda para definir a sua estratégia financeira pessoal. Ele tem poupanças no valor de EUR depositadas num banco; tem 55 anos; e espera trabalhar mais 10 anos, obtendo um rendimento de EUR por ano. A taxa de juro anual efectiva é de 5%. 10/18

11 a) O seu cliente pretende preparar-se para, durante a sua reforma, gastar EUR por ano. As estimativas actuariais apontam para uma esperança de vida de 90 anos. Quanto é que ele necessita de ter no banco na data em que se reformar? b) Quanto é que ele necessita de poupar em cada ano nos próximos 10 anos de modo a suportar o nível de vida que pretende ter na reforma (gasto de EUR por ano). c) Assuma que as taxas de juro efectivas declinarão para 4 por cento ao ano dentro de 10 anos a contar de agora. Quanto é que o seu cliente tem de reduzir nas suas despesas anuais de consumo durante o período de reforma, assumindo que ele que ele cumprirá o plano de poupança que lhe sugeriu na alínea b). a) Montante que necessita de ter no banco para suportar as despesas anuais de EUR durante 25 anos = EUR b) Valor Futuro das poupanças existentes no banco = EUR Quanto precisa de acumular até à reforma = EUR EUR = EUR Poupança Anual Necessária para Obter EUR = EUR c) Se a taxa de juro cai após o 10º ano. A anuidade máxima que consegue obter com os EUR que terá acumulados dentro de 10 anos (data da reforma) é = EUR Donde, o seu consumo terá de baixar de EUR para EUR , isto é, terá de baixar EUR Exercício 28 Suponha que pretende solicitar financiamento bancário por dois anos. O Banco A oferece-lhe um empréstimo à taxa de 7,4% ao ano com pagamento anual de juros. O Banco B oferece-lhe um empréstimo pelo mesmo período à taxa nominal de 7,175% ao ano, com pagamento mensal de juros. Qual o banco com que fará o empréstimo? (1+7,175%/12) 12-1 = 7,416%>7,4%, donde prefere o Banco A. Taxa anual efectiva Banco A (7,4%) < Taxa anual efectiva do Banco B (7,416%). Exercício 29 Determine as taxas de juro anuais das seguintes operações: a) Pede um empréstimo de 900 e promete pagar 972 daqui por um ano; b) Empresta 900 e recebe a promessa de receber 972 ao fim de um ano. c) Pede emprestado e promete pagar ao fim de 15 anos. d) Pede hoje um empréstimo no valor de e promete efectuar pagamentos anuais de 2.487,22 ao ano durante 7 anos, a começar daqui a um ano. 11/18

12 a) 972/900-1 = 8%; b) 972/900-1 = 8%; c) (1+R) 15 = , donde R = 11%; d) 13%. Exercício 30 O Senhor Endividado contraiu um empréstimo de EUR por 5 anos, acumulando juros à taxa efectiva de 5% ao ano. a) Admitindo que foi estipulado que os juros vencidos em cada ano eram imediatamente pagos, construa uma tabela onde se evidencie o juro vencido todos os anos, o capital em dívida e os pagamentos a efectuar pelo devedor. b) Admitindo que foi convencionado um pagamento único a efectuar no final dos 5 anos, construa uma tabela onde se evidencie o juro vencido todos os anos, o capital em dívida e os pagamentos a efectuar pelo devedor. c) No cenário da alínea a), suponha que ao fim de 3 anos (imediatamente após o pagamento correspondente a esse ano) o devedor solicita o reembolso antecipado dos seus compromissos. Suponha ainda que devedor e credor acordaram, para o efeito, numa taxa de desconto efectiva de 8% ao ano. Qual o montante a pagar? E se tivessem acordado uma taxa de desconto efectiva de 5% ao ano? E se essa taxa efectiva for de 3% ano? d) No cenário da alínea b), admita que o devedor, para satisfazer o pagamento a que se comprometeu, decidiu depositar, no final de cada ano, uma certa quantia num fundo de amortização (sinking fund), rendendo juros à taxa efectiva de 3% ao ano. Quanto é que deposita cada ano? Construa uma tabela que descreva o plano do fundo de amortização. Ver Excel Exercício 31 O Senhor Endividado contraiu um empréstimo de EUR por 5 anos, acumulando juros à taxa efectiva de 5% ao ano. a) Suponha que foi estipulado um regime de pagamentos constantes, isto é, com amortização periódica pelo chamado «sistema francês», construa uma tabela onde se evidencie o juro vencido todos os anos, o capital em dívida e os pagamentos a efectuar pelo devedor (distinguindo a quota-juro da quota-capital). b) Suponha que foi estipulado um regime de reembolsos constantes, construa uma tabela onde se evidencie o juro vencido todos os anos, o capital em dívida e os pagamentos a efectuar pelo devedor (distinguindo a quota-juro da quota-capital). c) No cenário da alínea a), suponha que ao fim de 3 anos (imediatamente após o pagamento correspondente a esse ano) o devedor solicita o reembolso antecipado dos seus compromissos. Suponha ainda que devedor e credor acordaram, para o efeito, numa taxa de desconto efectiva de 8% ao ano. Qual o montante a pagar? E se tivessem acordado uma taxa de desconto efectiva de 5% ao ano? E se essa taxa efectiva for de 3% ano? c) No cenário da alínea b), suponha que ao fim de 3 anos (imediatamente após o pagamento correspondente a esse ano) o devedor solicita o reembolso antecipado dos seus compromissos. Suponha ainda que devedor e credor acordaram, para o efeito, 12/18

13 numa taxa de desconto efectiva de 8% ao ano. Qual o montante a pagar? E se tivessem acordado uma taxa de desconto efectiva de 5% ao ano? E se essa taxa efectiva for de 3% ano? Ver Excel Exercício 32 Uma sociedade de crédito ao consumo concede um empréstimo de O empréstimo será reembolsado em 4 anos em prestações mensais de 130 (a primeira um mês depois do desembolso). Qual o valor da TAEG? Exercício 33 Uma empresa de aluguer de automóveis compra os veículos ao importador para de imediato os arrendar a clientes em contratos de 4 anos. O preço corrente de cada veículo é de e a empresa espera vendê-los no fim dos contratos por Os clientes pagam uma renda anual antecipada que aumenta 750 por ano. Qual deve ser o valor da primeira renda para gerar uma TIR de 15% por ano para a empresa? Exercício 34 Um empréstimo obrigacionista de 5 milhões de euros foi emitido e reembolsado pelo mesmo montante 3 anos depois. A taxa de juro foi 8% ao ano, sendo os juros pagos em cada data de aniversário da emissão. O IPC assumiu os seguintes valores nas seguintes datas: Data da emissão 307 Um ano depois 322 Dois anos depois 332 Três anos depois 345. Qual a TIR real da emissão? Exercício 35 Uma empresa obteve um empréstimo de de um banco. O empréstimo deve ser reembolsado em 5 prestações anuais iguais, a primeira das quais um ano após o desembolso. As prestações são calculadas a uma taxa de juro anual efectiva de 10%. 13/18

14 a) Calcule o valor de cada prestação e os juros totais nos 5 anos de vida do empréstimo. b) Imediatamente após o segundo pagamento, a empresa pediu ao banco para reescalonar o reembolso por forma a que ele ocorresse ao longo dos próximos 5 anos. O banco concordou na condição de a taxa de juro passar a ser de 12% anual efectiva e ainda de os pagamentos serem feitos no fim de cada trimestre. i. Calcule o valor da nova prestação trimestral. ii. Qual o valor da componente juros da segunda prestação trimestral? Exercício 36 Um promotor imobiliário vai construir um bloco de apartamentos, o que demorará 6 meses. O promotor terá de pagar ao empreiteiro 2 milhões de euros no início do projecto e depois euros no final de cada um dos seis meses que durará a construção. O promotor espera receber euros de rendas no início do 7 mês e do cada um dos meses subsequentes. O promotor espera suportar euros de custos anuais de manutenção e de gestão, pagáveis mensalmente com início no fim do 7 mês. a) Se bloco for vendido cinco anos após o início do projecto, qual deve ser o preço de venda para gerar uma TIR anual de 15%? b) Se o preço de venda for na realidade o calculado em a) e a taxa de inflação for de 3% ao ano, qual será o valor da TIR real apurada pelo promotor? Exercício 37 Um investidor isento de impostos ganhou numa lotaria e decidiu investir o dinheiro por 20 anos. Gastou metade (A) num investimento que rende 3000 por semestre durante 20 anos, começando 6 meses depois do prémio. A outra metade do prémio é investida num título do Tesouro (investimento B) que paga dentro de 20 anos ("cupão 0"). Seis meses depois do prémio o investidor compra um contrato (investimento C) que paga dentro de 19 1/2 anos a troco de pagamentos regulares de 6000 por ano começando na data de compra do contrato. 14/18

15 a) Calcule a TIR do investimento A. b) Calcule a TIR do investimento B. c) Calcule a TIR do investimento C. d) Calcule a TIR do investimento global. Exercício 38 Uma senhora investe 5000 no primeiro dia de cada trimestre, começando em 1 de Janeiro de 2004, numa conta poupança que vence juros a uma taxa nominal de 3% por ano com capitalização mensal. Ela também levanta 250 no primeiro dia de cada mês, começando em 1 de Fevereiro de Quanto dinheiro terá ela na conta em 31 de Dezembro de 2006? Exercício 39 Um empréstimo é reembolsado em 3 anos através de pagamentos de 200, 300 e 400 euros no fim de cada mês durante os primeiro, segundo e terceiro anos respectivamente. A taxa de juro efectiva mensal do empréstimo é 0,5%. Decomponha o 15 pagamento em capital e juros. Exercício 40 Um indivíduo contrai um empréstimo de em 1 de Janeiro de 2005 que reembolsa através de pagamentos anuais com início em 1 de Julho de 2010 e fim em 1 de Julho de Calcule a TAEG supondo que: a) o primeiro pagamento é de e os subsequentes crescem 7,5% ao ano. b) o primeiro pagamento é de e os subsequentes crescem 500 por ano. Exercício 41 Um investidor está a considerar a compra de um edifício, onde se encontra a sede de uma companhia de seguros, por 3 milhões de euros. A renda é paga por essa companhia no início de cada ano e é aumentada de 5 em 5 anos. O último aumento ocorreu há 3 15/18

16 anos e fixou a renda actual ( EUR). O próximo aumento será dentro de 2 anos, o seguinte de 7, etc. Ao fim de 42 anos a propriedade regressa ao proprietário original. O investidor estima ir ser necessário gastar EUR seis meses após a compra na remodelação do centro, não sendo depois requerido qualquer outro investimento. O investidor pretende obter uma taxa de rentabilidade de 10% por ano. Mostre que se os aumentos de renda forem sempre à mesma taxa essa taxa é de 22,04%. Exercício 42 O Sr. Esteves efectuou há dois anos um depósito a prazo de , que capitalizava semestralmente. Na altura, a taxa de juro semestral em vigor era de 1,4% mas hoje, passados dois anos, a taxa de juro semestral diminuiu para 1,25%. Considerando que não se prevê que a taxa vá sofrer alterações, quanto dinheiro deverá receber o Sr. Esteves ao levantar o seu depósito daqui a 2 anos? 10000*(1+1,4%) 4 *(1+1,25%) 4 = 11110,46. Exercício 43 A D. Constança pretende adquirir uma viatura que custa Como não pode pagá-la a pronto obteve três condições de pagamento: A Sem entrada inicial; prestação mensal postcipada de 300 durante 60 meses. B de entrada inicial; prestação mensal postcipada de 250 durante 60 meses. C de entrada inicial; prestação mensal postcipada de 300 durante 36 meses. a) Calcule o valor total dos juros pagos pela D. Constança, em cada uma das modalidades de pagamento que lhe foram propostas. b) Determine o valor da taxa de juro anual nominal praticada em cada uma das modalidades de pagamento. c) Se fosse você a escolher que faria? Justifique. a) Hipótese A 60 * = 3000 Hipótese B * = 2000 Hipótese C * = 800 b) Hipótese A RATE(60 ; 300 ;15000 ) * 12 = 0,618 % *12 = 7,42% Hipótese B RATE(60 ; 250 ;13000 ) * 12 = 0,482 % * 12 = 5,78% Hipótese C RATE(36 ; 300 ;10000 ) * 12 = 0,422 % * 12 = 5,06 % 16/18

17 Exercício 44 Mostre que, sendo i a taxa de juro referente ao período de capitalização: a) A razão entre os capitais referentes a dois períodos de capitalização consecutivos é igual a 1+i. b) A razão entre os juros gerados em dois períodos de capitalização consecutivos é igual a 1+i. a) C t+1 / C t = C t * (1+i) / C t = (1+i) b) J t+1,t / J t,t-1 = [C t * (1+i)] / [C t-1 * (1+i)] = [C t-1 * (1+i) *(1+i)]/ [C t-1 * (1+i)] = (1+i). Exercício 45 Os termos de um empréstimo de a 20 anos feito em 15 de Setembro de 2000 previam que a taxa de juro em vigor em cada semestre teria o valor de uma certa taxa indexante referente ao primeiro dia útil do mês imediatamente anterior ao início do semestre (taxa anual proporcional com capitalização mensal) acrescida de um ponto percentual. 0s valores do indexante nas datas relevantes são apresentados na tabela seguinte. Data Tx. ref. Data Tx. ref ,128% ,375% ,767% ,500% ,500% O devedor deve ainda pagar um seguro de vida com um custo anual, pago antecipadamente, de que cresce 1% anualmente. Calcule: a) As prestações mensais nos primeiros cinco semestres. b) A TAEG. Excel. Exercício 46 Uma família obteve hoje um financiamento de euros para a compra de uma habitação. Do contrato constam as seguintes condições: amortização através de uma renda anual, postcipada de n termos, a iniciar-se daqui a um ano, de valor constante de euros. o último pagamento (inferior a euros) é feito um ano após o pagamento do n-iésimo termo da renda constante. a taxa de juro efectiva anual contratada foi de 7%. 17/18

18 1. Determine durante quanto tempo tem lugar o pagamento anual de euros. 2. Calcule os juros totais formados ao longo de todo o processo. 3. Calcule o montante apenas respeitante à amortização de capital do 1º e do n- iésimo termos da renda constante. Exercício 47 Os termos de um empréstimo de feito em 15 de Setembro de 2000 previam que a taxa de juro em vigor em cada semestre teria o valor de uma certa taxa indexante referente ao primeiro dia útil do mês imediatamente anterior ao início do semestre (taxa anual proporcional com capitalização mensal) acrescida de um ponto percentual. 0s valores do indexante nas datas relevantes são apresentados na tabela seguinte. Data Tx. ref. Data Tx. ref ,128% ,375% ,767% ,500% ,500% A prestação mensal seria de 400, excepto a última, de valor inferior e que reembolsaria o capital em dívida remanescente. Calcule o prazo previsto do empréstimo no início de cada um dos 5 primeiros semestres. Excel. 18/18

Matemática Financeira e Instrumentos de Gestão [2] 2007/2008

Matemática Financeira e Instrumentos de Gestão [2] 2007/2008 Licenciatura em Gestão Matemática Financeira e Instrumentos de Gestão [2] 2007/2008 Noções Fundamentais Rendimento = Consumo + Poupança [Aforro] Aforro = Entesouramento + Investimento Financeiro Entesouramento

Leia mais

LICENCIATURA EM GESTÃO TESTE 10.01.2006 VERSÃO A

LICENCIATURA EM GESTÃO TESTE 10.01.2006 VERSÃO A OBSERVAÇÕES: (i) A duração da prova é de 2 horas; (ii) Não é permitida a consulta de quaisquer elementos, nem são prestados quaisquer esclarecimentos; (iii) Responda ao Grupo I na tabela constante desta

Leia mais

1- Abra o Microsoft Excel e num livro em branco execute os seguintes pedidos, utilizando principalmente as funções financeiras.

1- Abra o Microsoft Excel e num livro em branco execute os seguintes pedidos, utilizando principalmente as funções financeiras. Exercício nº 30 Objectivo: Funções financeiras Nome do documento: Funções financeiras Pedidos: 1- Abra o Microsoft Excel e num livro em branco execute os seguintes pedidos, utilizando principalmente as

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Roberto César Faria e Silva MATEMÁTICA FINANCEIRA Aluno: SUMÁRIO 1. CONCEITOS 2 2. JUROS SIMPLES 3 Taxa Efetiva e Proporcional 10 Desconto Simples 12 Desconto Comercial, Bancário ou Por Fora 13 Desconto

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal do Paraná Curso de Engenharia Elétrica Disciplina de Engenharia Econômica TE142 2º Semestre de 2011 Professor James Alexandre Baraniuk Lista de Exercícios 1 1. Um jovem de 20 anos

Leia mais

prestação. Resp. $93.750,00 e $5.625,00.

prestação. Resp. $93.750,00 e $5.625,00. UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA MAT191 - MATEMÁTICA FINANCEIRA PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO LISTA 3 1) Um bem é vendido a vista por $318.000,00

Leia mais

MATEMÁTICA FINANCEIRA COM O USO DA CALCULADORA HP 12.C CADERNO DE EXERCÍCIOS

MATEMÁTICA FINANCEIRA COM O USO DA CALCULADORA HP 12.C CADERNO DE EXERCÍCIOS MATEMÁTICA FINANCEIRA COM O USO DA CALCULADORA HP 12.C CADERNO DE EXERCÍCIOS Parte integrante do curso Conhecendo a Calculadora HP 12C Prof. Geraldo Peretti. Página 1 Cálculos aritméticos simples. A) (3

Leia mais

INSTITUTO SUPERIOR MIGUEL TORGA EXERCÍCIOS CALCULO FINANCEIRO MIGUEL MATIAS

INSTITUTO SUPERIOR MIGUEL TORGA EXERCÍCIOS CALCULO FINANCEIRO MIGUEL MATIAS INSTITUTO SUPERIOR MIGUEL TORGA EXERCÍCIOS CALCULO FINANCEIRO MIGUEL MATIAS Ano letivo 2015/2016 INDICE Introdução ao cálculo financeiro... 3 Instrumentos financeiros de curto prazo... 7 Rendas... 9 Amortização

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO LISTA 2 1) Um título, com valor de face igual a $1.000,00,

Leia mais

Cálculo Financeiro Fixa nº2

Cálculo Financeiro Fixa nº2 Cálculo Financeiro Fixa nº2 2. Regimes de Capitalização 2.1. O Regime de Juro Simples 2.2. O Regime de Juro Composto 8 Considere um empréstimo de 300 000 Euros, pelo prazo de 4 anos, à taxa anual de juro

Leia mais

EXERCÍCIOS DE SUPORTE ÀS SESSÕES SOBRE UTILIZAÇÃO DE CALCULADORAS FINANCEIRAS

EXERCÍCIOS DE SUPORTE ÀS SESSÕES SOBRE UTILIZAÇÃO DE CALCULADORAS FINANCEIRAS EXERCÍCIOS DE SUPORTE ÀS (versão 2006/2007) Rogério Matias EXERCÍCIOS DE SUPORTE ÀS 1ª SESSÃO (Numeração dos exercícios do livro Cálculo Financeiro Teoria e Prática, excepto exercício designado por Extra

Leia mais

Matemática Financeira

Matemática Financeira Capítulo 7 Noções de Matemática Financeira 1 O valor do dinheiro no tempo A operação básica da matemática financeira é a operação de empréstimo. Alguém que dispõe de um capital C (chamado de principal),

Leia mais

Título : B2 Matemática Financeira. Conteúdo :

Título : B2 Matemática Financeira. Conteúdo : Título : B2 Matemática Financeira Conteúdo : A maioria das questões financeiras é construída por algumas fórmulas padrão e estratégias de negócio. Por exemplo, os investimentos tendem a crescer quando

Leia mais

Gran Cursos. Matemática Financeira Walter Sousa. Rendas Certas financiamentos e capitalizações. 1) Fluxo de Caixa. 1.1) Fluxo de Caixa Padrão

Gran Cursos. Matemática Financeira Walter Sousa. Rendas Certas financiamentos e capitalizações. 1) Fluxo de Caixa. 1.1) Fluxo de Caixa Padrão Matemática Financeira Walter Sousa Gran Cursos Rendas Certas financiamentos e capitalizações 1) Fluxo de Caixa Representa uma série de pagamentos ou recebimentos que ocorrem em determinado período de tempo.

Leia mais

Lista de Exercícios para a Prova Substitutiva de Matemática Financeira Parfor Matemática

Lista de Exercícios para a Prova Substitutiva de Matemática Financeira Parfor Matemática Lista de Exercícios para a Prova Substitutiva de Matemática Financeira Parfor Matemática 1. Se 35 m de um tecido custam R$ 140, quanto se pagará 12 m? 2. Se 20 tratores levaram 6 dias para realizar um

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira para Auditor Fiscal da Receita Municipal Pref. Municipal de Angra dos Reis, organizada pela FGV. A prova foi realizada no dia 02/05/2010.

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (º ANO) Exercícios - Capitalização EXERCÍCIOS DE APLICAÇÃO Exercício 1 Calcule os juros simples produzidos: a) Por um capital de 500 aplicado durante

Leia mais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais e mensais de $ 1.000,00 cada uma, dentro do conceito de termos vencidos, sabendo-se que

Leia mais

Fundamentos do Cálculo Financeiro. 1. Introdução: o valor temporal do dinheiro 27

Fundamentos do Cálculo Financeiro. 1. Introdução: o valor temporal do dinheiro 27 Índice Índice de casos propostos 13 Prefácio 17 Apresentação 19 Considerações e abreviaturas 23 Capítulo 1 Fundamentos do Cálculo Financeiro 1. Introdução: o valor temporal do dinheiro 27 2. Conceitos

Leia mais

EXAME PARA CONTABILISTA CERTIFICADO DELIBERAÇÃO Nº 001/CTEC/2013 - NOVEMBRO-DEZEMBRO DE 2013 PROVA DE ESTATÍSTICA E MATEMÁTICA FINANCEIRA

EXAME PARA CONTABILISTA CERTIFICADO DELIBERAÇÃO Nº 001/CTEC/2013 - NOVEMBRO-DEZEMBRO DE 2013 PROVA DE ESTATÍSTICA E MATEMÁTICA FINANCEIRA DELIBERAÇÃO Nº 001/CTEC/2013 - NOVEMBRO-DEZEMBRO DE 2013 PROVA DE I - Ao receber o Enunciado da Prova escreva seu nome e número do documento de identificação. II - Ao entregar a Prova, depois de resolvida,

Leia mais

MATEMÁTICA FINANCEIRA - FGV

MATEMÁTICA FINANCEIRA - FGV MATEMÁTICA FINANCEIRA - FGV 01. (FGV) O preço de venda de um artigo foi diminuído em 20%. Em que porcentagem devemos aumentar o preço diminuído para que com o aumento o novo preço coincida com o original?

Leia mais

www.concurseiro10.com.br

www.concurseiro10.com.br 1) Um capital de R$ 18.000,00, aplicados a 6% ao ano, durante 8 anos, qual o juros produzido? a) 7.640,00 b) 6.460,00 c) 8.640,00 d) 9.000,00 2) Um investidor aplicou R$10.000,00, à taxa de 13% ao mês

Leia mais

Março/2012 Parte 2. Pag.1. Prof. Alvaro Augusto

Março/2012 Parte 2. Pag.1. Prof. Alvaro Augusto Pag.1 Pag.2 Pag.3 Descontos Desconto é a liquidação de uma operação antes de seu vencimento, envolvendo um prêmio ou recompensa. Valor Nominal, Valor de Resgate ou Valor de Face é o valor de um título

Leia mais

Elementos de Análise Financeira Juros Compostos Profa. Patricia Maria Bortolon

Elementos de Análise Financeira Juros Compostos Profa. Patricia Maria Bortolon Elementos de Análise Financeira Juros Compostos Juros Compostos Os juros formados em cada período são acrescidos ao capital formando o montante (capital mais juros) do período. Este montante passará a

Leia mais

Capítulo 9: Análise de Projectos de Investimento. 9.1. A dimensão temporal e o cálculo financeiro

Capítulo 9: Análise de Projectos de Investimento. 9.1. A dimensão temporal e o cálculo financeiro Capítulo 9: Análise de Projectos de Investimento Conteúdo Temático 1. A dimensão temporal e o cálculo financeiro 2. Critérios de análise da rendibilidade de projectos de investimento 9.1. A dimensão temporal

Leia mais

MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO

MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO DESCONTO 1) Determinar o desconto por fora sofrido por uma letra de R$ 5.000,00 à taxa de 5% aa, descontada 5 anos antes de seu vencimento. Resp: R$ 1.250,00 2) Uma

Leia mais

REGIME DE CAPTALIZAÇÃO COMPOSTA

REGIME DE CAPTALIZAÇÃO COMPOSTA REGIME DE CAPTALIZAÇÃO COMPOSTA No regime de Capitalização Composta, os juros prodzidos ao final de um dado período n se agregam ao capital, passando ambos a integrar a nova base de cálculo para o período

Leia mais

Lista de exercício nº 4* Fluxos de caixa não uniformes, inflação, juros reais e nominais

Lista de exercício nº 4* Fluxos de caixa não uniformes, inflação, juros reais e nominais Lista de exercício nº 4* Fluxos de caixa não uniformes, inflação, juros reais e nominais 1. Calcule o Valor Presente Líquido do fluxo de caixa que segue, para as taxas de desconto de 8% a.a., 10% a.a.

Leia mais

Capítulo 6 Série Uniforme Prestações Iguais

Capítulo 6 Série Uniforme Prestações Iguais Capítulo 6 Série Uniforme Prestações Iguais Juros Compostos Fórmulas - 1 RELAÇÃO ENTRE PMT E FV FV = PMT [ ( 1 + i ) n-1 + ( 1 + i ) n-2 + + ( 1 + i ) + 1 ] (A) Multiplicando por (1+i): FV = PMT [(1 +

Leia mais

Universidade Comunitária da Região de Chapecó Curso de Economia 5º Período 8 AMORTIZAÇÃO DE EMPRÉSTIMOS

Universidade Comunitária da Região de Chapecó Curso de Economia 5º Período 8 AMORTIZAÇÃO DE EMPRÉSTIMOS 8 AMORTIZAÇÃO DE EMPRÉSTIMOS Frequentemente, nas operações de médio e longo prazo, por razões metodológicas ou contábeis, as operações de empréstimos são analisadas período por período, no que diz respeito

Leia mais

Preçário BANCO PRIVADO ATLANTICO. Instituição Financeira Bancária TABELA DE TAXAS DE JURO. Data de Entrada em vigor: 8 de Janeiro 2015

Preçário BANCO PRIVADO ATLANTICO. Instituição Financeira Bancária TABELA DE TAXAS DE JURO. Data de Entrada em vigor: 8 de Janeiro 2015 Preçário BANCO PRIVADO ATLANTICO Instituição Financeira Bancária TABELA DE TAXAS DE JURO Data de Entrada em vigor: 8 de Janeiro 2015 O Preçário pode ser consultado nos balcões e locais de atendimento ao

Leia mais

F NA N N A C N E C IRA

F NA N N A C N E C IRA MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA TRATA DO ESTUDO DO DINHEIRO AO LONGO DO TEMPO. OBJETIVO BÁSICO EFETUAR ANÁLISES E COMPARAÇÕES EFETUAR ANÁLISES E COMPARAÇÕES DOS VÁRIOS

Leia mais

Prof. Dr. João Muccillo Netto

Prof. Dr. João Muccillo Netto Prof. Dr. João Muccillo Netto INTRODUÇÃO 1. Juros Segundo a Teoria Econômica, o homem combina Terra Trabalho Capital Aluguel Salário Juro para produzir os bens de que necessita. Juro é a remuneração do

Leia mais

Matemática Financeira - Vinícius Werneck, professor do QConcursos.com

Matemática Financeira - Vinícius Werneck, professor do QConcursos.com Matemática Financeira - Vinícius Werneck, professor do QConcursos.com 1- Q236904 - Prova: CESGRANRIO - 2012 - Caixa - Técnico Bancário Disciplina: Matemática Financeira Assuntos: Amortização; Sistema Francês

Leia mais

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA Prof. Quilelli 1 ) Uma dívida contraída à taxa de juros simples de 10% ao mês, deverá ser paga em duas parcelas, respectivamente iguais a R$ 126,00, daqui a

Leia mais

Elementos de Análise Financeira Matemática Financeira e Inflação Profa. Patricia Maria Bortolon

Elementos de Análise Financeira Matemática Financeira e Inflação Profa. Patricia Maria Bortolon Elementos de Análise Financeira Matemática Financeira e Inflação O que é Inflação? Inflação É a elevação generalizada dos preços de uma economia O que é deflação? E a baixa predominante de preços de bens

Leia mais

Existe uma diferença entre o montante (S) e a aplicação (P) que é denominada de remuneração, rendimento ou juros ganhos.

Existe uma diferença entre o montante (S) e a aplicação (P) que é denominada de remuneração, rendimento ou juros ganhos. Módulo 3 JUROS SIMPLES 1. Conceitos Iniciais 1.1. Juros Juro é a remuneração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela diferença entre dois pagamentos, um em cada tempo, de

Leia mais

MATEMÁTICA FINANCEIRA 216 questões com gabarito

MATEMÁTICA FINANCEIRA 216 questões com gabarito 216 questões com gabarito FICHA CATALOGRÁFICA (Catalogado na fonte pela Biblioteca da BM&F BOVESPA Bolsa de Valores, Mercadorias e Futuros) MATEMÁTICA FINANCEIRA: 216 questões com gabarito. São Paulo:

Leia mais

ACADEMIA DO CONCURSO PÚBLICO AULÃO DE MATEMÁTICA FINANCEIRA PROF PIO mjpio12@gmail.com REGIME DE CAPITALIZAÇÃO SIMPLES

ACADEMIA DO CONCURSO PÚBLICO AULÃO DE MATEMÁTICA FINANCEIRA PROF PIO mjpio12@gmail.com REGIME DE CAPITALIZAÇÃO SIMPLES ACADEMIA DO CONCURSO PÚBLICO AULÃO DE MATEMÁTICA FINANCEIRA PROF PIO mjpio12@gmail.com REGIME DE CAPITALIZAÇÃO SIMPLES 01) (TCM/RJ Técnico de Controle Externo FJG 2003) Guilherme utilizou o limite de crédito

Leia mais

Matemática. Aula: 04/10. Prof. Pedro Souza. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 04/10. Prof. Pedro Souza. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 04/10 Prof. Pedro Souza UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA

Leia mais

ORIGEM SISTEMA FRANCÊS DE AMORTIZAÇÃO

ORIGEM SISTEMA FRANCÊS DE AMORTIZAÇÃO ORIGEM DO SISTEMA FRANCÊS DE AMORTIZAÇÃO Rio, Janeiro / 2014 * Elaborado por Pedro Schubert. Administrador, Sócio Fundador da BMA Informática & Assessoramento Empresarial Ltda. 1 ORIGEM DO SISTEMA FRANCÊS

Leia mais

EXERCÍCIOS DIVERSOS TRABALHO 1

EXERCÍCIOS DIVERSOS TRABALHO 1 EXERCÍCIOS DIVERSOS TRABALHO 1 01. O gerente de uma loja de presentes está fazendo o fechamento das vendas de brinquedos no período de véspera de natal. No dia 06/11/2006 foram vendidos 14 brinquedos a

Leia mais

UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5152 MATEMÁTICA FINACEIRA II PROF. FERNANDO GUERRA. LISTA DE EXERCÍCIOS SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS

UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5152 MATEMÁTICA FINACEIRA II PROF. FERNANDO GUERRA. LISTA DE EXERCÍCIOS SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5152 MATEMÁTICA FINACEIRA II PROF. FERNANDO GUERRA. 1 LISTA DE EXERCÍCIOS SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS 1) Certo banco concede um financiamento de 80.000

Leia mais

MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05

MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05 MA12 - Unidade 10 Matemática Financeira Semana 09/05 a 15/05 Uma das importantes aplicações de progressões geométricas é a Matemática Financeira. A operação básica da matemática nanceira é a operação de

Leia mais

Matemática Régis Cortes JURO SIMPLES

Matemática Régis Cortes JURO SIMPLES JURO SIMPLES 1 Juros é o rendimento de uma aplicação financeira, valor referente ao atraso no pagamento de uma prestação ou a quantia paga pelo empréstimo de um capital. Atualmente, o sistema financeiro

Leia mais

Prof. Luiz Felix. Unidade II MATEMÁTICA FINANCEIRA

Prof. Luiz Felix. Unidade II MATEMÁTICA FINANCEIRA Prof. Luiz Felix Unidade II MATEMÁTICA FINANCEIRA Sistemas de amortização de empréstimos e financiamentos São desenvolvidos basicamente para operações de empréstimos e financiamentos de longo prazo, envolvendo

Leia mais

FACULDADE DE TECNOLOGIA DE MOCOCA. Av. Dr. Américo Pereira Lima, S/Nº Jardim Lavínia Mococa/SP CEP 13736-260 (19) 3656-5559

FACULDADE DE TECNOLOGIA DE MOCOCA. Av. Dr. Américo Pereira Lima, S/Nº Jardim Lavínia Mococa/SP CEP 13736-260 (19) 3656-5559 FACULDADE DE TECNOLOGIA DE MOCOCA Curso: Informática Informática Gestão de Negócios. Disciplina: Administração Financeira e Orçamentária. Professor(a): Darlan Marcelo Delgado. Lista de Exercícios:. Conteúdo

Leia mais

Em qualquer área de saber que se queira emitir opinião, é de fundamental importância que se defina o objeto de estudo.

Em qualquer área de saber que se queira emitir opinião, é de fundamental importância que se defina o objeto de estudo. O SISTEMA DE AMORTIZAÇÃO PRICE NÃO PRATICA ANATOCISMO. Em qualquer área de saber que se queira emitir opinião, é de fundamental importância que se defina o objeto de estudo. No caso em questão, sem a definição

Leia mais

Lista de exercício nº 3* VPL, TIR e Equivalência de fluxos de caixa

Lista de exercício nº 3* VPL, TIR e Equivalência de fluxos de caixa Lista de exercício nº 3* VPL, TIR e Equivalência de fluxos de caixa 1. Calcule o valor presente do fluxo de caixa indicado a seguir, para uma taxa de desconto de 1 % ao mês, no Resposta: $13.147,13 2.

Leia mais

Preçário. Caixa Central de Crédito Agricola Mútuo e Caixas de Crédito Agrícola Mútuo

Preçário. Caixa Central de Crédito Agricola Mútuo e Caixas de Crédito Agrícola Mútuo Preçário CAIXA CENTRAL - CAIXA CENTRAL DE CRÉDITO AGRICOLA MÚTUO, CRL E CAIXAS DE CRÉDITO AGRÍCOLA MÚTUO DO SISTEMA INTEGRADO DO CRÉDITO AGRÍCOLA MÚTUO Caixa Central de Crédito Agricola Mútuo e Caixas

Leia mais

CAIXA ECONOMICA FEDERAL

CAIXA ECONOMICA FEDERAL JUROS SIMPLES Juros Simples comercial é uma modalidade de juro calculado em relação ao capital inicial, neste modelo de capitalização, os juros de todos os períodos serão sempre iguais, pois eles serão

Leia mais

Matemática Financeira

Matemática Financeira Matemática Financeira Professor conteudista: Dalton Millan Marsola Sumário Matemática Financeira Unidade I 1 CONCEITOS FUNDAMENTAIS...1 1.1 Taxa de juros...2 1.2 Taxa percentual...4 1.3 Taxa unitária...4

Leia mais

Prof. Luiz Felix. Unidade I

Prof. Luiz Felix. Unidade I Prof. Luiz Felix Unidade I MATEMÁTICA FINANCEIRA Matemática financeira A Matemática Financeira estuda o comportamento do dinheiro ao longo do tempo. Do ponto de vista matemático, um determinado valor a

Leia mais

Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy

Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy 1. (MDIC 2002 ESAF) Um contrato prevê que aplicações iguais sejam feitas mensalmente em uma conta durante doze meses com o objetivo

Leia mais

UNIDADE Capitalização composta

UNIDADE Capitalização composta UNIDADE 2 Capitalização composta Capitalização composta Curso de Graduação em Administração a Distância Objetivo Nesta Unidade, você vai ser levado a: calcular o montante, taxas equivalentes, nominal e

Leia mais

COMO CRIAR UM PLANO DE AMORTIZAÇÃO

COMO CRIAR UM PLANO DE AMORTIZAÇÃO COMO CRIAR UM PLANO DE AMORTIZAÇÃO! Sistemas de amortização de empréstimos! Sistema Price! SAC! Fórmulas do Excel! Planilha fornecida Autores: Francisco Cavalcante(cavalcante@netpoint.com.br) Administrador

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO DISCIPLINA: ECONOMIA DA ENGENHARIA I PROFESSOR JORGE JUNIOR E.MAIL: JJUNIORSAN@CEUNES.UFES.BR Apostila integralmente

Leia mais

FOLHETO DE TAXAS DE JURO

FOLHETO DE TAXAS DE JURO FOLHETO DE TAXAS DE JURO Clientes Particulares Outros clientes 17 CONTAS DE DEPÓSITO 19 CONTAS DE DEPÓSITO 17.1. Depósitos à Ordem 19.1. Depósitos à Ordem 17.2. Depósitos a Prazo 19.2. Depósitos a Prazo

Leia mais

6. Capitalização. E.g., 100.000 a 5 anos à taxa juro anual de 3,5% resulta no fim do prazo uma entrega de 100.000x(1+3,5%)^5 = 118.

6. Capitalização. E.g., 100.000 a 5 anos à taxa juro anual de 3,5% resulta no fim do prazo uma entrega de 100.000x(1+3,5%)^5 = 118. 1 2 Sumário (16ª aula) 6. Capitalização 6.2. 6.3. Taxa de juro anual equivalente 6.4. Noção de Desconto Capitalização composta Vimos que os contratos de empréstimo consideram um montante e uma taxa de

Leia mais

Centro Universitário Católico Salesiano Auxilium. Séries Uniformes de Pagamento

Centro Universitário Católico Salesiano Auxilium. Séries Uniformes de Pagamento Centro Universitário Católico Salesiano Auxilium Disciplina: Matemática Financeira I Prof.: Marcos José Ardenghi Séries Uniformes de Pagamento As séries uniformes de pagamentos, anuidades ou rendas são

Leia mais

Exercícios base para a prova 2 bimestre e final

Exercícios base para a prova 2 bimestre e final Exercícios base para a prova 2 bimestre e final Razão e proporção 1) Calcule a razão entre os números: a) 3 e 21 b) 0,333... e 2,1 2) Determine a razão entre a terça parte de 0,12 e o dobro de 0,1. 3)

Leia mais

UNIDADE DESCENTRALIZADA NOVA IGUAÇU - RJ ENGENHARIA ECONÔMICA E FINANCEIRA

UNIDADE DESCENTRALIZADA NOVA IGUAÇU - RJ ENGENHARIA ECONÔMICA E FINANCEIRA PARTE I 1 1) Calcular a taxa de juros trimestral proporcional às seguintes taxas: a) 24% ao ano. b) 36% ao biênio c) 6% ao semestre 2) Determinar a taxa de juros anual proporcional, das as seguintes taxas:

Leia mais

AFC/2005 Resolução da prova de Matemática Financeira

AFC/2005 Resolução da prova de Matemática Financeira 12/02/2006 AFC/2005 Resolução da prova de Matemática Financeira Questão 11. Marcos descontou um título 45 dias antes de seu vencimento e recebeu R$370.000,000. A taxa de desconto comercial simples foi

Leia mais

EXEMPLO. Prática Financeira II Gestão Financeira

EXEMPLO. Prática Financeira II Gestão Financeira EXEMPLO Tendo em conta as operações realizadas pela empresa CACILHAS, LDA., pretende-se a elaboração da Demonstração de fluxos de caixa, admitindo que o saldo de caixa e seus equivalentes, no início de

Leia mais

O valor do dinheiro varia ao longo do tempo, ou seja, não é indiferente dispor hoje ou daqui a um ano de uma dada quantia em dinheiro.

O valor do dinheiro varia ao longo do tempo, ou seja, não é indiferente dispor hoje ou daqui a um ano de uma dada quantia em dinheiro. Tópico complementar 5. Valor temporal do dinheiro Objectivo específico: No final deste capítulo, o leitor deverá estar apto a: - Conhecer o significado e o modo de utilização da taxa de actualização (medida

Leia mais

Para o cálculo dos juros siga corretamente este roteiro:

Para o cálculo dos juros siga corretamente este roteiro: Juro Simples Juro: é a remuneração do capital emprestado, podendo ser entendido, de forma simplificada, como sendo o aluguel pago pelo uso do dinheiro. Capital: qualquer valor expresso em moeda e disponível

Leia mais

Preçário BANCO PRIVADO ATLANTICO. Instituição Financeira Bancária TABELA DE TAXAS DE JURO. Data de Entrada em vigor: 2 de Outubro 2015

Preçário BANCO PRIVADO ATLANTICO. Instituição Financeira Bancária TABELA DE TAXAS DE JURO. Data de Entrada em vigor: 2 de Outubro 2015 Preçário BANCO PRIVADO ATLANTICO Instituição Financeira Bancária TABELA DE TAXAS DE JURO Data de Entrada em vigor: 2 de Outubro 2015 O Preçário pode ser consultado nos balcões e locais de atendimento ao

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES. Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV.

CURSO ON-LINE PROFESSOR GUILHERME NEVES. Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV. Olá pessoal! Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV. Sem mais delongas, vamos às questões. 19. (SEFAZ-RJ 2010/FGV) A empresa Bonneli recebeu, pelo valor de R$ 18.000,00,

Leia mais

JURO SIMPLES. Exercícios de Aplicação. Tarefa I

JURO SIMPLES. Exercícios de Aplicação. Tarefa I I JURO SIMPLES Exercícios de Aplicação 01. O juro simples da aplicação de $ 1.200,00, durante 5 meses à taxa de 4% ao mês vale: a) $ 300,00. b) $ 240,00. d) $ 220,00. c) $ 280,00. e) $ 320,00. 02. O juro

Leia mais

Introdução ao cálculo financeiro

Introdução ao cálculo financeiro Introdução ao cálculo financeiro Miguel Matias Instituto Superior Miguel Torga LICENCIATURA EM GESTÃO / 2ºANO 1ºSEM 2015/16 PROGRAMA 1. Introdução ao cálculo financeiro 2. Instrumentos financeiros de curto

Leia mais

FOLHETO DE TAXAS DE JURO CLIENTES PARTICULARES

FOLHETO DE TAXAS DE JURO CLIENTES PARTICULARES FOLHETO DE TAXAS DE JURO CLIENTES PARTICULARES 135 ÍNDICE FOLHETO DE TAXA DE JURO CLIENTES PARTICULARES 17 CONTAS DE DEPÓSITO... 137 17.1 DEPÓSITO À ORDEM... 138 17.2 DEPÓSITO A PRAZO... 139 18 OPERAÇÕES

Leia mais

EXERCÍCIOS PROF. SÉRGIO ALTENFELDER

EXERCÍCIOS PROF. SÉRGIO ALTENFELDER 1- Uma dívida no valor de R$ 60.020,54 deve ser paga em sete prestações postecipadas de R$ 10.000,00, a uma determinada taxa de juros. Considerando esta mesma taxa de juros, calcule o saldo devedor imediatamente

Leia mais

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ISS-Cuiabá Neste artigo, farei a análise das questões de cobradas na prova do ISS-Cuiabá, pois é uma de minhas

Leia mais

Elementos de Análise Financeira Juros Simples Profa. Patricia Maria Bortolon

Elementos de Análise Financeira Juros Simples Profa. Patricia Maria Bortolon Elementos de Análise Financeira Juros Simples Fórmulas de Juros Simples J C i n Onde: J = valor dos juros expresso em unidades monetárias C = capital. É o valor (em $) em determinado momento i = taxa de

Leia mais

FOLHETO DE TAXAS DE JURO

FOLHETO DE TAXAS DE JURO FOLHETO DE TAXAS DE JURO Clientes Particulares Outros clientes 17 CONTAS DE DEPÓSITO 19 CONTAS DE DEPÓSITO 17.1. Depósitos à ordem 19.1. Depósitos à ordem 17.2. Depósitos a prazo 19.2. Depósitos a prazo

Leia mais

JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 02

JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 02 JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 0 01. Calcular a taxa mensal proporcional de juros de: a) 14,4% ao ano; b) 6,8% ao quadrimestre; c) 11,4% ao semestre; d) 110,4% ao ano e) 54,7% ao biênio.

Leia mais

Capítulo 15: Investimento, Tempo e Mercado de Capitais

Capítulo 15: Investimento, Tempo e Mercado de Capitais Pindyck & Rubinfeld, Capítulo 15, Mercado de Capitais :: EXERCÍCIOS 1. Suponha que a taxa de juro seja de 10%. Qual é o valor de um título com cupom que paga $80 por ano, durante cada um dos próximos 5

Leia mais

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos Aula 04 Matemática Financeira Equivalência de Capitais a Juros Compostos Introdução O conceito de equivalência permite transformar formas de pagamentos (ou recebimentos) em outras equivalentes e, consequentemente,

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Roberto César Faria e Silva MATEMÁTICA FINANCEIRA Aluno: SUMÁRIO 1. CONCEITOS 2 2. JUROS SIMPLES 3 Taxa Efetiva e Proporcional 10 Desconto Simples 12 Desconto Comercial, Bancário ou Por Fora 13 Desconto

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Conceitos básicos A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos

Leia mais

CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES

CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES DEFINIÇÕES: CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES Taxa de juros: o juro é determinado através de um coeficiente referido a um dado intervalo de tempo. Ele corresponde à remuneração da

Leia mais

Preçário INSTITUIÇÃO FINANCEIRA DE CRÉDITO. Consulte o FOLHETO DE COMISSÕES E DESPESAS. Data de Entrada em vigor: 11-09-2014

Preçário INSTITUIÇÃO FINANCEIRA DE CRÉDITO. Consulte o FOLHETO DE COMISSÕES E DESPESAS. Data de Entrada em vigor: 11-09-2014 Preçário INSTITUIÇÃO FINANCEIRA DE CRÉDITO Consulte o FOLHETO DE COMISSÕES E DESPESAS Data de Entrada em vigor: 11-09-2014 Consulte o FOLHETO DE TAXAS DE JURO Data de Entrada em vigor: 03-08-2015 O Preçário

Leia mais

Prof. Diogo Miranda. Matemática Financeira

Prof. Diogo Miranda. Matemática Financeira 1. Uma alternativa de investimento possui um fluxo de caixa com um desembolso de R$ 10.000,00, no início do primeiro mês, Outro desembolso, de R$ 5.000,00, ao final do primeiro mês, e duas entradas líquidas

Leia mais

MATEMÁTICA FINANCEIRA PARA CONCURSOS

MATEMÁTICA FINANCEIRA PARA CONCURSOS MATEMÁTICA FINANCEIRA PARA CONCURSOS Matemática Financeira para Concursos 1 Conteúdo 1. Noções Básicas -------------------------------- 02 2. Juros Simples, Ordinário e Comercial ------- 04 Taxa Percentual

Leia mais

Matemática Financeira

Matemática Financeira A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos para simplificar a

Leia mais

Tabela de Taxas de Juro. Anexo II. Instituição Financeira Bancaria com Sede em Território Nacional. Entrada em vigor: 26 de Outubro de 2015

Tabela de Taxas de Juro. Anexo II. Instituição Financeira Bancaria com Sede em Território Nacional. Entrada em vigor: 26 de Outubro de 2015 Anexo II Instituição Financeira Bancaria com Sede em Território Nacional Entrada em vigor: 26 de Outubro de 2015 Preçário pode ser consultado nas Agências e locais de atendimento ao público do Banco Keve

Leia mais

Introdução à Matemática Financeira

Introdução à Matemática Financeira Introdução à Matemática Financeira Atividade 1 Por que estudar matemática financeira? A primeira coisa que você deve pensar ao responder esta pergunta é que a matemática financeira está presente em muitos

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO UNIVERSIDADE TÉCNICA DE LISBOA FINANÇAS. MBA 2006/2007 (1º Bloco) Caderno de Exercícios. José Azevedo Pereira

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO UNIVERSIDADE TÉCNICA DE LISBOA FINANÇAS. MBA 2006/2007 (1º Bloco) Caderno de Exercícios. José Azevedo Pereira INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO UNIVERSIDADE TÉCNICA DE LISBOA FINANÇAS MBA 2006/2007 (1º Bloco) Caderno de Exercícios José Azevedo Pereira I O Conceito de VAL Exercício 1 Na figura seguinte, o

Leia mais

Os juros podem ser capitalizados segundo dois regimes: simples ou compostos.

Os juros podem ser capitalizados segundo dois regimes: simples ou compostos. 1/7 3. Modelos de capitalização simples 4. Modelos de capitalização composta Conceitos básicos A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos

Leia mais

MATEMÁTICA FINANCEIRA CARREIRAS FISCAIS 1

MATEMÁTICA FINANCEIRA CARREIRAS FISCAIS 1 CAPÍTULO 1 JUROS SIMPLES MATEMÁTICA FINANCEIRA CARREIRAS FISCAIS 1 1.1) DEFINIÇÃO No cálculo dos juros simples, os rendimentos ou ganhos J em cada período t são os mesmos, pois os juros são sempre calculados

Leia mais

PRÉVOIR PPR NOVA VERSÃO INFORMAÇÕES PRÉ-CONTRATUAIS ANEXO À PROPOSTA PRÉVOIR PPR

PRÉVOIR PPR NOVA VERSÃO INFORMAÇÕES PRÉ-CONTRATUAIS ANEXO À PROPOSTA PRÉVOIR PPR Este documento apresenta-se como um resumo das Condições Gerais e Especiais do seguro Prévoir PPR e não dispensa a consulta integral das mesmas. SEGURADOR FINALIDADE SEGMENTO-ALVO CONDIÇÕES DE SUBSCRIÇÃO

Leia mais

MATEMÁTICA FINANCEIRA 216 questões com cabarito

MATEMÁTICA FINANCEIRA 216 questões com cabarito 216 questões com cabarito FICHA CATALOGRÁFICA (Catalogado na fonte pela Biblioteca da BM&F BOVESPA Bolsa de Valores, Mercadorias e Futuros) MATEMÁTICA FINANCEIRA: 216 questões com gabarito. São Paulo:

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Marcelo de Figueiredo Alves 1 MATEMÁTICA FINANCEIRA É a análise das relações formais entre transações financeiras, que traduzem a um padrão equivalente, quantidades monetárias transacionadas

Leia mais

Gabarito das Autoatividades MATEMÁTICA FINANCEIRA (ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEIS) 2010/2 Módulo II

Gabarito das Autoatividades MATEMÁTICA FINANCEIRA (ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEIS) 2010/2 Módulo II Gabarito das utoatividades (DSÇÃO/ÊS OBS) 2010/2 ódulo USSLV D GBO DS UOVDDS GBO DS UOVDDS D 3 UDD 1 ÓPO 1 1 Defina a atemática inanceira..: atemática inanceira é uma disciplina que estuda o valor do

Leia mais

Tabela de Taxas de Juro

Tabela de Taxas de Juro Preçário Banco Angolano de Investimentos, S.A. (Instituição Financeira Bancária) ANEXO II Tabela de Taxas de Juro DATA DE ENTRADA EM VIGOR: 26 DE MARÇO DE 2015 O Preçário pode ser consultado nos balcões

Leia mais

UNIDADE Sistemas de amortização de empréstimo e financiamento

UNIDADE Sistemas de amortização de empréstimo e financiamento UNIDADE 4 Sistemas de amortização de empréstimo e financiamento 109 Curso de Graduação em Administração a Distância Objetivo Nesta Unidade, você será levado a: diferenciar os dois tipos de sistema de amortização;

Leia mais

RESOLUÇÃO DAS QUESTÕES. Disponibilizo abaixo a resolução resumida das questões dos cargos 4 e 5 da prova da ANTAQ.

RESOLUÇÃO DAS QUESTÕES. Disponibilizo abaixo a resolução resumida das questões dos cargos 4 e 5 da prova da ANTAQ. RESOLUÇÃO DAS QUESTÕES Caro aluno, Disponibilizo abaixo a resolução resumida das questões dos cargos 4 e 5 da prova da ANTAQ. Caso você entenda que cabe recurso em relação a alguma questão, não hesite

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos

Leia mais

PLANOS DE FINANCIAMENTO METERIAL COMPLEMENTAR

PLANOS DE FINANCIAMENTO METERIAL COMPLEMENTAR PLANOS DE FINANCIAMENTO METERIAL COMPLEMENTAR José Luiz Miranda PLANOS DE FINANCIAMENTO Imagine uma operação financeira representada por um financiamento de R$ 1.200,00 no prazo de 5 meses à taxa de juros

Leia mais

Juros Simples. www.siteadministravel.com.br

Juros Simples. www.siteadministravel.com.br Juros Simples Juros simples é o acréscimo percentual que normalmente é cobrado quando uma dívida não foi pago na data do vencimento. Financiamento de casa própria A casa própria é o sonho de muitas famílias,

Leia mais