PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON"

Transcrição

1 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de trabalhos é o estudo e a mplementação de algortmos cuja área de a- plcação seja o Processamento e Análse de Imagens. O trabalho desenvolvdo e aqu apresentado descreve uma das váras técncas de lmarzação teratvas, proposta por Lam e Leung [1]. O algortmo tema desse artgo fo mplementado e testado pelos autores, e os resultados obtdos são apresentados de forma detalhada a segur. Palavras-chaves: Lmarzação, Bnarzação, Métodos Iteratvos, Método de Lam Leung. 1. Introdução A representação de uma magem, capturada para um meo dgtal, é uma matrz I(m,n) onde m é o número de lnhas de pcture elements (pxels) e n é o número de colunas de pcture elements. Cada elemento dessa matrz representa a cor de um ponto da magem, podendo ser, por exemplo, 0 e 1 (para uma magem bnára), 0 a 55 (para tons de cnza) ou três números de 0 a 55 (representando uma cor). Entre os mutos procedmentos aplcados sobre essas magens, a nível de pxels, está a lmarzação (thresholdng). Esta operação consste em converter uma magem com város níves de tons de cnza em uma magem bnára, ou seja, com duas cores. O processo de lmarzação consste em dstngur dos níves, ou regões de uma magem. O prmero nível abrga a regão de nteresse da magem, ou seja, a área onde estão os objetos que se destacam; e o segundo nível é o plano de contraste com o prmero. O objetvo da lmarzação também chamada de bnarzação é determnar a quas dos dos planos acma descrtos pertencem cada pxel da magem. Os algortmos de lmarzação prevêem um valor lmar (threshold) t o nível de cnza lmte entre uma regão e outra, através do qual é feta a classfcação e a obtenção da nova magem bnarzada, da segunte forma: os pxels com valor menor que t pertencem ao segundo plano e os pxels com valor maor ou gual a t pertencem à regão de nteresse. Freqüentemente, para o cálculo de t, os algortmos se utlzam de um hstograma (dstrbução da freqüênca dos pxels através dos níves de cores da magem). Numa técnca como essa, os algortmos procuram vales (valores mínmos) em meo a dos pcos (valores máxmos); esses valores mínmos podem vr a ser um t em potencal.. Lmarzação de magens de máxma entropa Uma magem de entropa máxma possu um hstograma bastante rregular e varado, onde os pxels se espalham pela maora dos níves de cnza e em concentrações dferentes. Para estas magens há uma grande dfculdade de lmarzação, e a maora dos algortmos não consegue detectar um lmar acetável. Uma solução para esse problema é a utlzação do processo de lmarzação teratvo que se segue.

2 3. Lmarzação teratva Consderando-se uma magem prmára que possu níves de cnza x = 0,1,,..., N 1, a função densdade de probabldade (f.d.p) dessa magem é uma f(x). Maxmzando-se a entropa da magem com uma méda prescrta µ e um desvo padrão σ, obtemos a forma quase Gaussana da equação 1. f ( x µ ) 1 x) = N( x; µ, σ ) = exp σ π σ x = 0,1,,..., N 1 Equação 1 ( Para propóstos de lmarzação, consderam-se as f.d.p. de duas magens prmáras f 0 (x) e f 1 (x) msturadas a uma taxa α. A função de densdade de probabldade dessa nova magem será: f ( 0 1 x x) = αf ( x) + (1 α) f ( ), onde 0 α 1 Equação Onde f 0 (x) e f 1 (x) tem a forma mostrada na equaç ão 1, ou seja: f ( x) 1 ( x µ ) x = 0,1,,..., N 1 N ( x; µ, σ ) = exp, com σ π σ = 0,1 Equação 3 = Se os parâmetros α, µ 0, σ 0, µ 1 e σ 1 estverem dsponíves, os pxels que tverem o nível de cnza x satsfazendo a nequação 1 serão segmentados na classe C 0 e os que não satsfazem serão segmentados na classe C 1. α f 0 ( x) > (1 α) f1( x) Inequação 1 Normalmente esses parâmetros não estão dsponíves, e estes são os valores que serão estmados para que, a cada teração, se calcule o lmar. A seqüênca comumente adotada pelos algortmos de lmarzação teratvos é mostrada na fgura 1, e pode ser narrado da segunte forma: obtém-se o lmar t randômco, lmarza-se a magem em t, a partr da magem lmarzada estma-se os parâmetros de lmarzação e calcula-se o próxmo lmar t. O processo se repete a partr da lmarzação em t, com t = t, até que o t calculado seja o mesmo que t. Caso t não seja encontrado, então deve-se seleconar um novo t randomcamente. A dferença básca entre os mutos algortmos está em como cada um estma os parâmetros. 4. Lmarzação teratva de Lam e Leung (L&L) Como os demas algortmos teratvos, L&L também compartlha do mesmo modelo de fluxo da fgura 1. Este algortmo é uma versão teratva do algortmo de Jordan, que é, na verdade, uma técnca de segmentação em város lmares. Em L&L deve-se consderar apenas casos que resultem em apenas um lmar.

3 3 Fgura 1 Os parâmetros são estmados da segunte forma: α é 0, e µ 1 e σ 1 são a méda smples e o desvo padrão dos pxels classfcados como C 1 na magem lmarzada em t. O novo valor lmar será defndo pela avalação da desgualdade da nequação. Os pxels que satsfzeremna serão classfcados na classe C 0, os que não a satsfzerem serão classfcados em C Dscussão do algortmo f ( x) > N( x; µ 1, σ 1) Inequação A mplementação do método de lmarzação teratva de Lam e Leung mostrou-se confuso em algumas partes. A análse das nformações sobre o algortmo revelou quatro pontos crítcos que serão dscutdos a segur. O prmero obstáculo encontrado fo a defnção do prmero t. Conforme o estudo efetuado, deve-se seleconar um t aleatóro, entre os níves da magem. Para que nenhum nível de cnza dexe de ser avalado, pegou-se o prmero nível exstente na magem, de modo a também poupar processamento. Esta solução também fo adotada por Lam e Leung, conforme artgo [1]. Outro problema encontrado fo defnr que t seleconar quando o processo do algortmo não encontrar um t. A solução aplcada fo a nserção de um ncremento em t caso não seja encontrado um lmar. Esta ação vsa evtar que um nível de cnza, que pode potencalmente ser um lmar, dexe de ser avalado devdo ao método de geração de lmares aleatóros, o que podera acontecer, por exemplo, se utlzação um método em forma de sorteo. Esses apresentados acma foram problemas relatvamente smples encontrados já na avalação das nformações dsponíves. As outras duas dfculdades foram encontradas apenas durante a depuração do códgo e são descrtas a segur.

4 4 O problema da segmentação, comentado no tem 4, pode acontecer no resultado de todas terações. A avalação da nequação pode resultar em dos ou mas lmares, e para dar seqüênca ao algortmo é necessáro um, e somente um, lmar. Nos casos em que aparecem mas de um lmar as nformações contdas em [1] dzam apenas para desconsderar. Porém, mplementou-se um método de escolha, onde o maor f(x) o pxel com maor valor na f.d.p. entre os lmares é escolhdo como t. Com a mplementação desse método obtvemos lmares úncos para cem por cento das magens testadas para as quas esse comportamento problemátco fo observado. Deve-se ressaltar, também, que apenas um t por vez é gual a t, o que sempre resultará em um únco lmar por vez, porém a aplcação do algortmo para todos os níves de cnza pode, sm, resultar em mas de um lmar. Portanto, da forma como é descrto, o algortmo de Lam e Leung sempre produzrá apenas um lmar como resultado. Por fm, o últmo problema encontrado aconteceu em alguns casos em que, a partr do lmar ncal t 0, nenhum t fo encontrado até um lmar aleatóro gerado pelo método para seleconar um novo t, quando t não é encontrado t n. Nesse ponto, o t calculado fo gual a t 0, fazendo com que o algortmo retornasse ao estado ncal, causando assm um cclo nfnto. Para evtar esse cclo, nseru-se uma condção na qual se t for menor que t, o próxmo t dexa de ser t para ser t + 1. Dessa forma acabaram-se os cclos, porém, em nenhum dos casos problemátcos fo possível obter um resultado satsfatóro. 6. Conclusão O algortmo desenvolvdo está no anexo 1, fo desenvolvdo para trabalhar com fguras de 56 níves de cnza. Vale comentar o seu funconamento aqu. O lmar t é calculado ncalmente pelo prmero nível de cnza da - magem. Os parâmetros de f(x) a magem prmára são calculados para a avalação posteror, e a cada teração, da nequação. Calcula-se f(x) para todas os 56 níves de cnza. Efetua-se a lmarzação através do hstograma, guardando-se apenas os dados da classe C 1 que é a classe que será avalada posterormente. Calcula-se N(x;µ 1, σ 1 ) para os 56 níves de cnza. Avala-se a nequação e determna-se t. O funconamento do algortmo segue exatamente o fluxo da fgura 1. Note que se trabalha com todos os níves de cnza, e não com toda magem, o que sera extremamente custoso; podera se trabalhar apenas com os níves de cnza exstentes, contudo poder-se-a perder no uso de memóra, já que sera necessáro guardar maor número de nformações. 7. Referêncas [1] C.K. Leung, F.K. Lam, Performance Analyss for a Class of Iteratve Image Thresholdng Algorthms, Pattern Recognton, vol 9, no. 9, pp , 1996

5 5 IMPLEMENTAÇÃO: // Algortmo de Lmarzacao Iteratva de Lam-Leung BOOL CLmar::LmarIteratvaLamLeung() double fdex[56]; // dstrbução normal dos pontos na magem ncal double ndex[56]; // dstrbução normal dos pontos na magem lmarzada nt aux,aux1; nt nbtsc1; // número total de bts classfcados em C1 double m,m1; // parametros da dstrbução normal double sgma,sgma1; // parametros da dstrbução normal double sgma_,sgma1_; // parametros da dstrbução normal unsgned long ; // índce, e número total de bts na magem const double c_pi= ; // constante p double rp; unsgned nt Iteracoes; BYTE Lmar; f (!(VerfyConsstentIn() && VerfyConsstentOut()) ) return FALSE; CopyImageInOut(); ClockStart(); Hstograma(); rp = sqrt(*c_pi); // Calculando parâmetros méda e t ncal m = 0; for(=0;<56;++) m+=*m_hsto[];; m=m/m_totalpxels; // Calculando desvo padrão sgma_ = 0; for(=0;<56;++) sgma_ += m_hsto[]*(-m)*(-m); sgma_ /= m_totalpxels; sgma = sqrt(sgma_); //Calculando f(x) for(=0;<56;++) fdex[] = (1.0/(sgma*rp)) * exp(-(-m)*(-m)/(*sgma_)); NvelMnMax(); Lmar = m_lmn; Iteracoes = 0; whle(lmar<55) nbtsc1=0; // Lmarzando em t for(=lmar+1;<56;++) nbtsc1+=m_hsto[]; // Calculando méda (m1) dos pontos que fcaram na classe C1 m1=0.0; for(=lmar+1;<56;++)

6 6 m1 += *m_hsto[]; m1 /= nbtsc1; // Calculando desvo padrão (sgma1) dos pontos que fcaram na classe C1 sgma1_=0.0; for(=lmar+1;<56;++) sgma1_ += m_hsto[]*(-m1)*(-m1); sgma1_ /= nbtsc1; sgma1 = sqrt(sgma1_); // Calculando N(x) for(=0;<56;++) ndex[]=(1.0/(sgma1*rp))*exp(-((-m1)*(-m1))/(*sgma1_)); // avalando o novo t aux=-1,aux1=-1; // aux1 é o novo lmar // aux é uma varável de controle de lmares // procurando por lmares for(=0;<56;++) f(fdex[]>*ndex[]) f(aux<0) aux1=; else f(aux==0) // caso haja mas de um lmar, escolhe o que tver maor f(x) f(fdex[]>fdex[aux1]) aux1=; aux=1; else aux=0; // se não encontrou nenhum lmar novo f(aux==0 && aux1<0) Lmar++; else Iteracoes++; // condção de parada, fm de terações f(lmar==aux1) break; // condção para evtar cclos f(lmar>aux1) Lmar++; // caso não seja momento da parada contnua t como o novo lmar else Lmar=aux1; SetIteracoes((DWORD)Iteracoes); SetLmar((BYTE)Lmar); AplcarLmar();

7 7 ClockFnsh("Lmarzacao Iteratva de Lam-Leung"); return TRUE;

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unersdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PRF. DR. JACQUES FACN LIMIARIZAÇÃ FUZZY C MEANS Resumo: Este artgo descree não só a teora, mas também

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A

AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A Jacklyn Res 1, João Claudo Carvalho 2, Marcelo Costa 3, Rodolfo Alves 4 1 Eletronorte S/A, Belém-PA,

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

4 Planejamento de Rede

4 Planejamento de Rede 43 4 Planejamento de ede este capítulo é apresentado o planejamento da rede do sstema CDMA, nclundo dmensonamento, planejamento de capacdade e cobertura e otmzação da rede [4] O planejamento vsa à alocação

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

CAPÍTULO 4 METODOLOGIA. Definição do problema. Revisão Bibliográfica. Seleção das imagens SAR e dos dados auxiliares

CAPÍTULO 4 METODOLOGIA. Definição do problema. Revisão Bibliográfica. Seleção das imagens SAR e dos dados auxiliares Na Físca, uma boa resposta vem com trabalho, e uma boa pergunta com nspração Marcelo Gleser CAPÍTULO 4 METODOLOGIA Este capítulo está estruturado da segunte forma (Fgura 4.1): ncalmente, tem-se um descrção

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

ESCOLA POLITÉCNICA DE PERNAMBUCO. Resumo

ESCOLA POLITÉCNICA DE PERNAMBUCO. Resumo Resumo A Computação Evoluconára tem sdo bem aplcada na resolução de dversos problemas. Notadamente, a programação evoluconára apresenta bons resultados na mnmzação de funções multmodas. Tradconalmente,

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G.

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G. PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS N. R. Canddo, V.B. G. Campos RESUMO Apresenta-se neste trabalho um procedmento de auxílo à decsão

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Aprendizado Competitivo e Auto-Organizado

Aprendizado Competitivo e Auto-Organizado 5945851-1 Pscologa Conexonsta Antono Roque Aula 9 Aprendzado Compettvo e Auto-Organzado Uma característca mportante das redes neuras é a sua capacdade de aprender a partr de estímulos fornecdos pelo meo-ambente.

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Associação de Resistores Física 2

Associação de Resistores Física 2 Assocação de esstores Físca 2 Aula 4. Sére I. A corrente elétrca é a mesma em cada resstor. II. A ddp total se dvde entre os resstores. III. A resstênca equvalente é a soma das resstêncas elétrcas de cada

Leia mais

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Unversdade Estadual de Campnas Insttuto de Matemátca, Estatístca e Computação Centífca Departamento de Matemátca Aplcada DISSERTAÇÃO DE MESTRADO UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES Lela A. de Castro Motta 1 & Maxmlano Malte Resumo Este trabalho aborda a ntrodução da segurança baseada em métodos probablístcos,

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining O Método de Redes Neuras com Função de Atvação de Base Radal para Classfcação em Data Mnng Ana Paula Scott 1, Mersandra Côrtes de Matos 2, Prscyla Walesa T. A. Smões 2 1 Acadêmco do Curso de Cênca da Computação

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Guia 11 Escalonamento de Mensagens

Guia 11 Escalonamento de Mensagens Até esta altura, temos abordado prncpalmente questões relaconadas com escalonamento de tarefas a serem executadas num únco processador. No entanto, é necessáro consderar o caso de sstemas tempo-real dstrbuídos,

Leia mais

4 Análise termoeconômica

4 Análise termoeconômica 4 Análse termoeconômca Os capítulos precedentes abordaram questões emnentemente térmcas da aplcação de nanofludos em sstemas ndretos de refrgeração. Ao tratar das magntudes relatvas e da natureza das componentes

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO

COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO Célo Mascho e Dens José Schozer, Unversdade Estadual de Campnas, Faculdade de Engenhara Mecânca

Leia mais

MODELO ADAPTATIVO BASEADO EM REGRAS NEBULOSAS APLICADO À PREVISÃO DE SÉRIES DE VAZÕES SEMANAIS

MODELO ADAPTATIVO BASEADO EM REGRAS NEBULOSAS APLICADO À PREVISÃO DE SÉRIES DE VAZÕES SEMANAIS MODELO ADAPTATIVO BASEADO EM REGRAS NEBULOSAS APLICADO À PREVISÃO DE SÉRIES DE VAZÕES SEMANAIS IVETTE LUNA, SECUNDINO SOARES, ROSANGELA BALLINI Departamento de Engenhara de Sstemas DENSIS Faculdade de

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Se considerarmos, por exemplo, uma função f real de variável real,

Se considerarmos, por exemplo, uma função f real de variável real, 107 5 Gráfcos 5.1 Introdução Dada uma função real de varável real 16 f, o gráfco desta função é o conjunto de pontos ( x, y), onde x pertence ao domíno da função e f ( x) y =, ou seja, {( x y) x D y f

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

3 Cálculo Básico de Enlace Via Satélite

3 Cálculo Básico de Enlace Via Satélite 35 3 Cálculo Básco de Enlace Va Satélte Neste capítulo é tratado o cálculo básco de um enlace va-satélte, subentenddo em condções normas de propagação (espaço lvre) nos percursos de subda e descda e consderados

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Caderno de Fórmulas. Notas Comerciais Cetip21

Caderno de Fórmulas. Notas Comerciais Cetip21 Notas Comercas Cetp21 Últma Atualzação: 22/12/2015 E ste Caderno tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos de valorzação de Notas Comercas. É acatado regstro

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PRODUÇÃO CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL Dego

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

AUTOMAÇÃO NA EXTRAÇÃO DE OBJETOS CARTOGRÁFICOS A PARTIR DE DADOS DE ALTA RESOLUÇÃO

AUTOMAÇÃO NA EXTRAÇÃO DE OBJETOS CARTOGRÁFICOS A PARTIR DE DADOS DE ALTA RESOLUÇÃO II Smpóso Braslero de Cêncas Geodéscas e Tecnologas da Geonformação Recfe - PE, 8- de setembro de 2008 AUTOMAÇÃO NA EXTRAÇÃO DE OBJETOS CARTOGRÁFICOS A PARTIR DE DADOS DE ALTA RESOLUÇÃO ALUIR PORFÍRIO

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL

DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL Moacr Krpka, Prof. Dr. Zacaras M. Chamberlan Prava, Prof. Dr. Maga Marques Das, Acadêmca, Bolssta UPF Gulherme Fleth de

Leia mais

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO Rodrgo Mkosz Gonçalves John Alejandro Ferro Sanhueza Elmo Leonardo Xaver Tanajura Dulana Leandro Unversdade Federal do Paraná - UFPR

Leia mais

Abordagens AGRUPAMENTO ( CLUSTERING ) K-means clustering. Exemplo

Abordagens AGRUPAMENTO ( CLUSTERING ) K-means clustering. Exemplo AGRUPAMENTO ( CLUSTERING ) Obectvo genérco: dado um conunto de nstâncas de treno, sem nformação fornecda sobre a classe ou categora a que pertencem, determnar um conunto de classes que permta organzar

Leia mais

UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS

UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS José André de M. Brto IBGE Insttuto Braslero de Geografa e Estatístca emal: brtom@bge.gov.br Av. Chle,

Leia mais

PROPOSTA DE UM MÉTODO DE CLASSIFICAÇÃO BASEADO EM DENSIDADE PARA A DETERMINAÇÃO DO NÚMERO IDEAL DE GRUPOS EM PROBLEMAS DE CLUSTERIZAÇÃO

PROPOSTA DE UM MÉTODO DE CLASSIFICAÇÃO BASEADO EM DENSIDADE PARA A DETERMINAÇÃO DO NÚMERO IDEAL DE GRUPOS EM PROBLEMAS DE CLUSTERIZAÇÃO PROPOSTA DE UM MÉTODO DE CLASSIFICAÇÃO BASEADO EM DENSIDADE PARA A DETERMINAÇÃO DO NÚMERO IDEAL DE GRUPOS EM PROBLEMAS DE CLUSTERIZAÇÃO Gustavo Slva Semaan 1, Marcelo Db Cruz 2, José André de Moura Brto

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

RAI - Revista de Administração e Inovação ISSN: Universidade de São Paulo Brasil

RAI - Revista de Administração e Inovação ISSN: Universidade de São Paulo Brasil RAI - Revsta de Admnstração e Inovação ISSN: 809-2039 campanaro@unnove.br Unversdade de São Paulo Brasl Gron, Elzabeth; Urbe Opazo, Mguel Angel; Frere Rocha Junor, Wemar; Toesca Gmenes, Rego Marco APLICAÇÃO

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

OBJETIVO DAS NORMAS. LIMITES DE DOSES OCUPACIONAIS Norma CNEN-NE.3.01 de julho de Limites Primários

OBJETIVO DAS NORMAS. LIMITES DE DOSES OCUPACIONAIS Norma CNEN-NE.3.01 de julho de Limites Primários OBJETVO DAS NORMAS Proteção Radológca: normas Profª. Dra. Regna Btell Mederos Coordenadora do Núcleo de Proteção Radológca Responsável pela Coordenadora de Físca e Hgene das Radações - DD emal: rbtell.dd@epm.br

Leia mais

Modelagens Exata e Heurística para Resolução do Problema do Caixeiro Viajante com Coleta de Prêmios

Modelagens Exata e Heurística para Resolução do Problema do Caixeiro Viajante com Coleta de Prêmios XXIV Encontro Nac. de Eng. de Produção - Floranópols, SC, Brasl, 03 a 05 de nov de 2004 Modelagens Exata e Heurístca para Resolução do Problema do Caxero Vajante com Coleta de Prêmos Antôno Augusto Chaves

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

APLICAÇÃO DE ALGORITMOS GENÉTICOS AO PROBLEMA DE COBERTURA DE CONJUNTO

APLICAÇÃO DE ALGORITMOS GENÉTICOS AO PROBLEMA DE COBERTURA DE CONJUNTO A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN APLICAÇÃO DE ALGORITMOS GENÉTICOS AO PROBLEMA DE COBERTURA DE CONJUNTO Ademr Aparecdo Constantno Unversdade Estadual de

Leia mais

Título: A importância da saúde como um dos determinantes da distribuição de rendimentos e pobreza no Brasil

Título: A importância da saúde como um dos determinantes da distribuição de rendimentos e pobreza no Brasil Título: A mportânca da saúde como um dos determnantes da dstrbução de rendmentos e pobreza no Brasl Autoras: Kenya Valera Mcaela de Souza Noronha Aluna do programa de Doutorado em Economa do Centro de

Leia mais

FONTES DISCRETAS DE INFORMAÇÃO

FONTES DISCRETAS DE INFORMAÇÃO FONTES DISCRETAS DE INFORMAÇÃO Podeos caracterzar fontes dscretas de nforação por u conjunto fnto x x, K, denonados de alfabeto da fonte. A probabldade de M síbolos, {,, x M } da fonte etr cada síbolo

Leia mais