Curso Intensivo Pré-Vestibular UFPB Campus I (João Pessoa) Matemática

Tamanho: px
Começar a partir da página:

Download "Curso Intensivo Pré-Vestibular UFPB 2012. Campus I (João Pessoa) Matemática"

Transcrição

1 Curso Intensivo Pré-Vestibular UFPB 2012 P á g i n a 276 Campus I (João Pessoa) Matemática Diego de Lima / Erielson Nonato / José Alisson / Manoel Fernandes Sergio Maurício / Thiago Andrade Professor Responsável: Prof. Dr. Luiz de Sousa Jr. (Chefe de Gabinete Reitor UFPB) Coordenadoa Pedagógica: Sabrina Grisi P. de Alencar Apoio Pedagógico: Jivago Correia Barbosa Coordenador de Área: Euzivan Bernardo da Silva

2 EXAME NACIONAL DO ENSINO MÉDIO - ENEM P á g i n a 277 TEXTO PARA QUESTÕES 1 E 2 No quadro abaixo estão as contas de luz e água de uma mesma residência. Além do valor a pagar, cada conta mostra como calculá-lo, em função do consumo de água (m 3 ) e de eletricidade (kwh). Observe que na conta de luz o valor a pagar é igual ao consumo multiplicado por certo fator. Já na conta de água existe uma tarifa mínima e diferentes faixas de tarifação. COMPANHIA ELÉTRICA Fornecimento Valor R$ 401 KWH x 0, ,23 COMPANHIA DE SANEAMENTO TARIFAS DE ÁGUA / M 3 Faixas de Consumo Tarifa Consumo Valor R$ Até 10 5,50 Tarifa mínima 5,50 11 a 20 0,85 7 5,95 21 a 30 2,13 31 a 50 2,13 Acima 50 2,36 Total 11,45 Com os dados acima responda as questões 1 e (ENEM) Suponha que, no próximo mês, dobre o consumo de energia elétrica dessa residência. O novo valor da conta será de: a) R$ 55,23 b) R$ 106,46 c) R$ 802,00 d) R$ 100,00 e) R$ 22,90 2. (ENEM) Suponha agora que dobre o consumo de água. O novo valor da conta será de: a) R$ 22,90 b) R$ 106,46 c) R$ 43,80 d) R$ 17,40 d) R$ 22,52 3. (ENEM) Um pátio de grandes dimensões vai ser revestido por pastilhas quadradas brancas e pretas, segundo o padrão representado abaixo, que vai ser repetido em toda a extensão do pátio. As pastilhas de cor branca custam por metro quadrado e as de cor preta. O custo por metro quadrado do revestimento será: 4. (Simulado ENEM/MEC) A evolução da luz: as lâmpadas LED já substituem com grandes vantagens a velha invenção de Thomas Edison. A tecnologia do LED é bem diferente das lâmpadas incandescentes e das fluorescentes. A lâmpada LED é fabricada com material semicondutor semelhante ao usado nos chips de computador. Quando percorrido por uma corrente elétrica, ele emite luz. O resultado é uma peça muito menor, que consome menos energia e tem uma durabilidade maior. Enquanto uma lâmpada comum tem vida útil de horas e uma fluorescente de horas, a LED rende entre e horas de uso ininterrupto. Há um problema, contudo: a lâmpada LED ainda custa mais caro, apesar de seu preço cair pela metade a cada dois anos. Essa tecnologia não está se tornando apenas mais barata. Está também mais eficiente, iluminando mais com a mesma quantidade de energia. Uma lâmpada incandescente converte em luz apenas 5% da energia elétrica que consome. As lâmpadas LED convertem até 40%. Essa diminuição no desperdício de energia traz benefícios evidentes ao meio ambiente. A evolução da luz. Veja, 19 dez Disponível em:

3 P á g i n a 278 Acesso em: 18 out Considerando que a lâmpada LED rende 100 mil horas, a escala de tempo que melhor reflete a duração dessa lâmpada é o: (A) dia. (B) ano. (C) decênio. (D) século. (E) milênio. 5. (Simulado ENEM/MEC) A figura a seguir mostra a porcentagem de oxigênio (O 2 ) presente na atmosfera, ao longo de 4,5 bilhões de anos, desde a formação da Terra até a era dos dinossauros. Disponível em: Acesso em: 1º mar Considere que a escala de tempo fornecida seja substituída por um ano de referência, no qual a evolução química é identificada como 1º de janeiro à zero hora e a era dos dinossauros como dia 31 de dezembro às 23 h 59 min e 59,99 s. Desse modo, nesse ano de referência, a porcentagem de oxigênio (O 2 ) presente na atmosfera atingiu 10% no (A) 1º bimestre. (B) 2º bimestre. (C) 2º trimestre. (D) 3º trimestre. (E) 4º trimestre. 6. (Simulado ENEM/MEC) Uma pessoa de estatura mediana pretende fazer um alambrado em torno do campo de futebol de seu bairro. No dia da medida do terreno, esqueceu de levar a trena para realizar a medição. Para resolver o problema, a pessoa cortou uma vara de comprimento igual a sua altura. O formato do campo é retangular e foi constatado que ele mede 53 varas de comprimento e 30 varas de largura. Uma região R tem área AR, dada em m², de mesma medida do campo de futebol, descrito acima. A expressão algébrica que determina a medida da vara em metros é A 1590 ) R A. ) R A. ). ) R A A Vara m B Vara m C Vara m D Vara m E) Vara R m AR (Simulado ENEM/MEC) O capim-elefante é uma designação genérica que reúne mais de 200 variedades de capim e se destaca porque tem produtividade de aproximadamente 40 toneladas de massa seca por hectare por ano, no mínimo, sendo, por exemplo, quatro vezes maior que a da madeira de eucalipto. Além disso, seu ciclo de produção é de seis meses, enquanto o primeiro corte da madeira de eucalipto é feito a partir do sexto ano. Disponível em: Acesso em: 18 dez (com adaptações). Considere uma região R plantada com capim-elefante que mantém produtividade constante com o passar do tempo. Para se obter a mesma quantidade, em toneladas, de massa seca de eucalipto, após o primeiro ciclo de produção dessa planta, é necessário plantar uma área S que satisfaça à relação (A) S = 4R. (B) S = 6R. (C) S = 12R. (D) S = 36R. (E) S = 48R. 8. (Simulado ENEM/MEC) A cada ano, a Amazônia Legal perde, em média, 0,5% de suas florestas. O percentual parece pequeno, mas equivale a uma área de quase 5 mil quilômetros quadrados. Os cálculos feitos pelo Instituto do Homem e do Meio Ambiente da Amazônia (Imazon) apontam um crescimento de 23% na taxa de destruição da mata em junho de 2008,

4 P á g i n a 279 quando comparado ao mesmo mês do ano Aproximadamente 612 quilômetros quadrados de floresta foram cortados ou queimados em quatro semanas. Nesse ritmo, um hectare e meio (15 mil metros quadrados ou pouco mais de um campo de futebol) da maior floresta tropical do planeta é destruído a cada minuto. A tabela abaixo mostra dados das áreas destruídas em alguns Estados brasileiros. Supondo a manutenção desse ritmo de desmatamento nesses Estados, o total desmatado entre agosto de 2008 e junho de 2009, em valores aproximados, foi (A) inferior a km². (B) superior a km 2 e inferior a km². (C) superior a km 2 e inferior a km². (D) superior a km 2 e inferior a km². (E) superior a km². 9. (Simulado ENEM/MEC) Um desfibrilador é um equipamento utilizado em pacientes durante parada cardiorrespiratória com objetivo de restabelecer ou reorganizar o ritmo cardíaco. O seu funcionamento consiste em aplicar uma corrente elétrica intensa na parede torácica do paciente em um intervalo de tempo da ordem de milissegundos. O gráfico seguinte representa, de forma genérica, o comportamento da corrente aplicada no peito dos pacientes em função do tempo. De acordo com o gráfico, a contar do instante em que se inicia o pulso elétrico, a corrente elétrica inverte o seu sentido após (A) 0,1 ms. (B) 1,4 ms. (C) 3,9 ms. (D) 5,2 ms. (E) 7,2 ms. 10. (Simulado ENEM/MEC) As condições de saúde e a qualidade de vida de uma população humana estão diretamente relacionadas com a disponibilidade de alimentos e a renda familiar. O gráfico I mostra dados da produção brasileira de arroz, feijão, milho, soja e trigo e do crescimento populacional, no período compreendido entre 1997 e O gráfico II mostra a distribuição da renda familiar no Brasil, no ano de Considere que três debatedores, discutindo as causas da fome no Brasil, chegaram às seguintes conclusões: Debatedor 1 - O Brasil não produz alimento suficiente para alimentar sua população. Como a renda média do brasileiro é baixa, o País não consegue importar a quantidade necessária de alimentos e isso é a causa principal da fome. Debatedor 2 - O Brasil produz alimentos em quantidade suficiente para alimentar toda sua população. A causa principal da fome, no Brasil, é a má distribuição de renda. Debatedor 3 - A exportação da produção agrícola brasileira, a partir da inserção do País no mercado internacional, é a causa majoritária da subnutrição no País. Considerando que são necessários, em média, 250 kg de alimentos para alimentar uma pessoa durante um ano, os dados dos gráficos I e II, relativos ao ano de 2003, corroboram apenas a tese do(s) debatedor(es) (A) 1. (B) 2. (C) 3. (D) 1 e 3. (E) 2 e 3.

5 P á g i n a (ENEM/2011) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro e traseiro; b) altura b entre o solo e o encosto do piloto. Ao optar pelas medidas a e b em metros, obtêm-se, respectivamente, A 0,23 e 0,16. D 230 e 160. B 2,3 e 1,6. E e C 23 e (ENEM/2011) O medidor de energia elétrica de uma residência, conhecido por relógio de luz, é constituído de quatro pequenos relógios, cujos sentidos de rotação estão indicados conforme a figura: A medida é expressa em kwh. O número obtido na leitura é composto por 4 algarismos. Cada posição do número é formada pelo último algarismo ultrapassado pelo ponteiro. O número obtido pela leitura em kwh, na imagem, é A B C D E (ENEM/2011) Em 2010, um caos aéreo afetou o continente europeu, devido à quantidade de fumaça expelida por um vulcão na Islândia, o que levou ao cancelamento de inúmeros voos. Cinco dias após o início desse caos, todo o espaço aéreo europeu acima de metros estava liberado, com exceção do espaço aéreo da Finlândia. Lá, apenas voos internacionais acima de 31 mil pés estavam liberados. Disponível em Acesso em: 21 abr (adaptado). Considere que 1 metro equivale a aproximadamente 3,3 pés. Qual a diferença, em pés, entre as altitudes liberadas na Finlândia e no restante do continente europeu cinco dias após o início do caos? A pés. B pés C pés. D pés. E pés. 14. (ENEM/2011) Em uma certa cidade, os moradores de um bairro carente de espaços de lazer reivindicam à prefeitura municipal a construção de uma praça. A prefeitura concorda com a solicitação e afirma que irá construí-la em formato retangular devido às características técnicas do terreno. Restrições de natureza orçamentária impõem que se gastos, no máximo, 180 m de tela para cercar a praça. A prefeitura apresenta aos moradores desse bairro as medidas dos terrenos disponíveis para a construção da praça: Terreno 1: 55 m por 45 m Terreno 2: 55 m por 55 m Terreno 3: 60 m por 30 m Terreno 4:70 m por 20 m Terreno 5:95 m por 85 m Para optar pelo terreno de maior área, que atenda às restrições impostas pela prefeitura, os moradores deverão escolher o terreno A 1. B 2. C 3. D 4. E (ENEM/2011) Sabe-se que a distância real, em linha reta, de uma cidade A, localizada no estado de São Paulo, a uma cidade B, localizada no estado de Alagoas, é igual a km. Um estudante, ao analisar um mapa, verificou com sua régua que a distância entre essas duas cidades, A e B, era 8 cm. Os dados nos indicam que o mapa observado pelo estudante está na escala de A) 1 : 250 B) 1 : C) 1 : D) 1 : E) 1 : (ENEM/2011) Você pode adaptar as atividades do seu dia a dia de uma forma que possa queimar mais calorias do que as gastas normalmente, conforme a relação seguinte: Enquanto você fala ao telefone, faça agachamentos: 100 calorias gastas em 20 minutos.

6 Meia hora de supermercado: 100 calorias. Cuidar do jardim por 30 minutos: 200 calorias. Passear com o cachorro: 200 calorias em 30 minutos. Tirar o pó dos móveis: 150 calorias em 30 minutos. Lavar roupas por 30 minutos: 200 calorias. P á g i n a 281 Disponível em: Acesso em: 27 abr (adaptado). Uma pessoa deseja executar essas atividades, porém, ajustando o tempo para que, em cada uma, gaste igualmente 200 calorias. A partir dos ajustes, quanto tempo a mais será necessário para realizar todas as atividades? A) 50 minutos. B) 60 minutos. C) 80 minutos. D) 120 minutos. E) 170 minutos. 17. (ENEM/2011) As frutas que antes se compravam por dúzias, hoje em dia, podem ser compradas por quilogramas, existindo também a variação dos preços de acordo com a época de produção. Considere que, independente da época ou variação de preço, certa fruta custa R$ 1,75 o quilograma. Dos gráficos a seguir, o que representa o preço m pago em reais pela compra de n quilogramas desse produto é 18. (ENEM/2011) Um bairro de uma cidade foi planejado em uma região plana, com ruas paralelas e perpendiculares, delimitando quadras de mesmo tamanho. No plano de coordenadas cartesianas seguinte, esse bairro localiza-se no segundo quadrante, e as distâncias nos eixos são dadas em quilômetros. A reta de equação y = x + 4 representa o planejamento do percurso da linha do metrô subterrâneo que atravessará o bairro e outras regiões da cidade. No ponto P = ( 5, 5), localiza-se um hospital público. A comunidade solicitou ao comitê de planejamento que fosse prevista uma estação do metrô de modo que sua distância ao hospital, medida em linha reta, não fosse maior que 5 km. Atendendo ao pedido da comunidade, o comitê argumentou corretamente que isso seria automaticamente satisfeito, pois já estava prevista a construção de uma estação no ponto A) ( 5, 0). D) (0, 4). B) ( 3, 1). E) (2, 6) C) ( 2, 1). 19. (ENEM/2011) O saldo de contratações no mercado formal no setor varejista da região metropolitana de São Paulo registrou alta. Comparando as contratações deste setor no mês de fevereiro com as de janeiro deste ano, houve incremento de vagas no setor, totalizando trabalhadores com carteira assinada. Disponível em: Acesso em: 26 abr (adaptado). Suponha que o incremento de trabalhadores no setor varejista seja sempre o mesmo nos seis primeiros meses do ano. Considerando-se que y e x representam, respectivamente, as quantidades de trabalhadores no setor varejista e os meses, janeiro sendo o primeiro, fevereiro, o segundo, e assim por diante, a expressão algébrica que relaciona essas quantidades nesses meses é

7 P á g i n a 282 A) y = 4 300x B) y = x C) y = x D) y = x E) y = x 20. (ENEM/2011) O número mensal de passagens de uma determinada empresa aérea aumentou no ano passado nas seguintes condições: em janeiro foram vendidas passagens; em fevereiro, ; em março, Esse padrão de crescimento se mantém para os meses subsequentes. Quantas passagens foram vendidas por essa empresa em julho do ano passado? A) B) C) D) E) (ENEM/2011) Muitas medidas podem ser tomadas em nossas casas visando à utilização racional de energia elétrica. Isso deve ser uma atitude diária de cidadania. Uma delas pode ser a redução do tempo no banho. Um chuveiro com potência de W consome 4,8 kw por hora. Uma pessoa que toma dois banhos diariamente, de 10 minutos cada, consumirá, em sete dias, quantos kw? A) 0,8 B) 1,6 C) 5,6 D) 11,2 E) 33,6 22. (ENEM/2011) Cerca de 20 milhões de brasileiros vivem na região coberta pela caatinga, em quase 800 mil km 2 de área. Quando não chove, o homem do sertão e sua família precisam caminhar quilômetros em busca da água dos açudes. A irregularidade climática é um dos fatores que mais interferem na vida do sertanejo. Disponível em: Acesso em: 23 abr Segundo este levantamento, a densidade demográfica da região coberta pela caatinga, em habitantes por Km², é de A) 250. B) 25. C) 2,5. D) 0,25. E) 0, (ENEM/2011) A resistência das vigas de dado comprimento é diretamente proporcional à largura (b) e ao quadrado da altura (d), conforme a figura. A constante de proporcionalidade k varia de acordo com o material utilizado na sua construção. Considerando-se S como a resistência, a representação algébrica que exprime essa relação é A) S = k b d B) S = b d² C) S = k b d² D) S = Kb/d² E) S = k d²/b 24. (ENEM/2009) Em Florença, Itália, na Igreja de Santa Croce, é possível encontrar um portão em que aparecem os anéis de Borromeo. Alguns historiadores acreditavam que os círculos representavam as três artes: escultura, pintura e arquitetura, pois elas eram tão próximas quanto inseparáveis. Qual dos esboços a seguir melhor representa os anéis de Borromeo? 25. (ENEM) Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de 2 metros de lado, conforme a figura. Para uma tampa grande, a empresa produz 4 tampas medias e 16 tampas pequenas. As sombras de material da produção diária das tampas grandes, médias e pequenas dessa empresa são doadas, respectivamente, a três entidades: I, II e III, para efetuar reciclagem do material. A partir dessas informações, pode-se concluir que: a) a entidade I recebe mais material do que a entidade II. b) a entidade I recebe metade do material da entidade III.

8 c) a entidade II recebe o dobro do material da entidade III. d) as entidades I e II recebem, juntas, menos material do que a entidade III. e) as três entidades recebem iguais quantidades de material. P á g i n a 283 O quadro abaixo se refere às questões 26 e (ENEM) Para calcular o volume do liquido contido na garrafa o numero mínimo de medicações a serem realizadas é: a) 1 b) 2 c) 3 d) 4 e) (ENEM) Para calcular a capacidade total da garrafa, lembrando-se que você pode vira-la, o numero mínimo de medicações a serem realizadas é: a) 1 b) 2 c) 3 d) 4 e) (ENEM/2011) O dono de uma oficina mecânica precisa de um pistão das partes de um motor, de 68 mm de diâmetro, para o conserto de um carro. Para conseguir um, esse dono vai até um ferro velho e lá encontra pistões com diâmetros iguais a 68,21 mm; 68,102 mm: 68,001 mm; 68,02 mm e 68,012 mm. Para colocar o pistão no motor que está sendo consertado, o dono da oficina terá de adquirir aquele que tenha o diâmetro mais próximo do que precisa. Nessa condição, o dono da oficina deverá comprar o pistão de diâmetro: A 68,21 mm. B 68,102 mm. C 68,02 mm. D 68,012 mm. E 68,001 mm. 29. (ENEM/2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de A pirâmide. B semiesfera. C cilindro, D tronco de cone. E cone. 30. (ENEM/2011) Café no Brasil O consumo atingiu o maior nível da história no ano passado: os brasileiros beberam o equivalente a 331 bilhões de xícaras. Veja. Ed. 2158, 31 mar Considere que a xícara citada na notícia seja equivalente a, aproximadamente, 120 ml de café. Suponha que em 2010 os brasileiros bebam ainda mais café, aumentando o consumo em 1/5 do que foi consumido no ano anterior. De acordo com essas informações, qual a previsão mais aproximada para o consumo de café em 2010? A) 8 bilhões de litros. B) 16 bilhões de litros. C) 32 bilhões de litros. D) 40 bilhões de litros. E) 48 bilhões de litros. 31. (ENEM/2011) É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo, para atrair beija-flores. Mas é importante saber que, na hora de fazer a mistura, você deve sempre usar uma parte de açúcar para cinco partes de água. Além disso, em

9 P á g i n a 284 dias quentes, precisa trocar a água de duas a três vezes, pois com o calor ela pode fermentar e, se for ingerida pela ave, pode deixá-la doente. O excesso de açúcar, ao cristalizar, também pode manter o bico da ave fechado, impedindo-a de se alimentar. Isso pode até matá-la. Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, nº 166, mar Pretende-se encher completamente um copo com a mistura para atrair beija-flores. O copo tem formato cilíndrico, e suas medidas são 10 cm de altura e 4 cm de diâmetro. A quantidade de água que deve ser utilizada na mistura é cerca de (utilize π = 3) A) 20 ml. B) 24 ml. C) 100 ml. D) 120 ml. E) 600 ml. 32. (ENEM/2009) Uma resolução do Conselho Nacional de Política Energética (CNPE) estabeleceu a obrigatoriedade de adição de biodísel ao óleo diesel comercializado nos postos. A exigência é que, a partir de 1.º de julho de 2009, 4% do volume da mistura final seja formada por biodísel. Até junho de 2009, esse percentual era de 3%. Essa medida estimula a demanda de biodísel, bem como possibilita a redução da importação de diesel de petróleo. Disponível em: Acesso em: 12 jul (adaptado). Estimativas indicam que, com a adição de 4% de biodiesel ao diesel, serão consumidos 925 milhões de litros de biodiesel no segundo semestre de Considerando-se essa estimativa, para o mesmo volume da mistura final diesel/biodiesel consumida no segundo semestre de 2009, qual seria o consumo de biodiesel com a adição de 3%? A 27,75 milhões de litros. B 37,00 milhões de litros. C 231,25 milhões de litros. D 693,75 milhões de litros. E 888,00 milhões de litros. 33. (Simulado ENEM/MEC) Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou nela 600 litros de água. Em seguida, colocou, dentro da caixa com água, um sólido que ficou completamente submerso. Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido? (A) 0,2 m³ (B) 0,48 m³ (C) 4,8 m³ (D) 20 m³ (E) 48 m³ 34. (ENEM/2011) Uma equipe de especialistas do centro meteorológico de uma cidade mediu a temperatura do ambiente, sempre no mesmo horário, durante 15 dias intercalados, a partir do primeiro dia de um mês. Esse tipo de procedimento é frequente, uma vez que os dados coletados servem de referência para estudos e verificação de tendências climáticas ao longo dos meses e anos. As medições ocorridas nesse período estão indicadas no quadro: Em relação à temperatura, os valores da média, mediana e moda são, respectivamente, iguais a A) 17 C, 17 C e 13,5 C. B) 17 C, 18 C e 13,5 C. C) 17 C, 13,5 C e 18 C. D) 17 C, 18 C e 21,5 C. E) 17 C, 13,5 C e 21,5 C Dia do mês Temperatura (em C) 1 15, , , , , , , , Exercícios Propostos PSS 1 1. (UFMG/modificada) Sejam A = { 1, 3, 5, 7, 9, 11}, B = { 1, 2, 3, 4, 5} e C = { 2, 4, 7, 8, 9, 10}, logo (A U B) C A, é a) {2, 4} b) {4} c) {2, 4, 8} d) {1, 3, 5, 11} e) {8, 10}

10 P á g i n a (UFPB) A prefeitura de certa cidade realizou dois concursos: um para gari e outro para assistente administrativo. Nesses dois concursos, houve um total de candidatos inscritos. Desse total, exatamente, 870 fizeram prova somente do concurso para gari. Sabendo-se que, do total de candidatos inscritos, não fizeram a prova do concurso para gari, é correto afirmar que o número de candidatos que fizeram provas dos dois concursos foi: a) b) c) d) e) (UFPB ADAPTADA) Em uma enquete em uma empresa de alimentos, onde todos os 50 funcionários foram entrevistados acerca de suas preferências em relação a três cores para a marca Bela Cor, à saber, Vermelho (V), Branco (B) e Azul (A), os dados estão indicados na tabela a seguir: De acordo com esses dados, é correto afirmar que, nessa enquete, o número de pessoas que não gostaram de nenhuma das três cores foi de: a) 30 c) 31 e) 32 b) 33 d) 34 Cores N DE PESSOAS V 10 B 7 A 10 V e B 5 V e A 4 B e A 3 V, B e A 1 4. (UFPB) Em uma reserva ambiental, habitam 40 predadores que têm predileção por presas dos tipos A, B ou por nenhuma delas. Sabendo-se que desses predadores 18 preferem presas do tipo A, 22 preferem do tipo B e 6 preferem dos dois tipos, a quantidade de predadores que não têm predileção por nenhum dos dois tipos de presas é: a) 3 b) 4 c) 5 d) 6 e) 7 5. (UFPB) Um estudo das condições ambientais na região central de uma grande cidade indicou que a taxa media diária (C) de monóxido de carbono presente no ar é de partes por milhão, para uma grande quantidade de (p) milhares de habitantes. Estima-se que, daqui a t anos, a população nessa região será de p(t) = 2t 2 t milhares de habitantes. Nesse contexto, para que a taxa media diária de monóxido de carbono ultrapasse o valor de 61 partes por milhão, é necessário que tenham sido transcorridos no mínimo: a) 2 anos. b) 2 anos e 6 meses. c) 3 anos. d) 3 anos e 6 meses. e) 4 anos. 6. (UFMG) O carro bicombustível percorre 8km com 1 litro de álcool e 11km com um combustível que contem 75% de gasolina e 25% de álcool, composição adotada no Brasil. Recentemente, o governo brasileiro acenou para um possível mudança, nessa mistura, da porcentagem de álcool, que passaria a ser de 20%. Suponha que o numero de quilômetros que esse carro percorre com 1 litro dessa mistura varie linearmente de acordo com a proporção de álcool utilizada. Então, é correto afirmar que, se for utilizado 1 litro dessa nova mistura proposta pelo governo, esse carro percorrerá um total de: a) 11,2km b) 11,35km c) 11,4km d) 11,55km e) 11,6km 7. (UFMT) A poluição atmosférica em metrópolis aumenta ao longo do dia. Num certo dia, às 8h, o numero de partículas poluentes era 20 em cada 1 milhão de partículas, e às 13h era de 100 partículas poluentes para cada 1 milhão. Admitindo que o número de partículas poluentes varie linearmente com a variação do tempo, o numero de partículas poluentes às 10h e 30min neste dia é: a) 65 b) 60 c) 70 d) 80 e) (UFRGS) Dois carros partem de uma cidade, deslocando-se pela mesma estrada. O gráfico abaixo mostra as distâncias percorridas pelos carros em função do tempo.

11 Analisando o gráfico, verifica-se que o carro que partiu primeiro foi alcançado pelo outro ao ter percorrido exatamente: P á g i n a 286 a) 60 b) 70 c) 75 d) 85 e) (Uespi) Um investidor aplicou 30% de seu capital a juros simples de 1,5% ao mês, durante um ano. O resto foi aplicado a juros simples, durante 1 ano, de 2% ano mês. Se o total de juros recebidos foi de R$ 1776,00, qual era o capital do investidor? a) R$ 5000,00 b) R$ 6000,00 c) R$ 7000,00 d) R$ 8000,00 e) R$ 9000, (Unifacs-Ba) Um trabalhador ganha R$ 12,50 por hora trabalhada até um limite de 44 horas semanais, sendo acrescidos 40% no valor/hora a cada hora extra. A expressão que exprime o salário bruto semanal em função do número x de horas trabalhadas, x 44, corresponde a: a) -17,5x+550 b) -17,5x+1320 c) 17,5x-220 d) 12,5x+550 e) 12,5x (Cefet- PR) Uma companhia distribuidora de energia criou um método para cálculo das contas de luz: resolveu cobrar 5 u.m. de todos os usuários com consumo inferior ou igual a 100 KWH; para os que consomem entre 100 e 300 KWH cobrará 0,05 u.m./kwh e para aqueles que consomem a partir de 300 KWH cobrará 0,05 u.m./kwh +1 u.m. Sendo assim, é verdadeiro afirmar que a função que representa este problema: a) É crescente, pois quanto mais se gasta mais se paga b) É uma função descontínua em x=300 KWH c) É uma função linear d) Terá conjunto imagem e) DF= 12. (Itaúna-MG) A impressão de livros tem um custo fixo de R$ 20,00, para qualquer quantidade de exemplares, e um custo variável, por unidade de R$ 3,00. A expressão que representa o custo total para a impressão de (x 3) exemplares é: A) C(x) = 3x + 20 B) C(x) = 3x 11 C) C(x) = 3x + 10 D) C(x) = 3x + 11 E) C(x) = 3.(x 3) 13. (UFC-CE) Sejam [0, 2] e [a, b] intervalos fechados de números reais, f: [0,2] IR e g: IR [a, b] funções definidas por f(x) = x e g(x) = x + 1. Se a função composta g o f é sobrejetiva, calcule a soma dos extremos [a, b]. 14. (FEI-SP) Ache os valores reais de p para os quais a função f(x) = (p 1)x² + (2p 2)x + p + 1 é positiva, qualquer que seja x. 15. (PUCC-SP) Um projétil da origem O(0, 0), segundo um referencial dado, percorre uma trajetória parabólica que atinge sua altura máxima no ponto (2, 4). Escreva a equação dessa trajetória.

12 P á g i n a (PUC_SP) Sendo f(x) = x² - 3x + 8, calcule o conjunto solução da inequação f(x) > 2f(1). 17. (UFPR) Um lucro diário L é a receita gerada R menos o custo de produção C. suponha que, em certa fábrica, a receita gerada e o custo de produção sejam dados, em reais pelas funções R(x) = 60x x² e C(x) = 10(x + 40), sendo x o número de itens produzidos no dia. Sabendo que a fábrica tem capacidade de produzir até 50 itens por dia, considere as seguintes afirmativas: I - O número mínimo de itens x que devem ser produzidos por dia, para que a fábrica não tenha prejuízo, é 10. II - A função lucro L(x) é crescente no intervalo [0,25] III - Para que a fábrica tenha o maior lucro possível, deve produzir 30 itens por dia. IV - Se a fábrica produzir 50 itens num único dia, terá prejuízo. Assinale a alternativa correta. a) Somente as afirmativas II e IV são verdadeiras. b) Somente as afirmativas I, III e IV são verdadeiras. c) Somente as afirmativas I, II e IV são verdadeiras. d) Somente as afirmativas I e II são verdadeiras. e) Somente as afirmativas II e III são verdadeiras. 18. (PUC_RS) Se x e y são números reais tais que x y = 2, então o valor mínimo de z = x² + y² é: a) 1 b) 0 c) 1 d) 2 e) (UNIFORM) O gráfico da função f, de R em R, definida por f(x) = x² + 3x 10, intercepta o eixo das abscissas nos pontos A e B. A distância AB é igual a: a) 3 b) 5 c) 7 d) 8 e) (CEFET- BA) O gráfico da função y = ax² + bx + c tem uma só intersecção com o eixo Ox e corta o eixo Oy em (0, 1). Então, os valores de a e b obedecem à relação: a) b² = 4a b) b² = 4a c) b = 2a d) a² = - 4a e) a² = 4b 21. (UEL) A função real f, de variável real, dada por f(x) = - x² + 12x + 20, tem valor: a) Mínimo, igual a -16, para x = 6; b) Mínimo, igual a 16, para x = -12; c) Máximo, igual a 56, para x = 6; d) Máximo, igual a 72, para x = 12; e) Máximo, igual a 240, para x = (FUVEST/01) Uma progressão aritmética e uma progressão geométrica têm, ambas, o primeiro termo igual a 4, sendo que os seus terceiros termos são estritamente positivos e coincidem. Sabe-se ainda que o segundo termo da progressão aritmética excede o segundo termo da progressão geométrica em 2. Então, o terceiro termo das progressões é: a) 10 b) 12 c) 14 d) 16 e) (ITA/2000) O valor de n que torna a seqüência (2 + 3n; 5n; 1 4n) uma progressão aritmética pertence ao intervalo: a) [ 2, 1] b) [ 1, 0] c) [0, 1] d) [1, 2] e) [2, 3] 24. (PUC-SP/2003) Os termos da sequência (10; 8; 11; 9; 12; 10; 13; ) obedecem a uma lei de formação. Se a n, em que n pertence a N*, é o termo de ordem n dessa sequência, então a 30 + a 55 é igual a: a) 58 b) 59 c) 60 d) 61 e) 62

13 P á g i n a (UFSCAR/2000) A condição para que três números a, b e c estejam, simultaneamente, em progressão aritmética e em progressão geométrica é que: a) ac = b 2 b) a + c = 2 c) a + c = b 2 d) a = b = c e) ac = 2b 26. (UFLA/99) A soma dos elementos da sequência numérica infinita (3; 0,9; 0,09; 0,009; ) é: a) 3,1 b) 3,9 c) 3,99 d) 3,999 e) (STA. CASA) A soma dos vinte primeiros termos de uma progressão aritmética é -15. A soma do sexto termo dessa P.A., com o décimo quinto termo, vale: a) 3,0 b) 1,0 c) 1,5 d) -1,5 e) -3,0 28. (CESGRANRIO) Na "Projeção da demanda de energia elétrica no Sistema Interligado Nacional (SIN) para o Plano Anual da Operação Energética (PEN 2010)", prevê-se um consumo de energia elétrica nas residências brasileiras de GWh, em 2010, e de GWh, em Considerando- se que essas projeções se confirmem e que o aumento anual no consumo de energia elétrica nas residências brasileiras, de 2010 a 2014, ocorra linearmente, formando uma progressão aritmética (PA), qual será, em GWh, a razão dessa PA? a) 2.315,30 b) 4.630,60 c) 5.788,25 d) 7.717,67 e) 8.691, (CESGRANRIO) A sequência numérica (6, 10, 14,..., 274, 278, 282) tem 70 números, dos quais apenas os três primeiros e os três últimos estão representados. Qualquer número dessa sequência, excetuando-se o primeiro, é igual ao termo que o antecede mais 4. A soma desses 70 números é: a) b) c) d) e) (CESGRANRIO) Segundo dados do Instituto Internacional de Pesquisa da Paz de Estocolmo (Simpri), os gastos militares dos Estados Unidos vêm crescendo nos últimos anos, passando de 528,7 bilhões de dólares, em 2006, para 606,4 bilhões de dólares, em Considerando que este aumento anual venha acontecendo de forma linear, formando uma progressão aritmética, qual será, em bilhões de dólares, o gasto militar dos Estados Unidos em 2010? a) 612,5 b) 621,3 c) 632,3 d) 658,5 e) 684,1 31. (CONESUL) Assinale a alternativa que contém a soma dos dez primeiros termos da P.A. (1; 3; 5;...). a) 90. b) 110. c) 80. d) 100. e) (MACK) O sexto termo de uma PG, na qual dois meios geométricos estão inseridos entre 3 e -24, tomados nessa ordem, é: a) -48 b) -96 c) 48 d) 96 e) 192

14 P á g i n a (UFRGS) Numa PG de razão positiva, o primeiro termo é igual ao dobro da razão, e a soma dos dois primeiros é 24. Nessa progressão a razão é (A) 1 (B) 2 (C) 3 (D) 4 (E) (UFRGS) Numa progressão aritmética de razão 1/2, o primeiro, o sétimo e o décimo nono termo formam, nesta ordem, uma progressão geométrica cuja soma dos termos é (A) 17. (B) 18. (C) 19. (D) 20. (E) (CONSULPLAN) Qual é a soma dos termos da sequência (x - 2, 3x - 10, 10 + x, 5x + 2), para que a mesma seja uma progressão geométrica crescente? a) 52 b) 60 c) 40 d) 48 e) (UFRRJ) Uma forte chuva começa a cair na UFRRJ formando uma goteira no teto de uma das salas de aula. Uma primeira gota cai e 30 segundos depois cai uma segunda gota. A chuva se intensifica de tal forma que uma terceira gota cai 15 segundos após a queda da segunda gota. Assim, o intervalo de tempo entre as quedas de duas gotas consecutivas reduz-se à metade na medida em que a chuva aumenta de intensidade. Se a situação assim se mantiver, em quanto tempo, aproximadamente, desde a queda da primeira gota, a goteira se transformará em um fio contínuo de água? 37. (UFPE) Suponha que o preço de um automóvel se desvalorize 10% ao ano nos seus cinco primeiros anos de uso. Se esse automóvel novo custou R$ 10000,00, qual será o seu valor em reais após os cinco anos de uso? a) 5 550,00 b) 5 804,00 c) 6204,30 d) 5 904,90 e) 5 745, (UFSC) Na progressão geométrica 10, 2,,, , qual é a posição do termo 2 625? 39. (ESPM-SP) O trigésimo termo da sequência (1, 2, 4, 7, 11, 16, 22, 29, 37,...) é: a) 436 b) 452 c) 512 d) 528 e) (UFJF) Uma progressão aritmética e uma geométrica têm o número 2 como primeiro termo. Seus quintos termos também coincidem e a razão da PG é 2. Sendo assim, a razão da PA é: a) 8. b) 6. c) 32/5. d) 4. e) 15/ (FGV) Uma pintura de grande importância histórica foi comprada em 1902 por 100 dólares, e, a partir de então, seu valor tem dobrado a cada 10 anos. O valor dessa pintura, em 2002, era de: a) dólares b) dólares c) dólares d) dólares e) dólares

15 Exercícios Propostos PSS 2 P á g i n a (UTFPE) Numa gincana, uma equipe recebeu o seguinte desafio: na cidade de Curitiba, fotografar a construção localizada na rua Marechal Hermes no numero igual a 9 vezes o valor do ângulo a) 990 b) 261 c) 999 d) 1026 e) 1260 da figura a seguir. 2. (Mack SP) Os ângulos esternos de polígono regular medem 20. Então, o numero de diagonais desse polígono é: 3. (UEPB) Aumentando-se em 5 unidades o numero de lados de um polígono, o numero de diagonais aumenta 40 unidades. Esse polígono é o: 4. (Unesp SP) Um observador situado num ponto O, localizado na margem de um rio, precisa determinar sua distância até um ponto P, localizado na outra margem, sem atravessar o rio. Para isso marca, com estacas, outros pontos do lado da margem em que se encontra, de tal forma que P, O e B, estão alinhados entre si e P, A e C também. Alem disso, é paralelo a,, Conforme a figura. A distância, em metros, do observador em O até o ponto P, é: 5. (UFF RJ) O circuito triangular de uma corrida esta esquematizado na figura a seguir: As ruas são paralelas. Partindo de, cada corredor deve percorrer passando, sucessivamente, por, retornando, finalmente, a. Assinale a opção que indica o perímetro do circuito: 6. (FGV SP) Observe as figuras seguintes: A figura I foi ampliada para a figura II, e está também foi ampliada para figura III. O fator de ampliação da figura II para a III, é: a) 7/4 b) 3/2 c) 4/3 d) 5/4 e) 7/6 7. (FGV SP) Os lados do triangulo da figura abaixo são:. Uma paralela ao lado intercepta os lados nos pontos, respectivamente. Determine respectivamente a medida dos lados do trapézio, sabendo que o seu perímetro é.

16 P á g i n a (UFG) Uma pista retangular para caminhada mede 100 x 250 metros. Desejase marcar um ponto P, conforme figura abaixo, de modo que o comprimento do percurso seja a metade do comprimento total da pista. Determine a distancia entres os pontos. 9. (Mackenzie SP) A figura abaixo representa uma estrutura de construção chamada tesoura de telhado. Sua inclinação é tal que a cada metro deslocado na horizontal, a um deslocamento de 40 cm na vertical. Se o comprimento da viga viga, em metros, é:, das alternativas abaixo, a que melhor aproxima o valor do comprimento da a) 5,4 b) 6,7 c) 4,8 d) 5,9 e) 6,5 10. (Fuvest SP) No jogo de bocha, disputado no terreno plano, o objetivo é conseguir lançar uma bola de raio 8, o mais próximo possível de um bola menor, de raio 4. Num lançamento, um jogador conseguiu fazer com que as duas bolas ficassem encostadas, conforme ilustra a figura abaixo. A distância entre os pontos, em que as bolas tocam o chão, é: 11. (UFPE) Na ilustração abaixo, a circunferência passa pelos vértices do quadrado e é tangente ao lado. Se o quadrado tem lado, indique o tamanho do diâmetro da circunferência. 12. (Cefet MG) Certa cerâmica é vendida em Caixas fechadas com 40 unidades cada. As peças são quadrados de 30 cm de lado. Sabendo-se que a uma perda de 10% por causa de quebra no assentamento, e que o preço da caixa é R$ 36, 00, o valor gasto somente com esse material para revestir de piso é: 13. (Unicamp SP) Analisamos, nesta questão a colheita de uma plantação de cana de açúcar, cujo formato é fornecido na figura a seguir. Para colher a cana, pode-se recorrer a trabalhadores especializados ou a maquinas. Cada trabalhador é capaz de colher por dia, ao passo que colhedeira mecânica colhe, por dia, uma área correspondente a. Se a cana precisa se colhida em 40 dias, quantos trabalhadores são necessários para colheita, supondo que não haja maquina. 4. (UFAM) Um carro de corrida percorre varias vezes uma pista de 2 km de raio até parar por falta de gasolina. Se, no inicio da corrida, o carro continha 100 litros de gasolina e consome 1 litro de gasolina para

17 P á g i n a 292 cada 8 quilômetros percorridos, o numero de voltas completas percorridas pelo carro foi: (Considere ) 15. (Unifesp) Na figura, são exibidas sete circunferências. As seis exteriores, cujos centros são vértices de um hexágono regular de lado 2, são tangentes à interna. Além disso, cada circunferência externa é também tangente as outras duas que lhe são contiguas. Nessas condições, a área da região sombreada, apresentada em destaque na figura é: 16. (UFG GO) O conjunto roda/pneu da figura a seguir tem medida. O numero 300 indica a largura, em milímetros, da banda de rodagem, 75 refere-se a porcentagem que a altura do pneu representa a banda de rodagem e 22 refere-se ao diâmetro, em polegadas, da roda. Dessa forma, o numero de voltas necessárias para que o conjunto roda/pneu percorra, sem derrapagem, é: 17. (Uneb BA) Na figura a seguir são dados: cm, é: AE EC 1, BE 8 cm e ED 6 cm. O comprimento de em (UFPel RS) O Brasil é considerado mundialmente o país do futebol. Em Copas ou em Jogos Olímpicos, esse esporte está sempre e muito orgulho para nosso povo, ao receber títulos significativos como o Pentacampeonato Mundial. A bola utilizada na realização das partidas é composta em sua superfície por pentágonos e hexágonos regulares. Baseando-se em seus conhecimentos e considerando que os hexágonos que cobrem a bola têm a distância do centro ao ponto médio dos seus lados igual a. Considerando a situação a área do hexágono que compõe a bola, em, é: 19. (FGV SP) Uma pizzaria vende pizzas com preços proporcionais a suas áreas. Se a pizza media tiver raio a 80% do raio da grande. Seu preço será: 20. (Cesgranrio RJ) Uma cozinha de 3m de comprimento, 2m de largura e 2,8m de altura, as portas e janelas ocupam uma área de 4m². Para azulejar as quatros paredes, o pedreiro aconselhar a compra de 10% a mais de metragem a ladrilhar. Dessa forma, a medida de ladrilhos que se deve comprar é: 21. (UFG) Um quarto possui 7m de comprimento, 5m de largura e 3m de altura, tendo uma porta de 1m por 2m e uma janela quadrada de 1m de lado. Deseja-se pintar as quatro paredes internas e o teto do quarto,

18 P á g i n a 293 excetuando-se a janela, a porta e o chão. Se um litro de tinta é suficiente para pintar 3m², quantos litros de tinta serão gastos nessa pintura? 22. (UFRN) Dois círculos são concêntricos, e o primeiro, de área, possui uma corda de tangenciando o segundo. A área do segundo circulo é: 23. (UFLA MG) Uma das faces de uma medalha circular tem o desenho ao lado. A região amarela é de ouro e a cinzenta é de prata. Sabendo que os contornos das áreas amarelas são semicírculos, calcule as áreas das superfícies de ouro e de prata, respectivamente: 24. (UFLA MG) Obtenha o valor da variável x, de forma que as áreas sejam iguais. 25. (UFRJ) Milena, diante da configuração representa abaixo, pede ajuda aos vestibulandos para calcular o comprimento da sombra x do poste; mas, para isso, ela informa que. Determine o comprimento da sombra x. 26. (Unifor CE) Na figura abaixo se tem um observador O, que vê o topo de um prédio sob um ângulo de 45. A partir desse ponto, afastando-se do prédio 8 m, ele atinge o ponto A, de onde passa a ver o topo do mesmo prédio sob um ângulo tal que. A altura do prédio, em metros, é: 27. (UnB DF) Um observador, situado no ponto A, distante do ponto B, vê um edifício sob um ângulo de, conforme a figura. Baseado nos dados da figura determine a altura em metros do edifício em metros e divida o resultado por. (Dado: med CÂD = 30 )

19 P á g i n a (Vunesp) Para calcular a distância entre duas arvores situadas nas margens opostas de um rio, nos pontos A e B, um observador que se encontra junto a A afasta-se 20 m da margem, na direção da reta AB, até o ponto C e depois caminha em linha reta até o ponto D, a 40 m de C, do qual ainda pode ver as arvores. Tendo verificado que os ângulos medem, respectivamente, cerca de 15 e 120, que valor ele encontrou para a distância entre as arvores, se usou a aproximação. 29. (PUC MG) Uma porta retangular de 2 m de altura por 1 m de largura gira 30, conforme a figura. A distância entre os pontos A e B, em metros, é: 30. (UFG GO) O mostrador do relógio de uma torre é dividido em 12 partes iguais (horas), cada uma das quais é subdividida em outras 5 partes iguais (minutos). Se o ponteiro das horas ( ) mede e o ponteiro dos minutos ( ) mede, qual será a distância, em função do ângulo entre os ponteiros, quando o relógio marcar 1 hora e 12 minutos? 31. (UEPE) Uma ponte deve ser construída sobre um rio, unindo os pontos A e B, como ilustrado na figura abaixo. Para calcular comprimento AB, escolhe-se um ponto C, na mesma margem em que B está, e medemse os ângulos. Sabendo que BC mede 30 m, indique, em metros a distancia AB. (Dados: ) 32. (EEM SP) Quantos radianos percorrem o ponteiro das horas de um relógio de 1h5min até 2h45min? a) 3π/2 b) 4π/7 c) 2π/3 d) 5π/18 e) 7π/ (Unesp SP) Uma maquina produz diariamente dezenas de certo tipo de produto de certas peças. Sabe-se que o custo de produção e o valor de venda são dados, aproximadamente, em milhares de reais, respectivamente, pelas funções e,. O lucro, em reais, obtido n produção de 3 meses de peças é: 34. (IBMEC) O valor monetário de uma ação é dado por, em que é um numero real positivo. De acordo com esse modelo, o valor monetário máximo que essa ação pode assumir é:

20 P á g i n a (UEL PR) Uma bomba d água aspira e espira água a cada 3 segundos. O volume de água da bomba varia entre um mínimo de 2 litros e um máximo de 4 litros. Dentre as alternativas a seguir, assinale a expressão algébrica para o volume de água na bomba, em função do tempo. 36. (FGV SP) Um supermercado, que fica aberto de 24 horas por dia, faz a contagem do número de clientes na loja a cada 3 horas. Com base nos dados observados, estima-se que o número de clientes possa ser calculado pela função, onde é o numero de clientes e a hora da observação, com. Determine a diferença entre o numero máximo e mínimo de clientes dentro do supermercado, em um dia completo, é igual a: 37. (UFSC) Determine o valor das soma das alternativas corretas. (01) Um poste na posição vertical, colocado num plano horizontal, encontra-se a 3 m de uma parede plana e vertical. Nesse instante, o Sol projeta a sombra do poste na parede e essa sombra tem 17 m de altura. Se altura do poste é de 20 m, então a inclinação dos raios solares, em relação ao plano horizontal, é de 45 : (02) Se sen a = 1/3, então: sen (25 π + a) sen (88 π - a) = 2/3 (03) Os gráficos das funções e tem exatamente três pontos em comum, para no intervalo. (08) Para ser verdadeira a desigualdade deve estar localizado no ou quadrante. O valor da soma é ( ) 38. (UFPel RS) São cada vez mais frequentes construções de praças cujos os brinquedos são montados com materiais rústicos. A criatividade na montagem de balanços, escorregadores e gangorras de madeira vem proporcionando uma opção de lazer para as crianças. A figura abaixo mostra um brinquedo simples que proporciona à criançada excelente atividade física. Considerando o texto, a distância igual a, o ângulo igual a, determine então a distancia de a. 39. (UERJ) Considere o ângulo segundo o qual um observador vê uma torre. Esse ângulo duplica quando ele se aproxima mais 100 m, como mostra o esquema abaixo. A altura da torre, em metros, equivale a: 40. (Vunesp) Se A, B e C forem matrizes quadradas quaisquer de ordem n, assinale a única alternativa verdadeira: b) Se, então. Se (matriz nula), então.

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido?

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido? 1 2 Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Exercícios de Números Complexos com Gabarito

Exercícios de Números Complexos com Gabarito Exercícios de Números Complexos com Gabarito ) (UNIFESP-007) Quatro números complexos representam, no plano complexo, vértices de um paralelogramo. Três dos números são z = i, z = e z = + ( 5 )i. O quarto

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/013 Aluno(a): Número: Turma: 1) Determine

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA y y a y P A y b B R T xb x xa x y y a A y b M xb xa x y y x x r s a 3 a 2 a a 1 b c b + c Como pode cair no enem (CESGRANRIO) As escalas termométricas Celsius

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

Ensino Médio - 3ª série Estudos de Recuperação para o EXAME - 2011 MATEMÁTICA Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Gab 02 - (FGV )

Ensino Médio - 3ª série Estudos de Recuperação para o EXAME - 2011 MATEMÁTICA Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Gab 02 - (FGV ) Ensino Médio - ª série Estudos de Recuperação para o EXAME - 011 Disciplina: MATEMÁTICA Professor: Luiz Antonio Escossi Números Complexos 01 - (MACK SP) Se y = x, sendo 1 i x 1 i e i 1, o valor de (x +

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/0 º ANO PARTE SISTEMAS LINEARES 0. (FGV/SP) Resolvendo o sistema abaixo, obtém-se para z o valor: x + y + z = 0 x y z = 6y + z = a) - b) - c) 0 d) e) 0. (Mack-007)

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Atividades Atividade 1 1) (Vunesp-SP) Uma escada apoiada

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Exercícios de Matemática Equações de Segundo Grau

Exercícios de Matemática Equações de Segundo Grau Exercícios de Matemática Equações de Segundo Grau 2. (Ita 2001) O conjunto de todos os valores de m para os quais a função TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos

Leia mais

GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA

GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA PROF. ENZO MARCON TAKARA 05 - PLANO CARTESIANO ORTOGONAL Considere num plano a dois eixos x e y perpendiculares em O. O par de eixos

Leia mais

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Matemática. Atividades Adicionais

Matemática. Atividades Adicionais Atividades Adicionais Matemática Módulo 4 1. (UFGO) A tabela a seguir foi extraída da Pesquisa Nacional por Amostra de Domicílio/001, do IBGE. Ela mostra as classes de rendimento mensal no Estado de Goiás

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO O medidor de energia elétrica de uma residência,

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

SuperPro copyright 1994-2011 Colibri Informática Ltda.

SuperPro copyright 1994-2011 Colibri Informática Ltda. mesmo percurso. 1. (Ufpe 2005) Um submarino em combate lança um torpedo na direção de um navio ancorado. No instante do lançamento o submarino se movia com velocidade v = 14 m/s. O torpedo é lançado com

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E FRENTE ÁLGEBRA MATEMÁTICA E Nas questões de a, calcular o quociente e o resto das divisões dos polinômios, utilizando o Dispositivo de Briot-Ruffini.. x x + 6x + por x MÓDULO 8 DISPOSITIVO DE BRIOT-RUFFINI

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Exercícios de Física sobre Vetores com Gabarito

Exercícios de Física sobre Vetores com Gabarito Exercícios de Física sobre Vetores com Gabarito 1) (UFPE-1996) Uma pessoa atravessa uma piscina de 4,0m de largura, nadando com uma velocidade de módulo 4,0m/s em uma direção que faz um ângulo de 60 com

Leia mais

Exercícios cinemática MCU, Lançamento horizontal e Oblíquo

Exercícios cinemática MCU, Lançamento horizontal e Oblíquo Física II Professor Alexandre De Maria Exercícios cinemática MCU, Lançamento horizontal e Oblíquo COMPETÊNCIA 1 Compreender as Ciências Naturais e as tecnologias a elas associadas como construções humanas,

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota LISTA 04 SEQUÊNCIAS, PROGRESSÕES ARITMÉTICAS, GEOMÉTRICAS E MATEMÁTICA FINANCEIRA. 1 - (UESB) Um estacionamento cobra R$1,50 pela primeira hora. A partir da segunda, cujo valor é R$1,00 até a décima segunda,

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

LISTA DE FÍSICA A. Corumbá, 12 de março de 20 15 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE. Nota/Visto:

LISTA DE FÍSICA A. Corumbá, 12 de março de 20 15 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE. Nota/Visto: Corumbá, 2 de março de 20 5 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE LISTA DE FÍSICA A Nota/Visto: 0 - (UFG GO/204) Uma longa ponte foi construída e instalada com blocos de concreto

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk GEOMETRIA ESPACIAL: TRONCO 1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. a) Sabendo-se que a taça estava totalmente

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

Física José Ranulfo (joranulfo@hotmail.com)

Física José Ranulfo (joranulfo@hotmail.com) 05. (UFPE 97/Fís. 3) Considere um raio de luz contido em um plano perpendicular aos dois espelhos planos, conforme a figura abaixo. O raio refletido formará o ângulo γ com o feixe incidente, cujo valor

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Exercícios de Matemática Retas e Planos

Exercícios de Matemática Retas e Planos Exercícios de Matemática Retas e Planos 3. (Unesp) Considere o cubo da figura adiante. Das alternativas a seguir, aquela correspondente a pares de vértices que determinam três retas, duas a duas reversas,

Leia mais