ENEM Caderno Cinza. Resolução da Prova de Matemática

Tamanho: px
Começar a partir da página:

Download "ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática"

Transcrição

1 ENEM Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas 4 nós na casa das unidades. Formando o número Alternativa (E) 1 hectare ocupa 1 hectômetro quadrado [ou hm ]. Logo, 8 hectares correspondem a 8 hm. 1º passo: Colocar o 8 hm na posição correspondente. Km hm dam m dm cm mm 8 º passo: Completar com dois zeros [pois a unidade está ao quadrado] até a posição correspondente ao metro quadrado [m ] Km hm dam m dm cm mm Alternativa C Listando as informações do texto. Galões comprados = 16. Capacidade de cada galão = 4 litros.

2 Total de escolas para distribuição = 10 escolas. Resolução 1º passo. Cálculo da quantidade total de álcool gel comprado = 64 litros. º passo. Cálculo de quanto cada escola vai receber = 6,4 litros. 3º passo Cálculo da capacidade de cada recipiente. 6,4 0 = 0,3 litros Logo, o recipiente é o III Alternativa (A) Listando as informações Menor transparência = 70% [vidro] Maior transparência = 90% [vidro] Menor transparência = 50% [película] Maior transparência = 70% [película]

3 Resolução. Calcular as porcentagens das porcentagens de maiores e menores transparências. 1º passo Calculo da porcentagem P da menor transparência 50% de 70% 0,50 0,70 = 0,35 ou 35% º passo Calculo da porcentagem P da maior transparência 70% de 90% 0,70 0,90 = 0,63 ou 63% Logo, o intervalo de P é [35; 63] 140. Alternativa (C) Informações do texto. Escada circular [círculo] E sua projeção ortogonal. Podemos considerar projeção ortogonal como a sombra do corrimão no chão formando um ângulo de 90º. A figura que mais se assemelha a essa sombra é da alternativa C 141. Alternativa (B) Calculando a média de cada coluna de reagente temos

4 Cálculo da média basta somar todos os experimentos das respectivas colunas dos experimentos e dividir por 5 Experimento 1 Experimento Experimento 3 Experimento 4 Experimento 5 Soma dos valores dos experimentos Reagente 1 Reagente Reagente 3 Reagente 4 Reagente Média 6 4,8 6,8 6,6 6,6 Logo, o experimento que mais apresenta valores acima da sua média é o experimento, com 4 experimentos. 14. Alternativa (C) Informações do texto. Valor do kwh consumo + Cosip. Valores fornecido. Consumo = 150 kwh Valor do kwh = R$ 0,50 Cosip = R$ 4,00 [conforme tabela fornecida pela questão] Resolução. 1º passo Cálculo do valor pago no mês. Valor do kwh consumo + Cosip.

5 0, = R$ 79,50 º passo Cálculo com redução de 10% Basta multiplicar 79,50 por 0,9 [100% - 10%] 79,50 0,90 = 71,50 Logo, R$ 71,55 é o valor com redução a ser alcançado. 3º passo Testar valores para o consumo x que satisfaça o valor da Cosip na sua faixa de consumo. kwh consumo + Cosip. [Usando o valor de R$,00 para a faixa de consumo entre 80 e 100] 0,50 x + = 71, 55 x = 139,1 [não satisfaz a condição da faixa de consumo entre 80 e 100] [Usando o valor de R$ 3,00 para a faixa de consumo entre 100 e 140] 0,50 x + 3 = 71, 55 x = 137,1 [satisfaz a condição da faixa de consumo entre 100 e 140] Logo, o consumo deverá ser de 137, Alternativa (A) Pelas informações fornecidas pelo gráfico temos.

6 Segunda-feira = = Terça-feira = = Quarta-feira = = Quinta-feira = = Sexta-feira = = Sábado = = 1 90 Domingo = = Logo, pela análise das informações, o dia com maior quantidade de bactérias foi terçafeira Alternativa (B) Informações fornecidas pelo texto Aresta do maior cubo tem o dobro do da medida do maior a maior = a menor Para encher metade do volume do cubo maior leva 8 minutos V maior 8 minutos Resolução 1º passo Calcular o volume do cubo maior em função da aresta do cubo menor V maior= (a maior ) 3 V maior= (a menor ) 3 3 V maior= 8a menor º passo Calcular o volume do cubo menor V menor= (a menor ) 3 3º passo Calcular o volume restante para encher

7 V maior V menor 4a menor + a menor = 5a menor 3 3 Logo, se para encher 4a menor leva-se 8 minutos, para encher os 5a menor restante 3 levarão 10 minutos, pois para cada a menor leva minutos Alternativa (A) Informações fornecidas pelo enunciado Consumo diário = wh. Quantidades de células solares = 100 Dimensões de cada célula = 6 cm X 8 cm Cada célula produz 4 wh por centímetro de sua diagonal Resolução 1º passo Calcular a diagonal de cada célula d = d = 10 cm º passo Calcular a produção diária das 100 células = º passo Calcular a diferença entre a produção diária e o consumo diário = ª passo Calcular quantas células equivalem a = 16 células

8 Logo, deverá retirar 16 células Alternativa (B) Informações fornecidas pelo enunciado Valor de cada unidade = R$ 10,00 Valor despesas extras = R$ 6,00 Acréscimo de cada unidade 0% Resolução: 1ª passo Identificando como u unidade comprada, Q quantidade de dinheiro levado pela pessoa, montamos a seguinte situação inicial sem acréscimos de 0%. Q = 10 u + 6 º passo Montar a equação com o acréscimo de 0% no valor de R$ 10,00 em cada unidade [R$ 10,00 + 0% = R$ 1,00] e diminuindo duas unidades na compra, conforme o enunciado informa. Q = 1 (u ) 3º passo Igualar as equações e encontrar o valor da unidade. 10 u + 6 = 1 (u ) + 6 u = 15 4º passo Calcular a quantia Q = 10 u + 6 Q = Logo, a quantia levada diariamente é de R$ 156,00

9 147. Alternativa (D) Informações fornecidas pelo enunciado Tempo de duração da viagem = 6 horas Hora de saída da cidade A = 15 horas [horário local da cidade A] Hora de chegada na cidade B = 18 horas [horário local da cidade B] Interpretando as informações considerando os horários locais em cada cidade. A B Até 15 horas 18 horas Considerando o horário da cidade A, teríamos seguinte situação 15 horas 1 horas Para chegar em A as 13 horas, considerando o horário de A 7 horas 6 horas de viagem 13 horas Comparando os dois fusos horários das cidades A e B Cidade A 7 horas 13 horas Cidade B 4 horas 10 horas Logo, o horário que equivale a 7 horas na cidade A é 4 horas na cidade B Alternativa (B) Informações fornecidas pelo enunciado Receita = R$ ,00 Folha salarial = R$ ,00 Ensino fundamental = 1,5% da folha salarial [R$ ,00] Ensino médio = 75% da folha salarial [R$ ,00] Ensino superior = 1,5% da folha salarial [R$ ,00] Número de funcionário de ensino fundamental 013 = 50 Número de funcionário de ensino fundamental 014 = 70 Número de funcionário de ensino médio 013 = 150 Número de funcionário de ensino médio 014 = 180 Número de funcionário de ensino superior 013 = 10

10 Número de funcionário de ensino superior 014 = 0 Resolução 1º passo Calcular o valor do salário de cada funcionário conforme seu grau de instrução Ensino fundamental R$ ,00 50 funcionários = R$ 1 000,00 por funcionário Ensino médio R$ , funcionários = R$ 000,00 por funcionário Ensino superior R$ ,00 10 funcionários = R$ 5 000,00 por funcionário ª passo calcular o acréscimo de salário com o número de funcionário de R$ 1 000,00 = R$ R$ 000,00 = R$ R$ 5 000,00 = R$ Valor da folha de pagamento de 013 = R$ ,00 Valor da folha de pagamento de 014 = R$ ,00 Logo, o valor da receita de 014 dever ser aumentado em R$ , Alternativa (D) Informação fornecida pelo enunciado A razão entre o total de vezes de derrubar e o número de jogadas

11 Resolução Jogador Derrubou Jogadas Razão Desempenho I II III 0 65 IV V ,58 0,61 0,30 0,75 0,53 Logo, o jogador que teve melhor desempenho foi o jogador IV 150. Alternativa A Informações fornecidas pelo enunciado Média aritmética pondera Química peso = 4 Física peso = 6 Candidato Química Física Cálculo da média Média final I 0 3 1, x x II X III , Logo, a média do aluno II deverá ser maior que 1,8 4 x > 1, x > 18 4 x > x > 68

12 x > 68 4 x > 17 Então x = 18 [menor inteiro] 151. Alternativa (D) y x. y = (x - k). y + 8 9y x. y = (x - k). 8 9 x = (x - k) x = x - k x - x = - k 8 8 x 9 - = - k 8 8 -x = -9k x = 9k x = k 9 razão = x - k x x x - = 9 = x 8 9

13 15. Alternativa (C) Banho, lavar mãos e escovar dentes: utilizado = 50 litros sugestão = 4 + 3, +,4 = 9,6 litros Descarga: utilizado = 66 litros Cozinhar e beber: utilizado = 54 litros OUTROS utilizado = 30 litros TOTAL: utilizado = 00 litros sugestão = 18 litros sugestão = litros sugestão = 30 litros sugestão = 99,6 litros Uma redução de 100,4 litros 153. Alternativa (D) A maior mediana é do candidato N: = Alternativa (A) Volume = Ab. H (B + b).h V =. H (6 + 5). V =. 0 V = 0 m³ V = 110 toneladas 155. Alternativa (E)

14 Volume: V V = Sb. h = 3.1. No entanto, de acordo com a escalala 1:100, temos: V V V = Sb. h = = Alternativa (A) Como a cor branca é representada pelo número 0 e a preta pelo número 1, e a média é menor que 0,5, temos que a maior quantidade é da cor branca. A moda indica o dado que apareceu o maior número de vezes, e portanto trata-se do número Alternativa (E) DE acordo com o enunciado, a sensibilidade é definida como a probabilidade que segue: positivos com a doença P = pacientes com a doença 95 P = Alternativa (C) Na disposição por triângulos equiláteros abaixo, podemos perceber a possibilidade de posicionar 9 mudas, conforme o enunciado. A altura de um triangulo equilátero é dada por: 3 h = 3 3 h = h,59 O que torna possível a disposição da figura.

15 159. Alternativa (B) Serão necessárias 8 locações. - As sequencias diferentes para locar os 8 filmes de ação são dadas por P 8 = 8! - As sequencias diferentes para locar os 5 filmes de comédia são dadas por P 5 = 5! - As sequencias diferentes para locar os 3 filmes de drama são dadas por P 3 = 3! E, finalmente, o número de maneiras diferentes de se proceder as locações indicadas são dadas por 8!.5!.3! 160. Alternativa (B) Legenda: A Probabilidade de acertar a pergunta E Probabilidade de errar a pergunta As situações possíveis são: EAAAE AEAAE AAEAE AAAEE A probabilidade de ocorrer a primeira situação é dada por: P = 0, 0,8 0,8 0,8 0, Mas como são 4 situações possíveis temos:

16 ( ) P = 4 0, 0,8 0,8 0,8 0, P = 0, Alternativa (C) Distância percorrida =,1 km Tempo mínimo = 1 min e 4 s Convertendo o tempo em horas temos: 1 min e 4 s = 84s s = 84/60 min = 84s = min = 60 h De acordo com o enunciado, a velocidade média é dada por: distância Vel = tempo,1km Vel = h 60 Vel = 90 km / h 16. Alternativa (A) A função y=x está descartada, pois não altera qualquer nota. A função y=4/5x+ está descartada, pois a nota x=0 gera y=, o que não obedece ao enunciada. Admitindo portanto que a função é do segundo grau e co termo independente igual a 0, pois a nota zero continua valendo zero, temos a seguinte função: y = ax + bx Substituindo x=10 e y=10, temos: 10 = 100a+ 10b Substituindo x=5 e y=6, temos: 6 = 5a+ 5b E resolvendo o sistema, tem-se:

17 10 = 100a+ 10b 6 = 5a + 5b a = 1/ 5 b = 7/ Alternativa (E) x y z O número de divisores positivos de N = 5 7 é dado por: ( x 1) ( y 1) ( z 1) + + +, mas como devemos excluir o próprio N, então temos: ( x ) ( y ) ( z ) Vale salientar que, em função de N ser múltiplo de 10, x 0 e y 0. E como N não é múltiplo de 7, temos que z = Alternativa (A) Em todo triângulo, a soma de dois lados quaisquer não pode ser menor que o terceiro, portanto, as possibilidades para os lados do triângulo em questão são: Alternativa (D) A circunferência de centro (0, 0) e raio, é dada pela equação: x + y = R x x + y = + y = 4 y =± 4 x Mas como o balanço está abaixo do eixo x, temos que y<0, portanto: y = 4 x

18 166. Alternativa (B) 45000/5 portões = /4 catracas = x segundo por pessoa 4500 segundos = uma hora e quinze 167. Alternativa (E) Comprimento: = 4 cm 4 + x + 4 = 115 cm X = 115 cm 66cm X = Alternativa (D) 4 + Aumento de 5% = x 4 x 4 = 30 x 30 x H 40 x 4 x 4 30 x 30 = H 5, 6 = H De 40 para 5,6 redução de 36% 169. Alternativa (B) 64% % - x Se 8 bilhões são 64%, então 100% são 1,5 bilhões 1,5-100% 4 - x 4 bilhões representam 3%, entao 68% do esgoto é tratado

19 170. Alternativa (E) Total = Aberta + Oculta 9,0 = x + 1,1 7,9 = X 171. Alternativa (C),38 / 1,90 = 1,5 1,90 / 1,5 = 1,5 17. Alternativa (B) Analisando a tabela: As regiões com menores taxas são as Norte, Nordeste e Sudeste 173. Alternativa (D) Analisando a figura: as partes que são troncos de cone a água não sobe constantemente, o que ocorre no cilindro Alternativa (E) A planificação de um tronco de cone é a alternativa E 175. Alternativa (C) Analisando o gráfico: A operadora que mais minutos oferece pelo valor de 30 reais é a operadora C 176. Alternativa (E) π π π π 43 3 = = 150 = = 736

20 = Alternativa (D) % 8 -- x X= 9,4% 178. Alternativa (D) Lado da figura maior = 30cm 30cm 3cm 3cm = 4cm = 5 ou seja, razão de 1: Alternativa (D) 5 voltas em um papel retangular, ou seja, 5 circunferencias na largula do papel 5. π r = 10 π r = como as alternativas pedem em diâmetro = 5 π d 180. Alternativa (C) 100% da carga = 1t 60% da carga = 7, t 0% da carga =,4 t 0% da carga =,4 t

-ENEM 2014- RESOLUÇÃO DA PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS (CADERNO CINZA). POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

-ENEM 2014- RESOLUÇÃO DA PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS (CADERNO CINZA). POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA -ENEM 014- RESOLUÇÃO DA PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS (CADERNO CINZA). POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO 16 Os incas desenvolveram uma maneira de registrar quantidades e representar

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel ENEM 2014 COMENTADO 1. (Enem 2014) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam

Leia mais

ESCALAS. www.matematicaemexercicios.com www.youtube.com/matematicaemexercicios www.facebook.com/matematicaemexercicios

ESCALAS. www.matematicaemexercicios.com www.youtube.com/matematicaemexercicios www.facebook.com/matematicaemexercicios www.matematicaemexercicios.com www.youtube.com/matematicaemexercicios www.facebook.com/matematicaemexercicios AULÃO DE REVISÃO ENEM 2015 MATEMÁTICA E SUAS TECNOLOGIAS ASSUNTOS MAIS IMPORTANTES ESCALAS

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Resolução da Prova de Matemática do ENEM 2014

Resolução da Prova de Matemática do ENEM 2014 CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA INSTITUCIONAL DE BOLSAS DE INIACIAÇÃO À DOCÊNCIA SUBPROJETO Resolução da Prova de Matemática do ENEM 2014 Campina Grande - Paraíba,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

Mat. Fundamental 2º ANO REGULAR

Mat. Fundamental 2º ANO REGULAR TC Prof.: Marcondes Jr. (ENEM) Mat. Fundamental 2º ANO REGULAR 1. (Enem 2014) Um show especial de Natal teve 45.000 ingressos vendidos. Esse evento ocorrerá em um estádio de futebol que disponibilizará

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano atemática FUNDAENTAL Atividades complementares Este material é um complemento da obra atemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010 FURG COPERVE PROCESSO SELETIVO 00 MATEMÁTICA ) Em uma Instituição de Ensino Superior, um aluno do curso de Engenharia Metalúrgica anotou suas médias bimestrais nas disciplinas: Cálculo I (CI), Álgebra

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14)

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14) ) Fernando utiliza um recipiente, em forma de um cone circular reto, para encher com água um aquário em forma de um paralelepípedo retângulo. As dimensões do cone são: 0 cm de diâmetro de base e 0 cm de

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma

Leia mais

I Lista de Exercícios

I Lista de Exercícios MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DIRETORIA DE ENSINO DE GRADUAÇÃO LÓGICA DE PROGRAMAÇÃO ESTRUTURADA I Lista de Exercícios 1. Faça um algoritmo que receba o salário-base de

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

10 ( C ) A é um número compreendido entre 5 e 6. ( D ) A é um número compreendido entre 6 e 7. ( E ) A é um número compreendido entre 9 e 10.

10 ( C ) A é um número compreendido entre 5 e 6. ( D ) A é um número compreendido entre 6 e 7. ( E ) A é um número compreendido entre 9 e 10. Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda. 01. Se A 2 5 3 1 4 8, podemos afirmar que ( A ) A é um número natural, ímpar e primo. 65 ( B ) A é uma fração equivalente

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

LISTA DE MATEMÁTICA I

LISTA DE MATEMÁTICA I Ensino Médio Unidade São Judas Tadeu Professor (a): Michael Rocha Aluno (a): Série: ª Data: / 0 / LISTA DE MATEMÁTICA I *Obs.: Entregar apenas os cálculos escritos de forma organizada. Questão_0 - (ENEM

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

3º Revisional Matemática ENEM

3º Revisional Matemática ENEM 3º Revisional Matemática ENEM 1. (Enem 014) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Aritmética: Regra de Três e Grandezas Proporcionais

Aritmética: Regra de Três e Grandezas Proporcionais Aritmética: Regra de Três e Grandezas Proporcionais 1. A Companhia de Engenharia de Tráfego (CET) de São Paulo testou em 2013 novos radares que permitem o cálculo da velocidade média desenvolvida por um

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

Pré-Seleção OBM Nível 3

Pré-Seleção OBM Nível 3 Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido?

Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80 cm, qual era o volume do sólido? 1 2 Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

MATEMÁTICA APLICADA - RESOLUÇÃO 02/12/2007

MATEMÁTICA APLICADA - RESOLUÇÃO 02/12/2007 MATEMÁTICA APLICADA - RESOLUÇÃO 0//007 ª QUESTÃO Um carteiro leva três cartas para três destinatários diferentes. Cada destinatário tem sua caixa de correspondência, e o carteiro coloca, ao acaso, uma

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais