Solução Numérica do Problema de Blasius da Camada Limite Laminar

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Solução Numérica do Problema de Blasius da Camada Limite Laminar"

Transcrição

1 Universidade de Brasília Departamento de Engenharia Mecânica Mecânica dos Fluidos II 0) Prof. Francisco Ricardo da Cunha e Prof. Gustavo Coelho Abade Monitor: Nuno Jorge Sousa Dias Solução Numérica do Problema de Blasius da Camada Limite Laminar

2 . Corpo do Relatório Corpo do Relatório O procedimento de escrita de um relatório se torna importante uma vez que o relatório tem como objetivo apresentar o problema através de fundamentos teóricos, de expor o que se fez para resolver o problema e como o problema foi analisado comentando os resultados obtidos. Por esse motivo um relatório deve de ser organizado em diversas partes, nas quais as teorias, a metodologia e os resultados são apresentados. As partes integrantes de um relatório organizado são as seguintes: Introdução: A apresentação do problema e a sua contextualização são apresentados na introdução. Nesta seção é referida a motivação do trabalho, o surgimento do problema bem como o que se pretende fazer para resolver o problema; Metodologia: Nesta seção é apresentada a metodologia que foi implementada para a resolução do problema; Resultados: Os resultados obtidos são apresentados e comentados. Conclusões: Faz-se uma discussão breve do que foi feito no trabalho e apresenta-se as principais conclusões dos resultados obtidos. Dentro do contexto apresentado anteriormente, este relatório deve de conter uma seção de Introdução, Metodologia, Resultados e Conclusões. Na Introdução espera-se que o aluno apresente o problema a ser resolvido e para tal é necessária uma descrição teórica fundamentada. Na Metodologia o aluno deve apresentar a metodologia numérica método numérico) que implementou no seu código para resolver o problema de Blasius da Camada Limite. Ainda nesta seção o aluno deve de apresentar o algoritmo do código numérico implementado. O algoritmo do código expressa resumidamente o fluxo de informação do código input, calculo, output). Na seção de Resultados o aluno deve de apresentar os resultados obtidos e a respetiva discussão dos mesmos. Na seção de Conclusões o aluno deve, de forma resumida, descrever o problema resolvido, a metodologia empregue e as conclusões mais relevantes. Na seção de anexos deve de constar o código numérico e a saída de resultados em forma de tabela. Objetivo Resolver numericamente a equação diferencial ordinária de 3 a ordem obtida por Blasius no seu problema clássico de camada limite laminar ao longo de uma placa plana. Para a integração da equação de Blasius deve-se utilizar os métodos numéricos de Runge-Kutta e Newton-Raphson.. Problema de Blasius O problema de Blasius emprega as equações de Prandtl para avaliar a camada limite laminar ao longo de uma placa delgada, cujo eixo é paralelo a velocidade de fluxo livre. A equação governante do problema de Blasius, já desenvolvida em aula, juntamente com as condições de contorno é dada por: f + ff = 0 )

3 3. Métodos Numéricos 3 com as seguintes condições de contorno 3 Métodos Numéricos η = 0, f = f = 0 ) η, f = Para resolver numericamente equações diferenciais ordinárias EDO) existem diversos métodos numéricos. O problema da Camada Limite Laminar de Blasius será resolvido com o método de Runge-Kutta de 4 a Ordem RK4). Desde já pode-se citar a existência de outros métodos mais evoluídos, tal como, diferenças finitas, elementos finitos e volumes finitos. Cada método apresenta vantagens e desvantagens. Portanto é necessário saber escolher o método mais conveniente para o problema a ser resolvido. No nosso caso o método de RK4 será interligado ao método de Newton-Raphson NR) devido a inexistência da condição inicial para f. É comum os livros mais didáticos apresentarem o método RK4 para EDO de a Ordem. Como tal o aluno deverá consultar qualquer livro de Métodos Numéricos para tomar conhecimento sobre o RK4 para EDO de a Ordem. No entanto este método não se restringe a resolução somente de EDO de ordem. Deste modo apresenta-se o método para elevadas ordens. O procedimento é substituir as equações diferenciais ordinárias de elevadas ordens por equações diferenciais de primeira ordem. Imagine que x é a aceleração, x é a velocidade e x é a posição. Estas três quantidades variam com o tempo: x + ax + bx = ft) 3) sendo a, b constantes. As condições iniciais são: xt 0 ) = x 0 e x t 0 ) = vt 0 ) = v 0. Sabe-se que a velocidade é dada por: x = v = dx 4) dt o que impõem que: dx = vdt 5) A aceleração é a variação da velocidade em um determinado espaço de tempo: o que impõem que: Substitui-se na eq.3) as variáveis v e v : o que impõem que: Desta forma: v = dv dt Agora é possível calcular os parâmetros do método RK4: ) dv = v dt 7) v + av + bx = ft) 8) v = ft) av bx = F t, x, v) 9) dv = F t, x, v)dt 0) dx = hv ) dv = hf t, x, v)

4 3. Métodos Numéricos 4 dx = h v + dv ) dv = hf t + h, x + dx, v + dv ) dx 3 = h v + dv ) dv 3 = hf t + h, x + dx, v + dv ) ) 3) dx 4 = hv + dv 3 ) 4) dv 4 = hf t + h, x + dx 3, v + dv 3 ) Pelo método de RK4: dx = dx + dx + dx 3 + dx 4 dv = dv + dv + dv 3 + dv 4 Logo a posição e a velocidade no tempo seguinte são calculadas da seguinte forma: 5) xt + h) = xt) + dx ) vt + h) = vt) + dv em que h = dt, ou seja, é o passo de tempo time step). De seguida veremos o método de RK4 aplicado a EDO de 3 a ordem, para o problema de Blasius. A equação a ser resolvida é: Define-se as seguintes variáveis: f = y = df f = y = z = dy f + ff = 0 7) => df = y 8) => dy = z f = dz => dz = f lembrando que: f = fz 9) Agora calcula-se os parâmetros do RK4: df = y 0) dy = z dz = ) fz

5 4. Análise e Obtenção dos Resultados 5 df = dy = dz = df 3 = dy 3 = dz 3 = y + df ) ) z + dz ) f + df ) z + dz )) y + df ) ) z + dz ) f + df ) z + dz )) df 4 = y + df 3 ) 3) dy 4 = z + dz 3 ) dz 4 = f + df 3)z + dz 3 ) Desta forma: df = df + df + df 3 + df 4 dy = dy + dy + dy 3 + dy 4 dz = dz + dz + dz 3 + dz 4 As funções para a posição η + ) podem ser calculadas como: 4) fη + ) = xη + ) + df 5) yη + ) = yη + ) + dy zη + ) = zη + ) + dz O valor de f η = 0) é obtido quando f η ) =. Para descobrir o valor apropriado emprega-se o Método de Newton-Raphson. Este método permite que através de um chute inicial para o valor de f η = 0) o valor de f η ) seja calculado. Se f η ), 0 então é necessário atribuir um novo valor a f η = 0). Esse novo valor será f novo = f antigo) + ɛ. O valor de ɛ deverá ser menor que,0. O procedimento termina quando para f novo o valor de f η ) 0. O aluno deverá apresentar o gráfico de f η ) em função dos valores de f. 4 Análise e Obtenção dos Resultados Com o programa numérico desenvolvido calcule os seguintes itens:. A distribuição da velocidade na camada limite u/u e v/ure / x ) como função de η. Considere 0 η 7. Trace o gráfico de seus resultados.

6 4. Análise e Obtenção dos Resultados. A espessura da camada limite: δ = η u/u=0.99 xre / x. Traçar o gráfico δvsre / x. Interprete o resultado em termos dos mecanismos de difusão e de convecção. 3. A tensão de cisalhamento na placa: τ w = ρu Re / x f 0). Traçar o gráfico. 4. A força de arrasto total: D = 4lτ w. Traçar o gráfico. 5. Os coeficientes de arrasto local e gobalmédio): C fx = Re / x f 0), C fl = 4Re / l f 0). Mostre as curvas de C fx vsre x e C fl = 4Re l 0 4 Re 0.. Compare os resultados obtidos numericamente com aqueles obtidos pela solução de Blasius em série de potência. Apresente em um gráfico a solução do seu programa curva) e a solução de Blasius pontos). 7. Conclua o seu trabalho informando onde os resultados do problema analisado poderia ser utilizado como uma primeira aproximação de um problema prático. Resolva a questão: Ar a 0 o C e 0kPa escoa ao longo de uma placa lisa com velocidade de 50 km/h. Qual deve de ser o comprimento da placa para obter uma camada limite de 8mm?

7 4. Análise e Obtenção dos Resultados 7 Tabela : Solução de Blasius pela série de potência: Camada limite ao longo de uma placa plana com incidência zero. η = y U = u νx U f ,330 0,0 0,004 0,04 0,3399 0,40 0,05 0,377 0,3347 0,0 0, ,9894 0, ,80 0,0 0,47 0,3739,00 0,557 0,3979 0,330,0 0, ,359,40 0, ,30787,0 0, ,97,80 0,595 0, ,893,00 0,5003 0,977 0,75,0 0,780 0,83 0,4835,40 0,930 0,7899 0,809,0,075 0,774 0,04,80,3099 0,85 0,840 3,00,398 0,8405 0,3 3,0,59 0,8709 0,393 3,40,749 0,9077 0,788 3,0,9954 0,9333 0, ,80,05 0,94 0,0803 4,00,3057 0,9555 0,044 4,0,4980 0,99 0,0505 4,40,938 0, ,0397 4,0,888 0,989 0,0948 4,80 3, , ,087 5,00 3,839 0,9955 0,059 5,0 3,4889 0,9945 0,034 5,40 3,8094 0,99 0, ,0 3,8803 0, , ,80 4, , ,0035,00 4,794 0, ,0040,0 4, , ,0055,40 4,7938 0,999 0,00098,0 4,8793 0, ,000,80 5,0798 0, , ,00 5,79 0,9999 0,000 7,0 5,4795 0,9999 0,0003 7,40 5,794 0, , ,0 5,8794 0, , ,80,0793, ,0000 8,00,793, ,0000 8,0,4793, ,0000 8,40,793, , ,0,8793, , ,80 7,0793, ,00000

Vicente Luiz Scalon. Disciplina: Transmissão de Calor

Vicente Luiz Scalon. Disciplina: Transmissão de Calor Convecção Forçada Externa Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Método Empírico Camada Limite Teoria de Prandtl Solução de Blasius Convecção Laminar

Leia mais

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar 1ª Parte Introdução Alguns fenômenos que ocorrem quando um fluxo externo é aplicado sobre um corpo: U

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli 1-24 Equações Diferenciais Ordinárias Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

Dinâmica da Atmosfera

Dinâmica da Atmosfera Dinâmica da Atmosfera Forças atuantes sobre corpos sobre a superfície terrestre: fricção, coriolis, gravitacional, etc. Efeitos de temperatura Efeitos geográficos Pêndulo de Focault Trajetória do Pêndulo

Leia mais

3 Métodos Numéricos Análise das Equações de Movimento

3 Métodos Numéricos Análise das Equações de Movimento 3 Métodos Numéricos A dinâmica de sistemas mecânicos normalmente é modelada como um sistema de equações diferenciais. Estas equações diferenciais devem ser resolvidas a fim de relacionar as variáveis entre

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

EN Escoamento interno. Considerações fluidodinâmicas e térmicas

EN Escoamento interno. Considerações fluidodinâmicas e térmicas Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

Experiência 6 - Perda de Carga Distribuída ao Longo de

Experiência 6 - Perda de Carga Distribuída ao Longo de Experiência 6 - Perda de Carga Distribuída ao Longo de Tubulações Prof. Vicente Luiz Scalon 1181 - Lab. Mecânica dos Fluidos Objetivo: Medida de perdas de carga linear ao longo de tubos lisos e rugosos.

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Convecção Forçada Externa

Convecção Forçada Externa Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma

Leia mais

Escoamentos Externos

Escoamentos Externos Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/17 2/17 Introdução Nesta aula serão apresentadas algumas relações importantes envolvendo propriedades materiais que são utilizadas quando o material está sujeito a tensão e deformação multiaxial. Sempre

Leia mais

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL

Leia mais

dy dt d 2 y dt 2 d n y dt n y dy y= F t a= f t, v, x dv dt = f t, a dx = f t, v

dy dt d 2 y dt 2 d n y dt n y dy y= F t a= f t, v, x dv dt = f t, a dx = f t, v Cap. 9.- Integração de Equações Diferenciais Ordinárias (ODE's) 9.1. Definições ODE ou EDO Equações diferenciais ordinárias são aquelas que relacionam derivadas totais de variáveis dependentes com uma

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Os escoamentos internos e incompressíveis, onde os efeitos da viscosidade são consideráveis, são de extrema importância para os engenheiros! Exemplos, Escoamento em tubo circular:

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior

Leia mais

MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos:

MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos: MECÂNICA DOS FLIDOS II Conceitos: Camada limite; Camada limite confinada e não-confinada; Escoamentos de corte livre e Esteira; Camadas limites laminares e turbulentas; Separação da camada limite; Equações

Leia mais

ESTE Aula 1- Introdução à convecção. A camada limite da convecção

ESTE Aula 1- Introdução à convecção. A camada limite da convecção Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Transferência de Calor Condução e Convecção de Calor

Transferência de Calor Condução e Convecção de Calor Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos

Leia mais

Equações Diferenciais Problemas de Valor Inicial. Computação 2º Semestre 2016/2017

Equações Diferenciais Problemas de Valor Inicial. Computação 2º Semestre 2016/2017 Equações Diferenciais Problemas de Valor Inicial Computação 2º Semestre 2016/2017 Equações Diferenciais Uma equação diferencial é uma equação cuja incógnita é uma função que aparece na equação sob a forma

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar: Escoamento de Fluidos ao Redor de Corpos Submersos 4ª Parte Introdução Se o corpo estiver se movendo

Leia mais

Diferenciais Ordinárias (EDO)

Diferenciais Ordinárias (EDO) Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO 3.1 Descrição do Movimento dos Fluidos O método de Lagrange descreve o

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Método de Diferenças Finitas

Método de Diferenças Finitas Método de Diferenças Finitas Câmpus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Aplicações Quase todos os problemas em ciências físicas e engenharia podem ser reduzidos a uma equação diferencial.

Leia mais

Disciplina: Instrumentação e Controle de Sistemas Mecânicos. Teoria de Controle Parte 2

Disciplina: Instrumentação e Controle de Sistemas Mecânicos. Teoria de Controle Parte 2 Disciplina: Instrumentação e Controle de Sistemas Mecânicos Teoria de Controle Parte 2 Sistemas de Primeira Ordem: Função de Transferência Pelo o que já foi dito, devido aos diferentes tipos de atraso,

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

3 Modelos gerais ações mecânicas

3 Modelos gerais ações mecânicas 3 Modelos gerais ações mecânicas 3.1 Modelo de tornado segundo Kuo/Wen A análise numérica dos efeitos de tornados sobre estruturas pressupõe a incidência de um tornado com perfis de velocidade e pressão

Leia mais

Na Física (em módulo) é uma Lei

Na Física (em módulo) é uma Lei 1 a interpretação Interpretações matemáticas Na Física (em módulo) é uma Lei Elementos de uma expressão matemática Variável dependente Coeficiente Variável independente 2 a interpretação Interpretações

Leia mais

Modelo físico de um salto de Bungee Jumping com solução utilizando método de Rounge Kutta.

Modelo físico de um salto de Bungee Jumping com solução utilizando método de Rounge Kutta. Universidade Estadual de Campinas Faculdade de Engenharia Mecânica Pós Graduação em Engenharia Mecânica IM458 - Tópicos em Métodos Numéricos: Métodos Numéricos em Mecânica dos Fluidos Alfredo Hugo Valença

Leia mais

MÉTODO DE ELEMENTOS FINITOS (MEF)

MÉTODO DE ELEMENTOS FINITOS (MEF) 3 0 Exercício Programa de PMR 2420 Data de entrega: 17/06/2013 (até as 17:00hs) MÉTODO DE ELEMENTOS FINITOS (MEF) 1) Considere a estrutura da figura abaixo sujeita a duas cargas concentradas F 3 (t) e

Leia mais

Fenômenos de Transporte Aula 1. Professor: Gustavo Silva

Fenômenos de Transporte Aula 1. Professor: Gustavo Silva Fenômenos de Transporte Aula 1 Professor: Gustavo Silva 1 Propriedades dos fluidos; teorema de Stevin; lei de Pascal; equação manométrica; número de Reynolds; equação da continuidade; balanço de massa

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Destilação Binária em Batelada

Destilação Binária em Batelada Destilação Binária em Batelada Prof. Universidade Federal do Pampa BA310 Curso de Engenharia Química Campus Bagé 30 de agosto de 2016 Destilação Binária em Batelada 1 / 16 Destilação Batelada 1 Destilação

Leia mais

PREVISÃO DO TEMPO/CLIMA COMO UM PROBLEMA MATEMÁTICO E PRINCÍPIOS FÍSICOS

PREVISÃO DO TEMPO/CLIMA COMO UM PROBLEMA MATEMÁTICO E PRINCÍPIOS FÍSICOS PREVISÃO DO TEMPO/CLIMA COMO UM PROBLEMA MATEMÁTICO E PRINCÍPIOS FÍSICOS Importância atual da previsão do tempo e da previsão climática Um sonho desde... que dura até hoje A previsão numérica do tempo

Leia mais

Curso de Complementos de Física

Curso de Complementos de Física Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude

Leia mais

Introdução à Integrais Antiderivação. Aula 02 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integrais Antiderivação. Aula 02 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrais Antiderivação Aula 02 Matemática II Agronomia Prof. Danilene Donin Berticelli Como podemos usar a inflação para prever preços futuros? Como usar o conhecimento de taxa de crescimento

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

IND 2072 - Análise de Investimentos com Opções Reais

IND 2072 - Análise de Investimentos com Opções Reais IND 2072 - Análise de Investimentos com Opções Reais PROVA P2 1 o Semestre de 2007-03/07/2007 OBS: 1) A prova é SEM CONSULTA. Nota da prova = mínimo{10; pontuação da P2 + crédito da P1} 2) Verdadeiro ou

Leia mais

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

Detecção de Esteira de Vórtice em um Escoamento Laminar em Torno de uma Esfera, Utilizando Método de Galerkin.

Detecção de Esteira de Vórtice em um Escoamento Laminar em Torno de uma Esfera, Utilizando Método de Galerkin. Universidade Estadual de Campinas Faculdade de Engenharia Mecânica Pós Graduação em Engenharia Mecânica IM458 - Tópicos em Métodos Numéricos: Métodos Numéricos em Mecânica dos Fluidos Alfredo Hugo Valença

Leia mais

Hidráulica. Escoamento Uniforme em Tubulações. Hidráulica. Aula 3 Professor Alberto Dresch Webler 2015

Hidráulica. Escoamento Uniforme em Tubulações. Hidráulica. Aula 3 Professor Alberto Dresch Webler 2015 Hidráulica Hidráulica Escoamento Uniforme em Tubulações Aula 3 Professor Alberto Dresch Webler 2015 Fenômenos Hidráulica Resistências de Transporte dos Materiais - Aula 8 Veremos 1.1 Tensão tangencial

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

IPH a LISTA DE EXERCÍCIOS (atualizada 2017/1) Sempre que necessário e não for especificado, utilize:

IPH a LISTA DE EXERCÍCIOS (atualizada 2017/1) Sempre que necessário e não for especificado, utilize: IPH 01107 3 a LISTA DE EXERCÍCIOS (atualizada 2017/1) Sempre que necessário e não for especificado, utilize: ρ H2O = 1000 kg/m 3 µ água = 10-3 kg/(m.s) ρ ar = 1,2 kg/m 3 µ ar = 1,8.10-5 kg/(m.s) Reynolds

Leia mais

Arrasto e sustentação

Arrasto e sustentação Arrasto e sustentação J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Arrasto e sustentação 1 / 16 Sumário 1 Noção de camada limite 2 Separação do escoamento e esteira

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 7 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 7 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 0472 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 7 ROTEIRO Tópicos da aula:

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 0 Aula 0 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Introdução Apesar

Leia mais

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície CONVECÇÃO FORÇADA EXTERNA " Fluo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência

Leia mais

Fenômeno de Transportes A PROFª. PRISCILA ALVES

Fenômeno de Transportes A PROFª. PRISCILA ALVES Fenômeno de Transportes A PROFª. PRISCILA ALVES PRISCILA@DEMAR.EEL.USP.BR Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Os escoamentos internos e incompressíveis, onde os efeitos da viscosidade são consideráveis, são de extrema importância para os engenheiros! Exemplos, Escoamento em tbo circlar: veias

Leia mais

As bases da Dinâmica Molecular - 1

As bases da Dinâmica Molecular - 1 As bases da Dinâmica Molecular - 1 Alexandre Diehl Departamento de Física - UFPel Um pouco de história... IDMSF2017 2 Um pouco de história... A pré-história da Dinâmica Molecular A ideia da Dinâmica Molecular

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/1 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 4 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/1 A pressão

Leia mais

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de

Leia mais

Por fim, deve-se mencionar o problema da geometria 2D complexa. Segundo a MFLE, as taxas de propagação das trincas por fadiga dependem

Por fim, deve-se mencionar o problema da geometria 2D complexa. Segundo a MFLE, as taxas de propagação das trincas por fadiga dependem 1 Introdução Este trabalho trata da simulação numérica, com verificação experimental, do processo de trincamento de componentes estruturais bi-dimensionais (2D) por fadiga sob cargas de amplitude variável.

Leia mais

onde v m é a velocidade média do escoamento. O 2

onde v m é a velocidade média do escoamento. O 2 Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

3 Revisão da literatura II: Fluxo em meios porosos

3 Revisão da literatura II: Fluxo em meios porosos 46 3 Revisão da literatura II: Fluxo em meios porosos 3.1. Meio poroso saturado e parcialmente saturado O solo na sua estrutura apresenta duas zonas em função do seu conteúdo de umidade, zona saturada

Leia mais

Convecção Forçada Interna a Dutos

Convecção Forçada Interna a Dutos Convecção Forçada Interna a Dutos Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Escoamento no interior de dutos Velocidade Média Região de Entrada Hidrodinâmica

Leia mais

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime

Leia mais

1 Transformada de Legendre

1 Transformada de Legendre 1 Transformada de Legendre No caso da parede porosa a pressão constante a quantidade se conserva. Além disso H = U + P V dh = du + P dv + V dp du = dq + dw = dq dh = dq + V dp P dv escrevendo H = H (P;

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

FAP151 - Fundamentos de Mecânica. 5ª Lista de exercícios. Abril de 2009

FAP151 - Fundamentos de Mecânica. 5ª Lista de exercícios. Abril de 2009 FAP - Fundamentos de Mecânica. ª Lista de exercícios. Abril de 9 Determinando a posição a partir da aceleração. Entregar as soluções dos exercícios e, apresentando todas as etapas necessárias para resolvê-los;

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes.

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes. Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 5- Integração numérica: Fórmulas de Newton-Cotes. Objetivo: Apresentar o método de integração numérica baseado nas fórmulas

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke

Leia mais

ERRATA. Ilya Lvovich Shapiro & Guilherme de Berredo Peixoto LF Editora, São Paulo, 2011

ERRATA. Ilya Lvovich Shapiro & Guilherme de Berredo Peixoto LF Editora, São Paulo, 2011 ERRATA Introdução à Mecânica Clássica Ilya Lvovich Shapiro & Guilherme de Berredo Peixoto LF Editora, São Paulo, 11 Esta Errata contém correções para o nosso livro Gostaríamos de agradecer aos alunos e

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias 1 INTRODUÇÃO Fala galera, estamos aqui para ajuda-los com essa matéria muito importante para nós da UFRJ, esses conceitos serão muito utilizados nas próximas matérias do

Leia mais

MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA

MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA INTRODUÇÃO AOS MÉTODOS DE DIFERENÇAS FINITAS E DE VOLUMES

Leia mais

SOLUÇÃO DE UM PROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR

SOLUÇÃO DE UM PROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR SOLUÇÃO DE UM ROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR Marcelo M. Galarça ós Graduação em Engenharia Mecânica Universidade Federal do Rio Grande do Sul ransferência de Calor e Mecânica dos Fluidos Computacional

Leia mais

Universidade Federal de Sergipe, Departamento de Engenharia Química 2

Universidade Federal de Sergipe, Departamento de Engenharia Química 2 ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1

Leia mais

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 1 Sumário 1 Equações diferenciais ordinárias Métodos de Euler Exemplo de EDO linear: Método implícito Métodos multi-passo lineares Fórmulas de Adams-Bashforth Fórmulas de Adams-Moulton Fórmulas do tipo

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO DE ENGENHARIAS DA MOBILIDADE CEM. Bruno Zagoto Toscan

UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO DE ENGENHARIAS DA MOBILIDADE CEM. Bruno Zagoto Toscan UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO DE ENGENHARIAS DA MOBILIDADE CEM Bruno Zagoto Toscan Simulação de Escoamento em um Aerofólio NACA 0012 Joinville, 2014 1 INTRODUÇÃO A dinâmica dos fluidos

Leia mais

Capítulo 4 Equação da energia para escoamento permanente

Capítulo 4 Equação da energia para escoamento permanente Capítulo 4 Equação da energia para escoamento permanente ME4310 e MN5310 23/09/2009 OBJETIVO DA AULA DE HOJE: RESOLVER O EXERCÍCIO A SEGUIR: Determine a carga mecânica total na seção x do escoamento representada

Leia mais

Capítulo 1 Introdução à Mecânica dos Fluidos

Capítulo 1 Introdução à Mecânica dos Fluidos Capítulo 1 Introdução à Mecânica dos Fluidos Escoamento de um rio em volta de uma viga cilíndrica. Universidade Federal Fluminense EEIMVR - VEM Mecânica dos Fluidos I I. L. Ferreira, A. J. Silva, J. F.

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 212/13 Exame de 2ª época, 2 de Fevereiro de 213 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais