Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Tamanho: px
Começar a partir da página:

Download "Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT"

Transcrição

1 Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 01/10/2018

2 Cinemática Inversa sumário Modelo cinemático inverso métodos analíticos (ou soluções fechadas) métodos numéricos 2

3 Revisão de cálculo

4 Revisão de cálculo derivada de uma função escalar Se tivermos uma função escalar f com uma única variável x, podemos escrevê-la como f x A derivada da função em respeito a x é df dx f derivada = df dx f(x) x X 4

5 Revisão de cálculo derivada de uma função vetorial Se tivermos uma função vetorial r que representa a posição de uma partícula em função do tempo t r = r x i + r y j + r z k, r = r x r y r z, dr dt = dr x dt dr y dt dr z dt Por definição, a derivada da posição pelo tempo é chamada velocidade v = dr dt A derivada da velocidade é a aceleração a = dv dt = d2 r dt 2 5

6 Revisão de cálculo gradientes Gradiente é uma derivada de primeira ordem de uma função em relação suas variáveis: f x, y, z = df df df i + j + dx dy dz k Dá informações sobre a taxa de variação de uma função em relação a variáveis independentes A inclinação de f x, y = cos 2 x cos 2 y 2 descrito como um campo de vetores projetada no plano inferior 6

7 Revisão de cálculo derivadas vetoriais Sabe-se como derivar um escalar por outro escalar derivar um vetor por um escalar Mas como se pode derivar um escalar por um vetor? derivar um vetor por outro? Derivadas de valores escalares por valores vetoriais são comuns nos campos de dinâmica dos fluidos equações de teoria de campos potenciais etc... Na robótica, é interessante calcular a derivada de um vetor por outro... Jacobiano 7

8 Revisão de cálculo Jacobiano Um Jacobiano é a derivada de um vetor por outro Se tivermos uma função f(x), o Jacobiano é a matriz de derivadas parciais para cada componente dos vetores O jacobiano contém toda a informação necessária para relacionar uma mudança em um componente de x a uma mudança em um componente de f J f, x = df dx = f 1 f 1 f 1 x 1 x 2 x N f 2 f 2 f 2 x 1 x 2 x N f M f M f M x 1 x 2 x N 8

9 Revisão de cálculo numérico

10 Revisão de cálculo numérico exato x aproximado Muitos algoritmos necessitam da computação da derivada Em alguns casos é possível computar analiticamente a derivada por exemplo f x = x 2, df dx = 2x Em outros casos a função a ser derivada é muito complexa, impossibilitando o cálculo exato Porém, desde que possamos computar a função, podemos aproximar a derivada (para valores pequenos de Δx) df dx f x + Δx f x Δx 10

11 Revisão de cálculo numérico derivada aproximada f derivada = Δf Δx f(x + Δx) f(x) Δx X df dx f x + Δx f x Δx 11

12 Revisão de cálculo numérico valores próximos Se sabemos o valor da função em algum ponto x, podemos estimar o valor da função em pontos próximos a ele. Considerando que Δf Δx df dx Δf Δx df dx Tem-se f x + Δx f x + Δx df dx 12

13 Revisão de cálculo numérico solução para f x = 0 Existem diversas maneiras de computar aproximadamente os valores de x para quando f x = 0 Uma maneira é o Método de descida de gradiente Se é possível computar f x e df dx para qualquer valor de x, pode-se sempre seguir o gradiente na direção do valor zero 13

14 Revisão de cálculo numérico método de descida de gradiente Deseja-se encontrar o valor que faz com que f x = 0 Inicia-se em um valor x 0 e toma-se pequenos passos: x i+1 = x i + Δx até encontrar um valor x N onde f x N = 0 Para cada passo, tenta-se encontrar um valor de Δx que levará mais próximos ao valor desejado Pode-se utilizar a derivada como uma aproximação da inclinação da função 14

15 Revisão de cálculo numérico minimização Se f x i não for 0, o valor de f x i pode ser considerado um erro o objetivo do método de descida de gradiente é minimizar este erro A cada passo Δx a função muda de valor pode-se chamar esta mudança de Δf Idealmente, bom seria se Δf = f x i : isto significa que um passo Δx cancelaria todo o erro em Δf Na prática, cada passo leva-se mais próximo da solução termina-se quando estiver perto o suficiente da resposta desejada Este processo iterativo (o MDG) é comum na maioria dos algoritmos numéricos *MDG - método de descida de gradiente 15

16 Revisão de cálculo numérico escolhendo Δx Se a função utilizada variar muito, é mais prudente andar em passos pequenos Se a função que se deseja minimizar é bem comportada pode-se tentar aproximações lineares que passam por zero Para aproximar linearmente Δx para levar ao valor de x onde f x = 0 pode-se usar Δf df Δx dx Δf Δx df dx f x i Δx df dx Δx = f x i df dx 1 16

17 Revisão de cálculo numérico minimizando f x = g Deseja-se encontrar o valor de x para quando a função f x seja igual a um valor g qualquer diferente de zero, basta minimizar para f x g e tentar chegar em g Δx = g f x i df dx 1 f f(x i ) df dx g x i+1 x i X 17

18 Revisão de cálculo numérico utilizando passos menores Se a função não for bem comportada, não se pode aproximar linearmente Δx Uma modificação possível adiciona o parâmetro β para diminuir o passo, onde 0 β 1 Δx = β g f x i β é a taxa de aprendizado df dx 1 18

19 Revisão de cálculo numérico algoritmo de descida de gradiente x 0 = valor inicial f 0 = f(x 0 ) //calcule f em x 0 enquanto f n g { s i = df dx x i //calcule a derivada x i+1 = x i + β g f i s i //calcule o passo na direção de Δx } f i+1 = f x i+1 //calcule f em x i+1 19

20 Revisão de cálculo numérico parando a descida É necessário parar a descida em algum ponto Idealmente, finaliza quando o objetivo é alcançado, levando em conta alguma tolerância Porem, existem casos onde o algoritmo fica preso em uma determinada região: problemas de mínimo local outros... 20

21 Cinemática e o Jacobiano Ok, muito legal! Agora, aonde eu uso isso?! 21

22 Cinemática inversa (numérica)

23 Cinemática inversa objetivo final do atuador Θ representa o estado atual das posições das juntas e representa os valores atuais de posição e orientação do atuador (efetuador) g representa o valor desejado para o atuador e = e x e y T Y a 2 θ2 a 1 θ 1 X 23

24 Cinemática inversa exemplo 1: manipulador 2R Imaginando um robô com 2 juntas rotacionais e = e x e y Y a 2 θ 2 a 1 θ 1 X 24

25 Cinemática inversa exemplo 1: manipulador 2R A matriz jacobiana J(e, Θ) mostra como cada componente do vetor e varia, com respeito a cada junta: e x e x e = e x e y T J e, Θ = θ 1 e y θ 1 θ 2 e y θ 2 Y a 2 θ 2 a 1 θ 1 X 25

26 Cinemática inversa exemplo 1: manipulador 2R - variação em θ 1 O que acontece ao vetor e se variar θ 1 um pouco? e f = e x θ 1 e y θ 1 Y a 2 θ 2 e = e x e y T a 1 θ 1 X 26

27 Cinemática inversa exemplo 1: manipulador 2R - variação em θ 2 O que acontece ao vetor e se variar θ 2 um pouco? e = e x e y T e x e f = θ 2 e y θ 2 Y a 2 θ 2 a 1 θ 1 X 27

28 Cinemática inversa Jacobiano x domínio Da mesma maneira que uma derivada escalar dfτdx de uma função f x pode variar sobre o domínio de valores de x, o Jacobiano J(e, Θ) varia sobre o domínio de poses de Θ Para cada valor de pose de Θ, pode-se calcular os componentes individuais do Jacobiano Se houver uma mudança ΔΘ que representa uma pequena mudança nos valores das juntas, a mudança em e pode ser aproximada por Δe J e, Θ ΔΘ = JΔΘ 28

29 Cinemática inversa mudanças na posição do atuador Se houver uma mudança na posição final do atuador em Δe, que mudança em ΔΘ será realizada? A matriz jacobiana J(e, Θ) mostra como cada componente do vetor e varia, com respeito a cada junta: Δe JΔΘ Para se obter a posição a partir da pose, basta usar: ΔΘ J 1 Δe 29

30 Cinemática inversa ΔΘ = J 1 Δe Δe mudanças na posição do atuador e = e x e y T Y a 2 θ 2 a 1 θ 1 X 30

31 Cinemática inversa mudanças na posição do atuador Pode-se utilizar o jacobiano para calcular valores próximos da posição atual Lembre-se que a cinemática direta envolve funções não lineares Assim, é necessário repetir o cálculo do Jacobiano a cada passo, até chegar na posição desejada 31

32 Cinemática inversa escolhendo Δe Deseja-se um valor de Δe que deixa o atuador mais perto de g Um chute inicial pode ser: Δe = g e Infelizmente, devido a não linearidade, devemos tomar passos menores na direção desejada Δe = β g e, onde 0 β 1 32

33 Cinemática inversa algoritmo básico enquanto (e estiver longe demais de g) { compute J(e, Θ) para a pose atual Θ compute J 1 // inverta a matriz Jacobiana Δe = β g e // escolha um passo apropriado ΔΘ = J 1 Δe // compute as mudanças nas juntas Θ = Θ + ΔΘ // aplique as mudanças nas juntas compute o novo e // utilize cinemática direta } 33

Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 10/03/2019 Sumário Introdução Descrições espaciais Mapeamentos Transformações homogêneas

Leia mais

Introdução à Robótica Industrial p. 1/23

Introdução à Robótica Industrial p. 1/23 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 4 Introdução à Robótica Industrial p. 1/23 Cinemática Direta Dado: variáveis das juntas (ângulos ou deslocamentos) Procurado: posição e orientação

Leia mais

Introdução. Walter Fetter Lages

Introdução. Walter Fetter Lages Introdução Walter Fetter Lages fetter@ece.ufrgs.br Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10051 Dinâmica e Controle

Leia mais

Dinâmica das Máquinas Princípio do trabalho virtual

Dinâmica das Máquinas Princípio do trabalho virtual Dinâmica das Máquinas Princípio do trabalho virtual Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula

Leia mais

Robótica Móvel Locomoção e Controle. Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Robótica Móvel Locomoção e Controle. Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT Robótica Móvel Locomoção e Controle Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 04/06/2018 Objetivos desta aula Conceitos básicos de controle de robôs

Leia mais

Métodos de Pesquisa Operacional

Métodos de Pesquisa Operacional Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótica Prof. Reinaldo Bianchi Centro Universitário FEI 2016 5 a Aula Pós Graduação - IECAT Objetivos desta aula Velocidade e Aceleração de corpo rígido. Matrizes de inércia. Bibliografia Capítulos 5

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 06 - sistemas não lineares Antonio Oliveira Ricardo Marroquim 1 / 38 laboratório de processamento de imagens tópicos RANSAC métodos iterativos (não-lineares) gradientes

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Fluxo de Campos Vetoriais: Teorema da

Fluxo de Campos Vetoriais: Teorema da Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Fluxo de Campos Vetoriais: Teorema da Divergência Na aula anterior introduzimos o conceito de superfície paramétrica e chegamos

Leia mais

Objetivos desta aula. Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico.

Objetivos desta aula. Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico. Robótica Objetivos desta aula Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico. Bibliografia Capítulos 4 do Craig. Robot Manipulators: Mathematics,

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Animação Estruturas Articuladas

Animação Estruturas Articuladas Animação de Estruturas Articuladas Conteúdo 1.Introdução 2.Técnicas de Animação 3.Cinemática Directa e Inversa 4.Representação de Figuras Articuladas 5.Cinemática Inversa 6.Caso de Estudo Página 1 1.Introdução

Leia mais

Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007

Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE00070-Tópicos Especiais em Controle e Automação I

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br DERIVADAS PARCIAIS DERIVADAS PARCIAIS Sejam z = f x, y uma função real de duas variáveis reais; x 0, y 0

Leia mais

SEM Controle de Sistemas Robóticos

SEM Controle de Sistemas Robóticos SEM5875 - Controle de Sistemas Robóticos Adriano A. G. Siqueira Aula 1 - Revisão de Cinemática, Dinâmica e Propriedades das Matrizes Dinâmicas SEM5875 - Controle de Sistemas Robóticos p. 1/61 Matrizes

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

Deslocamento, velocidade e aceleração

Deslocamento, velocidade e aceleração Miguel Neta, novembro de 2018 [Imagem: Maverick's Physics Blog] Espaço percorrido ( s) ou distância percorrida (d) Um movimento produz uma trajetória! O espaço percorrido, s, ou distância percorrida, é

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Cap. 3 - Cinemática Tridimensional

Cap. 3 - Cinemática Tridimensional Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 3 - Cinemática Tridimensional Prof. Elvis Soares 1 Cinemática Vetorial Para determinar a posição de uma partícula no

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.4 Planos Tangentes e Aproximações Lineares Copyright Cengage Learning. Todos os direitos reservados. Planos Tangentes

Leia mais

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane .9.8.7.6.5.4.3.2.1 1 22/11/211 1 o teste A41N1 - Análise Matemática - BIOQ Nome... N o... 1. (2 valores) Calcule a soma da série 9 1 + 9 1 + 9 1 +... 9 1 + 9 1 + 9 1 + = 9 1 1 + 1 1 + 1 1 + 1 «1 +... =

Leia mais

Sistema de Coordenadas Intrínsecas

Sistema de Coordenadas Intrínsecas Sistema de Coordenadas Intrínsecas Emílio G. F. Mercuri a a Professor do Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, Paraná Resumo Depois da introdução a cinemática

Leia mais

II. REVISÃO DE FUNDAMENTOS

II. REVISÃO DE FUNDAMENTOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de Mecatrônica

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Programa Analítico de Disciplina ELT434 Robótica Industrial

Programa Analítico de Disciplina ELT434 Robótica Industrial 0 Programa Analítico de Disciplina Departamento de Engenharia Elétrica - Centro de Ciências Exatas e Tecnológicas Número de créditos: Teóricas Práticas Total Duração em semanas: 15 Carga horária semanal

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de ruitectura o semestre de 8 7 de Junho de 8 esponsável Henriue Oliveira a Parte. Considere a seguinte função f! de nida por f(x ; x ; x ) (x cos (x ) ; x sin (x ) ; x ).

Leia mais

Cinemática Inversa de Manipuladores

Cinemática Inversa de Manipuladores Cinemática Inversa de Manipuladores 1998Mario Campos 1 Introdução Cinemática Inversa Como calcular os valores das variáveis de junta que produzirão a posição e orientação desejadas do órgão terminal? 1998Mario

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

Cálculo 3 Primeira Avaliação (A) 25/08/2016

Cálculo 3 Primeira Avaliação (A) 25/08/2016 Cálculo 3 Primeira Avaliação A) 25/08/2016 Nome / Matrícula: / Turma: AA Nota: de 4 pontos) 1. 1 ponto) Determine a equação do plano que é: perpendicular ao plano que passa pelos pontos 0, 1, 1), 1, 0,

Leia mais

MOVIMENTO EM DUAS E TRÊS DIMENSÕES

MOVIMENTO EM DUAS E TRÊS DIMENSÕES CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Controle Linear Controle Não-Linear Controle Adaptativo Exercícios Recomendados Bibliografia Recomendada 2/145

Controle Linear Controle Não-Linear Controle Adaptativo Exercícios Recomendados Bibliografia Recomendada 2/145 SEM0317 Aula 8 Controle de Manipuladores Robóticos Prof. Dr. Adriano A. G. Siqueira Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário do Módulo Introdução Controle Linear Controle Não-Linear Controle Adaptativo

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Operadores Diferenciais Aplicações Rebello 2014

Operadores Diferenciais Aplicações Rebello 2014 Operadores Diferenciais Aplicações Rebello 2014 Os operadores diferenciais representam um conjunto de ferramentas indispensáveis na engenharia não só na parte de avaliar e classificar um campo vetorial

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Robótica Competitiva Controle de Movimento Cinemático

Robótica Competitiva Controle de Movimento Cinemático Robótica Competitiva Controle de Movimento Cinemático 2017 Introdução Modelo Controlador Lei de Controle Resultados Estabilidade Sumário Introdução Modelo Controlador Lei de Controle Resultados Estabilidade

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Solução Numérica do Problema de Blasius da Camada Limite Laminar

Solução Numérica do Problema de Blasius da Camada Limite Laminar Universidade de Brasília Departamento de Engenharia Mecânica Mecânica dos Fluidos II 0) Prof. Francisco Ricardo da Cunha e Prof. Gustavo Coelho Abade Monitor: Nuno Jorge Sousa Dias Solução Numérica do

Leia mais

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,

Leia mais

Cinemática de Robôs Móveis

Cinemática de Robôs Móveis Cinemática de Robôs Móveis A cinemática é a área da Física que estuda o movimento dos corpos. Em robótica móvel a cinemática estabelece relações entre o deslocamento (locomoção) do robô e a atuação a ele

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Campos Potenciais. Campos Potenciais. Campos Potenciais. Campos Potenciais. Campos Potenciais 05/30/2016

Campos Potenciais. Campos Potenciais. Campos Potenciais. Campos Potenciais. Campos Potenciais 05/30/2016 Introdução à Robótica Robótica Móvel Planejamento e Navegação Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br Planejamento e navegação Uma das abordagens mais utilizadas Proposta por Oussama Khatib

Leia mais

3 Cálculo Variacional

3 Cálculo Variacional 3 Cálculo Variacional Este capítulo tem por objetivo fundamentar e fornecer ferramentas para a discussão dos capítulos que virão, onde os sistemas tratados serão formulados através de uma segunda forma,

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de Arquitectura o semestre de 7 de Julho de 7 Resonsável Henrique Oliveira a Parte. Considere a seguinte função f R! R de nida or f(x ; x ; x ) (x sin (x ) ; x ; x cos (x

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)?

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)? Potencial Elétrico O que é diferença de potencial (ddp)? A diferença de potencial entre dois pontos e num campo elétrico, seja ele uniforme ou não, é, por definição, o trabalho por unidade de carga (J/C

Leia mais

Figura 4.2: Matriz Curricular

Figura 4.2: Matriz Curricular Figura 4.2: Matriz Curricular 3660 Fundamentos de Matemática e Estatística Física Eletrônica Algoritmos e Programação Arquitetura de Computadores Metodologias e Técnicas de Computação Engenharia e Sistemas

Leia mais

MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1

MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1 MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1 Vânia Luisa Behnen 2, Roberta Goergen 3, Marcia Regina Maboni Hoppen Porsch 4, Mônica Raquel Alves 5, Antonio Carlos Valdiero

Leia mais

Como funcionam os simuladores de circuitos?

Como funcionam os simuladores de circuitos? Como funcionam os simuladores de circuitos? Vítor H. Nascimento 3 de março de Introdução Neste documento vamos mostrar como os simuladores funcionam, descrevendo as ideias principais dos algoritmos usados

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG - INTITUTO DE MTEMÁTIC Departamento de Matemática Pura e plicada MT1168 - Turma - 19/1 Prova da área I 1-6 7 8 Total Nome: Ponto extra: ( )Wikipédia ( )presentação ( )Nenhum Tópico: Cartão: Regras

Leia mais

Introdução à Robótica Industrial p. 1/25

Introdução à Robótica Industrial p. 1/25 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 5 Introdução à Robótica Industrial p. 1/25 Espaço das juntas e Espaço das posições e orientações Espaço das juntas: q = q 1 q 2. { q i = θ i,

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

Mecânica 1. Guia de Estudos P2

Mecânica 1. Guia de Estudos P2 Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou

Leia mais

Modelos Matematicos de Sistemas

Modelos Matematicos de Sistemas Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;

Leia mais

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),

Leia mais

Silvia Maria Pereira Grandi dos Santos

Silvia Maria Pereira Grandi dos Santos Método iterativo para solução de sistemas lineares Gradientes e Gradientes Conjugados Silvia Maria Pereira Grandi dos Santos USP - São Carlos/SP Outubro 2008 Roteiro Motivação; Processos de Relaxação;

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Testes Formativos de Computação Numérica e Simbólica

Testes Formativos de Computação Numérica e Simbólica Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste

Leia mais

Movimento Circular e Uniforme

Movimento Circular e Uniforme A principal característica desse tipo de movimento é que a partícula ou o corpo no qual estamos considerando tem o módulo da velocidade constante na sua trajetória circular. Exemplos: - Satélites na órbita

Leia mais

Introdução. Walter Fetter Lages

Introdução. Walter Fetter Lages Introdução Walter Fetter Lages w.fetter@ieee.org Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A Copyright (c)

Leia mais

3 Fluxo Permanente Não Confinado 3.1. Introdução

3 Fluxo Permanente Não Confinado 3.1. Introdução 51 3 Fluxo Permanente Não Confinado 3.1. Introdução O fenômeno da percolação de fluidos em meios porosos é estudado em várias áreas da engenharia. Na engenharia geotécnica, em particular, o conhecimento

Leia mais

Plano tangente e reta normal

Plano tangente e reta normal UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função

Leia mais

Resumo P1 Mecflu. Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície.

Resumo P1 Mecflu. Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície. Resumo P1 Mecflu 1. VISCOSIDADE E TENSÃO DE CISALHAMENTO Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície. Viscosidade: resistência de um fluido

Leia mais

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Introdução à Otimização de Processos Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Otimização Não-Linear Algumas definições e conceitos preliminares: 1. Derivadas

Leia mais

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, jr.marlon@hotmail.com Solange Regina dos Santos (OR), UNESPAR/FECILCAM, solaregina@fecilcam.br

Leia mais

4 Estado da Arte do Kernel PCA

4 Estado da Arte do Kernel PCA 4 Estado da Arte do Kernel PCA Conforme apresentado no Capítulo 1, o Kernel PCA é uma técnica promissora para auxiliar no processo de ajuste de histórico, devido a sua capacidade de extrair parte da estatística

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014

Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014 Cálculo Numérico Aula 6 Método das Secantes e Critérios de Parada 2014.1-22/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Aula passada? Método Iterativo

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

, cosh (x) = ex + e x. , tanh (x) = ex e x 2

, cosh (x) = ex + e x. , tanh (x) = ex e x 2 Exercícios Adicionais 1. Podemos definir as funções seno, cosseno e tangente hiperbólicos como: sinh (x) = ex e x, cosh (x) = ex + e x, tanh (x) = ex e x e x + e x Escreva três funções no Scilab que implementem

Leia mais

é a distância entre um determinado ponto da linha

é a distância entre um determinado ponto da linha Erro de Minimização O algoritmo do erro de minimização para efectuar a auto-localização de robôs foi desenvolvido de forma a superar os problemas existentes nas três abordagens identificadas, no sentido

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h = UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:

Leia mais

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos O problema de controle ótimo Considere

Leia mais

Manufatura assistida por computador

Manufatura assistida por computador Manufatura assistida por computador Cinemática Direta em Manipuladores Robóticos Professor: Mário Luiz Tronco Aluno Doutorado: Luciano Cássio Lulio Engenharia Mecânica Orientação e sistemas de referência

Leia mais

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever Capítulo 5 - Cinemática da Velocidade e da Aceleração. O Jacobiano do Manipulador 54 CAPÍTULO 5 CINEMÁTICA DA VELOCIDADE E DA ACELERAÇÃO O JACOBIANO DO MANIPULADOR 5.1 INTRODUÇÃO Nos capítulos anteriores

Leia mais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais Lista 6: CDCI Turmas: AEMN e BEMN Prof. Alexandre Alves Universidade São Judas Tadeu Divergente e Rotacional de Campos Vetoriais Exercício : Calcule a divergência e o rotacional dos seguintes campos vetoriais:

Leia mais