Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007

Tamanho: px
Começar a partir da página:

Download "Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007"

Transcrição

1 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE00070-Tópicos Especiais em Controle e Automação I Modelo Cinemático Inverso Prof. Walter Fetter Lages 16 de setembro de Problema Cinemático Inverso O problema cinemático inverso consiste em obter-se os valores das variáveis de junta do manipulador a partir da posição e orientação (desejada) do efetuador final. Ou seja, deseja-se computar θ 1, θ 2,..., θ n a partir de um 0 T d n especificada. Igualando-se a matriz 0 T d n e a matriz 0 T n computada pelo modelo cinemático direto pode-se obter 16 equações envolvendo as variáveis de junta. Destas equações, 4 são triviais. Outras 9 são referentes à parte de rotação da matriz de transformação homogênea e portanto apenas 3 destas equações são independentes. A parte de translação da matriz de transformação homogênea fornece outras 3 equações independentes. Tem-se portanto um sistema com 6 equações e n incógnitas correspondentes às variáveis de junta. Assim, se o manipulador tiver 6 graus de liberdade, tem-se, a princípio, um sistema de equações que pode ser solucionado para obter-se os valores das variáveis de junta para qualquer posição e orientação especificada para o efetuador final. 2 Considerações 1. Existência de Soluções 2. Multiplicidade de Soluções 3. Método de Solução (a) Soluções em Forma Fechada 1

2 i. Método Algébrico ii. Método Geométrico iii. Solução de Pieper (b) Soluções em Forma Aberta i. Métodos Numéricos 3 Método Algébrico Figura 1: Modelo cinemático inverso pelo método algébrico. 2

3 0 T 3 = C 123 S l 1 C 1 + l 2 C 12 + l 3 C 123 S 123 C l 1 S 1 + l 2 S 12 + l 3 S T3 d = C φ S φ 0 x S φ C φ 0 y Fazendo-se 0 T d 3 = 0 T 3 pode-se obter as equações C φ = C 123 (1) S φ = S 123 (2) x = l 1 C 1 + l 2 C 12 + l 3 C 123 (3) y = l 1 S 1 + l 2 S 12 + l 3 S 123 (4) Substituindo-se as expressões (1) e (2) em (3) e (4) e rearranjando-se de forma que os termos conhecidos estejam de um lado da igualdade e os termos dependentes das incógnitas estejam do outro, tem-se x l 3 C φ = l 1 C 1 + l 2 C 12 (5) y l 3 S φ = l 1 S 1 + l 2 S 12 (6) Elevando-se ao quadrado e somando-se as expressões (5) e (6) resulta (x l 3 C φ ) 2 + (y l 3 S φ ) 2 = l1c l 1 C 1 l 2 C 12 + l2c l1s l 1 S 1 l 2 S 12 + l2s = l1 2 + l l 1l 2 (C 1 C 12 + S 1 S 12 ) e portanto = l l l 1l 2 cos (θ 1 (θ 1 + θ 2 )) = l l l 1l 2 C 2 C 2 = (x l 3C φ ) 2 + (y l 3 S φ ) 2 l 2 1 l 2 2 2l 1 l 2 (7) Obviamente deve-se ter 1 C 2 1. No entanto, o valor calculado através da expressão (7) pode eventualmente estar fora desta faixa. Isto significa que o ponto (x, y, φ) está fora do espaço de trabalho do manipulador. 3

4 Para obter-se o valor do ângulo θ 2 deve-se evitar o uso da função acos ( ), pois desta forma perde-se a informação de quadrante do ângulo. O correto é calcular o valor de θ 2 através da função atan2 (, ) 1 Para tanto necessita-se obter o valor de S 2, através de S 2 = ± 1 C2 2 (8) Note-se que os dois sinais na expressão (8) indicam a existência de duas possíveis soluções: Uma com o cotovelo do robô para cima e outra com o cotovelo para baixo. Pode-se portanto, calcular o valor de θ 2 pela expressão Conhecendo-se θ 2, pode-se, de (5) e (6), escrever: θ 2 = atan2 (S 2, C 2 ) (9) de onde é possível obter-se x l 3 C φ = l 1 C 1 + l 2 C 1 C 2 l 2 S1S 2 y l 3 S φ = l 1 S 1 + l 2 S 1 C2 + l 2 C 1 S 2 com x l 3 C φ = K 1 C 1 K 2 S 1 (10) y l 3 S φ = K 1 S 1 + K 2 C 1 (11) tem-se Através das seguintes mudanças de variáveis K 1 = l 1 + l 2 C 2 K 2 = l 2 S 2 (12) r = K1 2 + K2 2 γ = atan2 (K 2, K 1 ) K 1 = r cos γ (13) K 2 = r sen γ (14) 1 Esta função retorna o valor do ângulo no quadrante correto, entre π e +π. 4

5 Aplicando as transformações (13) e (14) nas expressões (10) e (11), tem-se x l 3 C φ = rc γ C 1 rs γ S 1 y l 3 S φ = rc γ S 1 + rs γ C 1 que pode ser escrita de forma mais compacta como de onde pode-se obter x l 3 C φ r y l 3 S φ r = cos(γ + θ 1 ) = sen (γ + θ 1 ) ou γ + θ 1 = atan2 ( y l3 S φ r, x l ) 3C φ = atan2 (y l 3 S φ, x l 3 C φ ) r θ 1 = atan2 (y l 3 S φ, x l 3 C φ ) γ = atan2 (y l 3 S φ, x l 3 C φ ) atan2 (K 2, K 1 ) e finalmente θ 1 = atan2 (y l 3 S φ, x l 3 C φ ) atan2 (l 2 S 2, l 1 + l 2 C 2 ) (15) Note-se que o sinal de θ 2 afeta S 2 que afeta θ 1. Conhecendo-se θ 1 e θ 2 pode-se determinar θ 3. De (1) e (2) tem-se ou atan2 (S φ, C φ ) = atan2 (S 123, C 123 ) de onde atan2 (S φ, C φ ) = θ 1 + θ 2 + θ 3 θ 3 = atan2 (S φ, C φ ) θ 1 θ 2 (16) 5

6 Figura 2: Modelo cinemático inverso pelo método geométrico. 4 Método Geométrico A solução para o problema cinemático inverso através do método geométrico baseia-se na decomposição do manipulador em planos. Considerando-se a configuração com o cotovelo para cima tem-se, pela Lei dos Cossenos: (x l 3 C φ ) 2 + (y l 3 S φ ) 2 = l l2 2 2l 1l 2 cos(180 + θ 2 ) já que nesta situação θ 2 < 0. E como cos(180 + θ 2 ) = cos θ 2, chega-se a C 2 = (x l 3C φ ) 2 + (y l 3 S φ ) 2 l l 2 2 2l 1 l 2 Neste caso, o valor de θ 2 pode ser calculado por 6

7 θ 2 = acos (C 2 ) pois devido à hipótese de que θ 2 < 0, o quadrante do ângulo está bem definido. Pode-se facilmente perceber que para a configuração com o cotovelo para baixo tem-se Definindo-se θ 2 = θ 2 β = atan2 (y l 3 S φ, x l 3 C φ ) Tem-se que quando o cotovelo está para cima θ 1 = β + α, com α 0 e quando o cotovelo está para baixo θ 1 = β α, com α 0. α pode ser obtido utilizando-se a Lei dos Cossenos: l 2 2 = ( (x l 3 C φ ) 2 + (y l 3 S φ ) 2 ) 2+l 2 1 2l 1 (x l 3 C φ ) 2 + (y l 3 S φ ) 2 cos α Logo cos α = (x l 3C φ ) 2 + (y l 3 S φ ) 2 + l 2 1 l 2 2l 1 (x l3 C φ ) 2 + (y l 3 S φ ) 2 e novamente tem-se que α pode ser calculado por α = acos (cos α), já que o quadrante do ângulo é conhecido. Note que α = α. Tem-se também que φ = θ 1 + θ 2 + θ 3. Portanto e θ 3 = φ θ 1 θ 2 θ 3 = φ θ 1 θ 2 5 Solução de Pieper Para manipuladores com 6 (ou 5 ou 4) graus de liberdade, quanto as 3 (ou 2 ou 1) últimas juntas forem rotacionais e os seus eixos interceptam-se em um único ponto, é possível obter-se uma solução geral para o problema cinemático inverso [3]. Neste caso, é possível desacoplar o problema cinemático inverso em dois problemas mais simples, o problema de posicionamento inverso e o problema de orientação inverso [5]. 7

8 Supondo-se um manipulador com n graus de liberdade, o problema cinemático inverso é encontrar os valores de q = [ q 1... q n ] T tais que 0 T d n = 0 T 1... n 1 T n = 0 T n (17) onde 0 Tn d é a matriz de transformação homogênea desejada, ou seja, a matriz de transformação homogênea com a posição e orientação do efetuador do robô para a qual se deseja determinar os valores das variáveis de junta. A expressão (17) pode ser ser desmembrada em duas equações, uma correspondendo as especificações de posição e outra correspondendo as especificações de orientação: 0 P d n = 0 P n (18) 0 R d n = 0 R n (19) onde 0 P d n e 0 R d n representam, respectivamente, a posição e a orientação desejadas para o sistema de coordenadas n. Se os eixos das juntas n 2, n 1 e n se interceptam no ponto Q, as origens dos sistemas de coordenadas {n 1} e {n 2} (atribuídos segundo as convenções de Denavit-Hartenberg) estarão neste ponto. Neste caso, o movimento das juntas n 2, n 1 e n não alterará a posição do ponto Q. Como a origem do sistema {n} é apenas uma translação por uma distância d n ao longo de Ẑn 1 a partir de Q e Ẑn 1 está alinhado com Ẑn, tem-se que 0 P norg = 0 Q + 0 R n 1 d n n 1 Ẑ n 1 = 0 Q + 0 R n d n n Ẑ n Portanto, para posicionar o efetuador do robô no ponto 0 Pn d, basta fazer Por outro lado, 0 Q = 0 P d n 0 R d n d n n Ẑ n 0 Q = 0 P (n 2)org = 0 T n 3 n 3 P (n 2)org que é função apenas de q 1... q n 3. Assim, pode-se determinar q 1... q n 3 a partir de 0 P d n 0 R d n d n n Ẑ n = 0 T n 3 n 3 P (n 2)org A determinação dos valores de q 1... q n 3 implica 0 R n 3 estar determinada e como 0 R d n = 0 R n 3 n 3 R n 8

9 deve-se fazer ou ainda n 3 R n = 0 R 1 n 3 0 R d n n 3 R n = 0 R T n 3 0 R d n de onde pode-se determinar os valores de q n 2... q n. 6 Método Numérico Existem diversos métodos numéricos para calcular a cinemática inversa. Vide [1, 2] para um resumo das técnicas. Aqui serão apresentadas apenas as mais simples. Justamente por serem mais simples, estas técnicas são pouco eficientes do ponto de vista computacional e muito suceptíveis a problemas com sigularidades. 6.1 Inversa generalizada A inversa do jacobiano é tal que, dada uma pequena variação da posição dda garra, é possível calcular a variação nas coordenadas de junta[4]: q = J 1 (q) X Em geral, não existe a inversa do jacobiano, mas sim uma inversa generalizada B, que cumpre alguma das condições de Moore-Penrose: 1. JBJ = J 2. BJB = B 3. (JB) T = JB 4. (BJ) T = BJ Se B cumpre todas as quatro condições, é dita pseudo-inversa, e é única: B = J. Achar a inversa generalizada é um processo lento e que não lida adequadamente com singularidades. 9

10 6.2 Transposta do Jacobiano Em lugar de utilizar a pseudo-inversa do jacobiano, pode-se utilizar a transposta: q = J T (q) X É muito mais eficiente do ponto de vista computacional e evita problemas com singularidades. Esta aproximação é motivada por considerações físicas com base no conceito de trabalho virtual. Para resolver certos problemas de escala, pode-se introduzir um fator de escala h, e iterar até atingir a convergência: q (i+1) = hj T (q) X (i) Referências [1] S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. Typeset Manuscript, available from Apr [2] S. R. Buss and J.-S. Kim. Selectively damped least squares for inverse kinematics. Typeset Manuscript, available from ~sbuss/researchweb, Apr [3] J. J. Craig. Introduction to Robotics Mechanics and Control. Addison-Wesley, second edition, [4] V. F. Romano, editor. Robótica Industrial Aplicação na Indústria de Manufatura e de Processos. Edgard Blücher, São Paulo, [5] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, A Relações Trigonométricas Úteis A.1 Cosseno da Soma cos(a ± b) = cos a cos b sen a sen b 10

11 A.2 Seno da Soma A.3 Lei dos Cossenos sen (a ± b) = sen a cos b ± cos a sen b Figura 3: Definição de ângulos e vértices para a Lei dos Senos e Lei dos Cossenos. a 2 = b 2 + c 2 2bc cos α A.4 Lei dos Senos a sen α = b sen β = c sen γ A.5 Lei das Tangentes a + b a b = tan ( 1 (α + β)) 2 tan ( 1(α β)) 2 B Soluções Algébricas Reduzidas a Polinômios Seja uma equação trigonométrica na forma a cos θ + b sen θ = c Esta equação pode ser resolvida para θ através das seguintes transformações algébricas: 11

12 Aplicando-se as transformações, tem-se cos θ = 1 u2 (20) 1 + u 2 2u sen θ = (21) 1 + u 2 tan θ 2 = u (22) a 1 u2 1 + u 2 + b 2u 1 + u 2 = c a(1 u 2 ) + 2bu = c(1 + u 2 ) a au 2 + 2bu = c + cu 2 (c + a)u 2 2bu + (c a) = 0 u = 2b ± 4b 2 4(c + a)(c a) 2(c + a) u = b ± b 2 c 2 + a 2 c + a ( ) b ± θ = 2 tan 1 a2 + b 2 c 2 a + c 12

1 Problema Cinemático Inverso

1 Problema Cinemático Inverso Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG04479-Robótica-A Modelo Cinemático Inverso Prof. Walter Fetter Lages 29 de abril

Leia mais

1 Problema Cinemático Inverso

1 Problema Cinemático Inverso Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ELE228-Robótica-A Modelo Cinemático Inverso Prof. Walter Fetter Lages 15 de maio

Leia mais

Introdução à Robótica Industrial p. 1/23

Introdução à Robótica Industrial p. 1/23 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 4 Introdução à Robótica Industrial p. 1/23 Cinemática Direta Dado: variáveis das juntas (ângulos ou deslocamentos) Procurado: posição e orientação

Leia mais

Objetivos desta aula. Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico.

Objetivos desta aula. Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico. Robótica Objetivos desta aula Modelo cinemático inverso: Métodos analíticos (ou soluções fechadas): Geométrico (por Trigonometria). Algébrico. Bibliografia Capítulos 4 do Craig. Robot Manipulators: Mathematics,

Leia mais

Cinemática Inversa de Manipuladores

Cinemática Inversa de Manipuladores Cinemática Inversa de Manipuladores 1998Mario Campos 1 Introdução Cinemática Inversa Como calcular os valores das variáveis de junta que produzirão a posição e orientação desejadas do órgão terminal? 1998Mario

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Mário Prof. Mário Luiz Tronco Luiz Tronco Transformação direta de coordenadas θ 1 θ 2... θ N Variáveis de junta Variáveis cartesianas

Leia mais

SEM Controle de Sistemas Robóticos

SEM Controle de Sistemas Robóticos SEM5875 - Controle de Sistemas Robóticos Adriano A. G. Siqueira Aula 1 - Revisão de Cinemática, Dinâmica e Propriedades das Matrizes Dinâmicas SEM5875 - Controle de Sistemas Robóticos p. 1/61 Matrizes

Leia mais

Programa Analítico de Disciplina ELT434 Robótica Industrial

Programa Analítico de Disciplina ELT434 Robótica Industrial 0 Programa Analítico de Disciplina Departamento de Engenharia Elétrica - Centro de Ciências Exatas e Tecnológicas Número de créditos: Teóricas Práticas Total Duração em semanas: 15 Carga horária semanal

Leia mais

Descrições Espaciais e Transformações

Descrições Espaciais e Transformações 4 o Engenharia de Controle e utomação FCI / 29 rof. Maurílio J. Inácio Descrição de posição e orientação O estudo de robótica envolve constantemente a localização de objetos (as partes e ferramentas) em

Leia mais

Introdução. Walter Fetter Lages

Introdução. Walter Fetter Lages Introdução Walter Fetter Lages fetter@ece.ufrgs.br Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10051 Dinâmica e Controle

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

Resolved Motion Control. Prof. Walter Fetter Lages 9 de maio de 2019

Resolved Motion Control. Prof. Walter Fetter Lages 9 de maio de 2019 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10051 Dinâmica e Controle de s Controle no espaço cartesiano Resolved Motion

Leia mais

Exercício Resolvido Cinemática direta para o manipulador Stanford

Exercício Resolvido Cinemática direta para o manipulador Stanford PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA 44646-04 SISTEMAS ROBOTIZADOS (Eng. Controle e Automação) Prof. Felipe Kühne Exercício Resolvido Cinemática direta para o manipulador

Leia mais

Manipulação Robótica. Aula 2

Manipulação Robótica. Aula 2 Manipulação Robótica Aula 2 Programa 1) Introdução 1.1. Tipos de Robôs 1.2. Aplicações 2) Robôs Manipuladores 2.1. Estrutura de Robôs Manipuladores 2.2. Classificação de Robôs Manipuladores 2.3. Sistema

Leia mais

Introdução à Robótica Industrial. Aula 2

Introdução à Robótica Industrial. Aula 2 Introdução à Robótica Industrial Aula 2 Programa 1) Introdução 1.1. Tipos de Robôs 1.2. Aplicações 2) O Robô Manipulador 2.1. Estrutura de Robôs Manipuladores 2.2. Sensores 2.3. Atuadores 2.4. Efetuadores

Leia mais

Manufatura assistida por computador

Manufatura assistida por computador Manufatura assistida por computador Cinemática Direta em Manipuladores Robóticos Professor: Mário Luiz Tronco Aluno Doutorado: Luciano Cássio Lulio Engenharia Mecânica Orientação e sistemas de referência

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

Apresentação Robótica

Apresentação Robótica Apresentação Robótica Curso Engenharia de Controle e Automação Alex Vidigal Bastos www.decom.ufop.br/alex/unipac.html alexvbh@gmail.com 1 Agenda Ementa Objetivos Conteúdo Programático Metodologia de Ensino

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

Robótica - utilização, programação, modelagem e controle de robôs industriais

Robótica - utilização, programação, modelagem e controle de robôs industriais Robótica - utilização, programação, modelagem e controle de robôs industriais SÉRIE DE EXERCÍCIOS 16 MODELAGEM CINEMÁTICA DE UM MANIPULADOR COM SEIS GRAUS DE LIBERDADE REVISÃO DE CONCEITOS A seguir são

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

CAPÍTULO 03 CINEMÁTICA DIRETA DE POSIÇÃO. REPRESENTAÇÃO DE DENAVIT-HARTENBERG

CAPÍTULO 03 CINEMÁTICA DIRETA DE POSIÇÃO. REPRESENTAÇÃO DE DENAVIT-HARTENBERG Capítulo 3 - Cinemática Direta de Posição. Representação de Denavit-Hartenberg 27 CAPÍTULO 03 CINEMÁTICA DIRETA DE POSIÇÃO. REPRESENTAÇÃO DE DENAVIT-HARTENBERG 3.1 INTRODUÇÃO Neste capítulo serão desenvolvidas

Leia mais

Introdução. Walter Fetter Lages

Introdução. Walter Fetter Lages Introdução Walter Fetter Lages w.fetter@ieee.org Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A Copyright (c)

Leia mais

ROBÓTICA DENAVIT- HARTENBERG. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA DENAVIT- HARTENBERG. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial DENAVIT- HARTENBERG https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1

MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1 MODELAGEM CINEMÁTICA DE UM ROBÔ ANTROPOMÓRFICO COM DOIS GRAUS DE LIBERDADE 1 Vânia Luisa Behnen 2, Roberta Goergen 3, Marcia Regina Maboni Hoppen Porsch 4, Mônica Raquel Alves 5, Antonio Carlos Valdiero

Leia mais

São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas.

São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas. 4. Classificação dos robôs São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas. 1 - Robô revoluto, antropomórfico ou articulado.

Leia mais

Controle de Robôs Manipuladores. Prof. Valdir Grassi Junior sala 2986 (prédio antigo)

Controle de Robôs Manipuladores. Prof. Valdir Grassi Junior   sala 2986 (prédio antigo) Controle de Robôs Manipuladores Prof. Valdir Grassi Junior e-mail: vgrassi@usp.br sala 2986 (prédio antigo) Introdução Robôs Manipuladores O que são robôs manipuladores? Robôs Manipuladores Industriais

Leia mais

Engenharia de Controle e Automação: ENG03316 Mecanismos I Engenharia Elétrica: ENG10017 Sistemas e Sinais e ENG04475 Microprocessadores I

Engenharia de Controle e Automação: ENG03316 Mecanismos I Engenharia Elétrica: ENG10017 Sistemas e Sinais e ENG04475 Microprocessadores I UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE SISTEMAS ELÉTRICOS DE AUTOMAÇÃO E ENERGIA PLANO DE ENSINO PERÍODO LETIVO 2018/2 DISCIPLINA: ROBÓTICA A ENG10026 Créditos:

Leia mais

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs ROBÓTICA Equacionamento da Cinemática Direta de Robôs Prof. Dr. Carlo Pece Depto. de Eletrotécnica UTFPR Transparências adaptadas de material fornecido pelo prof. Winderson E. dos Santos UTFPR 1 Cinemática

Leia mais

MODELAGEM MATEMÁTICA DA CINEMÁTICA INVERSA DO ROBÔ FANUC LR MATE 200IC COM SIMULAÇÃO NO MATLAB

MODELAGEM MATEMÁTICA DA CINEMÁTICA INVERSA DO ROBÔ FANUC LR MATE 200IC COM SIMULAÇÃO NO MATLAB MODELAGEM MATEMÁTICA DA CINEMÁTICA INVERSA DO ROBÔ FANUC LR MATE 200IC COM SIMULAÇÃO NO MATLAB Sérgio Ricardo Xavier da Silva, M.Sc. sergio.silva@unifacs.br Rafael Gonçalves Bezerra de Araújo, M.Sc. rafael.araujo@unifacs.br

Leia mais

Vetores. Prof. Marco Simões

Vetores. Prof. Marco Simões Vetores Prof. Marco Simões Tipos de grandezas Grandezas escalares São definidas por um único valor, ou módulo Exemplos: massa, temperatura, pressão, densidade, carga elétrica, etc Grandezas vetoriais Necessitam,

Leia mais

Movimento de Corpos Rígidos e

Movimento de Corpos Rígidos e Capítulo 2 Movimento de Corpos Rígidos e Transformações Homogêneas Boa parte do estudo em cinemática dos manipuladores preocupa-se em definir sistemas de coordenadas de forma que se possa representar posições

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Transformações 2D Computação Visual Beatriz Sousa Santos, Joaquim Madeira Transformações 2D Posicionar, orientar e escalar

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Manufatura assistida por Computador

Manufatura assistida por Computador Manufatura assistida por Computador Cinemática Direta em Manipuladores Robóticos for MATLAB Professor Mário Luiz Tronco Aluno Doutorado: Luciano Cássio Lulio Engenharia Mecânica 2013/01 Álgebra linear

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Problemas 21/03/2012. (b) Como mostramos no item (a), as componentes do vetor posição ( r) são: x = t 2

Problemas 21/03/2012. (b) Como mostramos no item (a), as componentes do vetor posição ( r) são: x = t 2 Problemas 1/0/01 Problema 1 Uma partícula possui uma aceleração constante a = 6m/s ) î + 4m/s ). No tempo t = 0, a velocidade é nula e o vetor posição é r 0 = 10m) î. a) Determine os vetores velocidade

Leia mais

Relações entre Elementos Geométricos na Álgebra dos Quatérnios Duais com Aplicações na Robótica

Relações entre Elementos Geométricos na Álgebra dos Quatérnios Duais com Aplicações na Robótica Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Relações entre Elementos eométricos na Álgebra dos Quatérnios Duais com Aplicações na Robótica Luiz A. Radavelli 1 Departamento

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

Vetores. Prof. Marco Simões

Vetores. Prof. Marco Simões Vetores Prof. Marco Simões Ao final dessa aula você deverá saber A diferença entre grandezas escalares e vetoriais Como representar uma grandeza vetorial O que são os componentes de um vetor Como efetuar

Leia mais

Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT Cinemática (warmup) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 10/03/2019 Sumário Introdução Descrições espaciais Mapeamentos Transformações homogêneas

Leia mais

Representação Gráfica

Representação Gráfica Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Figura 2.1. Representação da localização de corpos rígidos por meio de referenciais.

Figura 2.1. Representação da localização de corpos rígidos por meio de referenciais. 2. CINEMÁTICA 2.1. Representação de Posição e Orientação: Sistemas Referenciais: Para localizar um corpo rígido no espaço tridimensional, um sistema referencial é associado ao mesmo. Um referencial associado

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 11.º ano Ano Letivo de 2016/2017 Manual adotado: Máximo 11 Matemática A 11.º ano Maria Augusta Ferreira

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT Cinemática Inversa (numérica) Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 01/10/2018 Cinemática Inversa sumário Modelo cinemático inverso métodos analíticos

Leia mais

Considerando log2 = 0,3 e log3 = 0,5, determine:

Considerando log2 = 0,3 e log3 = 0,5, determine: log 27 log 25 log 3 5 2 64 log 64 log5125 4 log100.000 log0,001 log3 81 log1000 Considerando log2 = 0,3 e log3 = 0,5, determine: log16 log128 Considerando log2 = 0,3 e log3 = 0,5, determine: log5 Considerando

Leia mais

Trigonometria Funções Trigonométricas

Trigonometria Funções Trigonométricas Trigonometria Funções Trigonométricas imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x) = sen x y f(x) = R R Imagem: [-,] Período: 3 0 0 0 x - 3 - período imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x)

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Descrições e Transformações Espaciais. Prof. Walter Fetter Lages 21 de junho de 2007

Descrições e Transformações Espaciais. Prof. Walter Fetter Lages 21 de junho de 2007 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE00070 Tópicos Especiais em Controle e Automação I

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Introdução à Robótica Industrial p. 1/25

Introdução à Robótica Industrial p. 1/25 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 5 Introdução à Robótica Industrial p. 1/25 Espaço das juntas e Espaço das posições e orientações Espaço das juntas: q = q 1 q 2. { q i = θ i,

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. Extensão da definição das razões trigonométricas aos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. Extensão da definição das razões trigonométricas aos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Geometria Analítica Exercícios Cônicas em posição geral

Geometria Analítica Exercícios Cônicas em posição geral Geometria Analítica Exercícios Cônicas em posição geral Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Soluções Turmas E1 e E3 1 / 16 Resolução dos exercícios da aula 15 Classique

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial CINEMÁTICA https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

5 Resultados Introdução

5 Resultados Introdução 5 Resultados 5.1. Introdução O objetivo deste capítulo é apresentar os resultados de diversas simulações feitas no decorrer do projeto. Tais simulações têm o objetivo de testar os algoritmos presentes

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

ROBÓTICA PLANEJAMENTO DE TRAJETÓRIAS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA PLANEJAMENTO DE TRAJETÓRIAS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial PLANEJAMENTO DE TRAJETÓRIAS https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Eletrotécnica II Números complexos

Eletrotécnica II Números complexos Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação

Leia mais

Robótica Experimental

Robótica Experimental UNVERSDADE FEDERAL DO RO GRANDE DO NORTE Universidade Federal do Rio Grande do Norte Centro de Tecnologia Dept o de Engenharia de Computação e Automação DCA Robótica Eperimental Material didático Adelardo

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (13 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial TRANSFORMAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

CONCEITOS BÁSICOS - REVISÃO

CONCEITOS BÁSICOS - REVISÃO versão: 2019-1 CONCEITOS BÁSICOS - REVISÃO GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR Sempre houve

Leia mais

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf e é alimentado por uma fonte de tensão alternada V = 9 cos.10 4 t V. A carga inicial do capacitor é de 30 μc e a corrente

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Movimento e Soluções. Ramiro Brito Willmersdorf

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Movimento e Soluções. Ramiro Brito Willmersdorf Dinâmica Estrutural Múltiplos Graus de Liberdade Equações de Movimento e Soluções Ramiro Brito Willmersdorf ramiro@willmersdorf.net DEMEC/UFPE 2014.1 Equações de Movimento Para sistemas não amortecidos

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 018/019 DISCIPLINA: Matemática A ANO: 11º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 15 Mês Unidades Temáticas Conteúdos Conteúdos programáticos Descritores N.º Aulas Avaliação Primeiro

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais