UNIVERSIDADE FEDERAL DE PERNAMBUCO

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DE PERNAMBUCO"

Transcrição

1 CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos um ite fundamental para a obtenção da derivada da função seno. Por fim, cegaremos a derivada da função cosseno. 1. Funções trigonométricas Iremos definir as funções seno e cosseno de um ângulo que mede α radianos. No plano cartesiano, seja c uma circunferência de raio 1 com centro na origem e seja P o ponto de coordenadas 1, 0. Iniciando em P, percorra um arco na circunferência de comprimento α no sentido anti-orário, quando α 0, ou no sentido orário, quando α < 0, e seja Q o ponto terminal deste arco. Diremos que as coordenadas do ponto Q são cos α, sen α. Isto é, O seno do ângulo medindo α radianos é igual a ordenada do ponto Q. O cosseno do ângulo medindo α radianos é igual a abscissa do ponto Q. Como o ponto Q depende da medida α do ângulo, representa-lo-emos por Q α para enfatizar esta dependência. Veja a figura a seguir. Y c sen α Q α cos α P Dois ângulos, medindo α e β radianos, são ditos congruentes quando Q α = Q β. Isto é, α β é um múltiplo inteiro de π ou seja 1 α β = kπ, para algum k Z Conseqüentemente ângulos congruentes possuem o mesmo seno e cosseno. Portanto, para todo número real α e número inteiro k, temos que senα + kπ = sen α cosα + kπ = cos α Como cos α, sen α são as coordenadas do ponto Q α que pertence à circunferência de raio 1 e centro na origem, cuja equação é + Y = 1, temos a seguinte relação fundamental 3 sen α + cos α = 1 Estas notas foram escritas pelo professor da disciplina, Manoel Lemos. 1

2 UNIVERSIDADE FEDERAL DE PERNAMBUCO Mais ainda, 4 1 sen α 1 1 cos α 1 Note que a ordenada de Q α coincide com a abscissa de Q α π porque Q α é obtido a partir de Q α π após uma rotação do plano de π no sentido anti-orário tendo a origem como centro. Esta rotação leva o eixo das abscissas no das ordenadas. Logo 5 sen α = cos α π Esta rotação leva o eixo das ordenadas no das abscissas, com a orientação invertida, e daí 6 cos α = sen α π Como Q α e Q α são pontos simétricos com relação ao eixo das abscissas, temos que 7 sen α = sen α cos α = cos α Exercício 1. Os pontos Q α e Q π α são simétricos com respeito a reta de equação Y =. Quais identidades para o sen α e cos α, similares as listadas em 7, podem ser obtidas utilizando esta simetria? É possível afirmar, a partir de 3 e do cálculo de alguns de seus valores, que as funções sen e cos possuem período igual a π. Portanto, o gráfico de qualquer uma destas funções é obtido pela repetição do seu gráfico no intervalo [0, π]. De 5, concluímos que o gráfico de sen é obtido a partir do de cos após uma translação orizontal de π para a direita. Nas figuras seguintes, ilustramos os gráficos destas funções. Y π Y = sen Y Y = cos Salientamos que os valores máximo e mínimo assumidos por estas funções são 1 e 1. De 7, temos que sen é uma funão ímpar e cos é uma função par. Para quaisquer números reais α e β, estabeleceremos que 8 cosα + β = cos α cos β sen α sen β Considere os pontos Q α+β, Q α, P e Q β em c. Ao realizarmos uma rotação de β radianos no sentido orário com centro na origem, o ponto Q α+β é levado no ponto Q α e ponto P é levado no ponto Q β. Logo o segmento Q α+β P é levado no segmento Q α Q β e daí Veja ilustração a seguir. Q α+β P = Q α Q β

3 MANOEL LEMOS 3 c Q α+β Y Q α P Q β Substituindo as coordenadas dos Q α+β, P, Q α e Q β, que são respectivamente cosα + β, senα + β, 1, 0, cos α, sen α e cos β, sen β = cos β, sen β com a igualdade seguindo de 7, na fórmula da distância entre pontos, cegamos à cosα + β 1 + senα + β 0 = cos α cos β + sen α sen β Elevando ambos os membros desta igualdade ao quadrado, temos que cosα + β 1 + sen α + β = cos α cos β + sen α + sen β Esta identidade pode ser transformada em [cos α + β cosα + β + 1] + sen α + β = [cos α cos α cos β + cos β] Reagrupamos esta relação como + [sen α + sen α sen β + sen β] [cos α + β + sen α + β] + 1 cosα + β = [cos α + sen α] + [cos β + sen β] Utilizando 3 três vezes, concluímos que [cos α cos β sen α sen β] cosα + β = [cos α cos β sen α sen β] Note que 8 segue imediatamente desta igualdade. Vamos estabelecer uma relação para o seno da soma similar a do cosseno. Por 5, senα + β = cos α + β π que pode ser reescrita como Por 8, temos que senα + β = cos senα + β = cos α cos Aplicando 5 e 6, concluímos que Conseqüentemente α + β π β π sen α sen β π senα + β = cos α sen β sen α cos β 9 senα + β = sen α cos β + cos α sen β

4 4 UNIVERSIDADE FEDERAL DE PERNAMBUCO O seno da diferença é dado por 10 senα β = sen α cos β cos α sen β De fato, por 9, senα β = senα + β = sen α cos β + cos α sen β e 10 segue de 7. De maneira análoga, temos que 11 cosα β = cos α cos β + sen α sen β Exercício. Decida quais das seguintes identidades são válidas para todos os números reais α: i senα = sen α cos α ii cosα = cos α 1 iii cosα = 1 sen α iv sen3α = 3 sen α 4 sen 3 α Subtraindo 10 de 9, obtemos que senα + β senα β = cos α sen β Se fizermos A = α + β e B = α β, então A + B A B 1 sen A sen B = cos sen porque A + B = α e A B = β A expressão 1, que é a diferença de dois senos, será utilizada para o cálculo da derivada da função seno. Exercício 3. Encontre uma expressão para: i a soma de dois senos; ii a diferença de dois cossenos; e iii a soma de dois cossenos. Nesta seção estabeleceremos que. Um ite fundamental 13 α 0 sen α α = 1 Este ite é fundamental para o cálculo da derivada da função seno e conseqüentemente das demais funções trigonométricas. Como será suficiente concluir que sen α α = sen α α 14 α 0 + sen α α = 1 Como α se aproxima de 0 por valores maiores que 0, vamos assumir que α não é muito grande. Isto é, vamos supor que α está no intervalo 0, π. Seja Qα como definido na seção anterior. Logo é o ponto de coordenadas cos α, sen α. Note que Q α está no primeiro quadrante. Denotamos por O a origem do sistema cartesiano. Seja S o ponto pertencente

5 MANOEL LEMOS 5 a interseção da reta que contém O e Q α com a reta passando por P e perpendicular ao eixo das abscissas. Seja R o ponto com coordenadas cos α, 0. Veja a ilustração a seguir. Y S Q α O R P Considere as seguintes regiões do plano: F 1 é o triângulo retângulo ORQ α cuja área A 1 é a metade do produto do comprimento de seus catetos OR e RQ α. Portanto, A 1 = cos α sen α. F é o setor circular OP Q α cuja área A é a metade do produto do comprimento do arco P Q α pelo raio OP. Logo A = α. F 3 é o triângulo retângulo OP S cuja área A 3 é a metade do produto do comprimento de seus catetos OP e P S. Conseqüentemente A 3 = P S. Como F 1 está contida propriamente em F e F está contida propriamente em F 3, temos que A 1 < A < A 3 e daí 15 cos α sen α < α < P S Necessitamos encontrar uma expressão para P S em termos de α. Como os triângulos ORQ α e OP S são semelantes, temos que RQ α OR = P S OP Para evitar confusão, a lina em cima do par de pontos utilizada para denotar o comprimento do segmento entre estes pontos será sempre einada quando estivermos em uma fração. Conseqüentemente sen α cos α = P S 1 = P S Substituindo este valor em 15, cegamos a cos α sen α < α < sen α cos α Dividindo esta expressão por sen α, temos que Tomando os inversos, obtemos que cos α < α sen α < 1 cos α 16 cos α < sen α α < 1 cos α Iremos analisar estas desisgualdades quando α 0 +.

6 6 UNIVERSIDADE FEDERAL DE PERNAMBUCO Quando α 0 +, temos que Q α P e R P. Portanto, cos α = OR OP = 1. Isto é, cos α = 1 α 0 + Como o ite do quociente é o quociente dos ites, quando o denominador não tende a 0, temos que 1 α 0 + cos α = 1 α 0+ α 0 + cos α = 1 1 = 1 Conseqüentemente o lado direito e o lado esquerdo das desigualdades 16 tendem a 1 quando α 0 +. Não resta uma outra alternativa para o termo intermediário que não seja se aproximar de 1 porque está sendo itado inferiormente e superiormente por quantidades que se aproximam de 1. Isto é, sen α α 0 + α = 1 Logo 14 segue. O conecimento do valor do ite 13 permite o cálculo de inúmeros outros ites do tipo 0. Não faremos isto agora, pois todos estes ites podem ser calculados através 0 da regra de L Hôspital, que será abordada mais a frente. Contudo, reduziremos o ite considerado no próximo exemplo ao ite fundamental que acabamos de calcular, já que será utilizado para o cálculo da derivada da função cosseno. Exemplo 4. Calcule o seguinte ite 1 cos 0 Multiplicando o numerador e o denomidar da fração por 1 + cos temos que 1 cos 0 Como sen = 1 cos, temos que 1 cos 0 = 0 1 cos 1 + cos 1 + cos = 0 sen 1 + cos = sen 0 1 cos = cos sen 1 + cos Mas o ite do produto é o produto dos ites e, quando o quociente não tende a 0, o ite do quociente é o quociente dos ites, 1 cos 0 = 0 sen 0 sen 1 + cos = sen 0 Como 0 sen = 0 e cos =, cegamos a 1 cos 0 0 sen cos sen 0 sen = cos = 1 0 = 0 Note que o cálculo do ite foi reduzido ao cálculo do ite fundamental e mais alguns outros ites que são simples de serem estabelecidos. Em geral, esta redução pode ser muito engenosa e por este motivo não daremos ênfase a este processo.

7 MANOEL LEMOS 7 3. A derivada do seno Na próxima regra, apresentaremos a derivada da função seno. Regra 5. Se f = sen, então f = cos Pela definição da derivada, 17 f f + f sen + sen = = A diferença dos senos no numerador, por 1, pode ser transformada em sen + sen = cos sen = cos + sen Substituindo esta identidade em 17, concluímos que f cos + sen = = cos 0 Como o ite do produto é o produto dos ites, temos que f sen = cos sen Vamos substituir a variável no segundo ite para cegarmos ao ite fundamental abordado na seção anterior. Tomando = t, observamos que t 0 quando 0, e daí f = cos + sen t 0 t 0 t Note que o primeiro ite, da esquerda para a direita, é igual a cos e o segundo é o ite fundamental calculado na seção anterior sendo igual a 1. Portanto, f = cos Exemplo 6. Determine as equações das retas tangentes à curva de equação Y = sen que são orizontais indicando os seus pontos de tangência. Esta curva é o gráfico da função f = sen. O coeficiente angular da reta tangente ao gráfico desta função no ponto de abscissa é f, que é igual cos pela Regra 5. Necessitamos encontrar todos os tais que f = 0. Isto é, 18 cos = 0 As soluções de 18 no intevalo [0, π são = π e = 3π. Como cos é uma função periódica, com período π, obtemos as outras soluções de 18 somando a cada uma destes dois valores todos os possíveis múltiplos inteiros de π. Isto é, as soluções de 18 são = π + kπ, para k Z 19 = 3π + kπ, para k Z Note que 19 pode ser resumida da seguinte forma = π + kπ, para k Z

8 8 UNIVERSIDADE FEDERAL DE PERNAMBUCO Quando = π + kπ, para k Z, o valor de f é igual a f π = 1. Logo Y = 1 é tangente á curva Y = sen nos pontos π + kπ, 1, para k Z. Isto é, Y = 1 é tangente a esta curva em infinitos pontos. De maneira similar, concluímos que Y = 1 é tangente á curva Y = sen nos pontos 3π + kπ, 1, para k Z. Exercício 7. Encontre a equação da reta tangente ao gráfico da função f = sen no ponto com abscissa i = 0 ii = π 6 iii = π 3 iv = π v = 41π 4 Exercício 8. Encontre as retas normais à curva de equação Y = sen que são paralelas à reta de equação + Y + 10 = 0. Para cada uma destas retas, indique as coordenadas do ponto de tangência. Exercício 9. Considere a função dada por f = sen i Calcule f ii Qual o menor e o maior valor assumidos por f? iii Existe número real a tal que a reta de equação 5 + 1Y + a = 0 é tangente à curva de equação Y = sen? 4. A derivada do cosseno Estabeleceremos, com uma outra abordagem, a regra para derivar o cosseno. Qualquer uma das duas abordagens serve para encontrar a derivada das funções seno e cosseno. Você é capaz de permutar as abordagens? Regra 10. Se f = cos, então f = sen Pela definição da derivada, f = 0 f + f = 0 cos + cos Utilizando 8, que é uma relação para o cosseno da soma de ângulos, cegamos a f = 0 [cos cos sen sen ] cos Podemos reescrever esta expressão da seguinte forma [ cos 1 f = cos Pelas propriedades básicas de ites, obtemos que = 0 cos cos 1 sen sen sen ] sen f cos 1 sen = cos 0 sen 0 Mas 0 cos = cos e 0 sen = sen. Portanto, [ ] [ ] f cos 1 sen = cos sen Como o primeiro ite, da esqueda para a direita, foi calculado no Exemplo 4 e vale 0 e o segundo ite é o ite fundamental e vale 1, temos que f = 0 cos 1 sen = sen

9 MANOEL LEMOS 9 Exemplo 11. A derivada de ordem n de f = sen é dada por sen se o resto da divisão de n por 4 é 0 0 f n cos se o resto da divisão de n por 4 é 1 = sen se o resto da divisão de n por 4 é cos se o resto da divisão de n por 4 é 3 Observe que a seqüência de funções é dada por f, f, f, f 3, f 4, f 5, f 6, f 7, f 8... sen, cos, sen, cos, sen, cos, sen, cos, sen,... pois o termo seguinte é igual a derivada do anterior. Note que esta seqüência tem período 4. Isto é, f k = f k+4, para todo número natural k. Esta é a propriedade descrita em 0. Exercício 1. Encontre uma expressão para a derivada de ordem n da função f = 5 cos Exercício 13. Decida a veracidade de cada uma das seguintes afirmações sobre a função f = 5 sen 4 cos. i f 9 não é itada. ii f 134 = f 18 iii f 18 nunca se anula. iv f 317 = 4 sen + 5 cos v f, f, f, f 3, f 4, f 5,... é uma seqüência de período 4. vi f k = 5 1 k sen k 1 cos, para todo natural k. Exercício 14. Para a função f = cos sen determine: i O seu maior domínio possível. ii A sua derivada. iii Os pontos para os quais a reta tangente ao seu gráfico é orizontal, caso existam. iv Os intervalos para os quais a sua derivada é negativa. 5. Respostas dos exercícios 1. sen α = cos π α e cos α = sen π α. i V ii V iii V iv V 3. i sen A + sen B = sen A+B cos A B ii cos A cos B = sen A+B sen A B iii cos A + cos B = cos A+B cos A B 7. i Y = 0 ii 6 3 1Y + 6 3π = 0 ii 3 + 6Y 3 3 π = 0 iv Y + 1 = 0 v 4 8Y + 4 π = Y 3 π kπ = 0 no ponto de coordenadas π + kπ, 3, para k Z; e Y π kπ = 0 no ponto de coordenadas π + kπ, 3, para k Z i 1 cos ii 0 e iii não 1. f n = 5 cos se o resto da divisão de n por 4 é 0; f n = 5 sen se o resto da divisão de n por 4 é 1; f n = 5 cos se o resto da divisão de n por 4 é ; f n = 5 sen se o resto da divisão de n por 4 é i

10 10 UNIVERSIDADE FEDERAL DE PERNAMBUCO F ii V iii F iv V v V vi V 14. i { R : kπ, k Z} ii 5+ cos +5 cos sen 3 iii não existem iv kπ, kπ + π, para k Z Conteúdo da quinta aula da disciplina Cálculo L1, oferecida para os cursos de licenciatura em Física, Matemática e Química e o bacarelado em Química Idustrial, no segundo semestre de 008 na Universidade Federal de Pernambuco, tendo como professor Manoel Lemos

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações CÁLCULO L NOTAS DA DÉCIMA SEGUNDA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações sobre a concavidade do gráfico desta função.

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação,

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação, CÁLCULO L1 NOTAS DA DÉCIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação, possibilitarão a solução de problemas de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula discutiremos como obter as equações das retas tangentes a uma curva planar que é o gráfico de uma função. 1. Introdução

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA DÉCIMA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a Regra de L Hôpital, que será utilizada para solucionar indeterminações de ites de qualquer

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MAEMÁICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como o ponto (0,) pertence ao gráfico de f, temos que f(0) =, e assim vem que: f(0) = a 0 + b = + b = b = b = Como o ponto

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência;

Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência; Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência; Ângulo central: É todo ângulo que possui o seu vértice no centro da circunferência, o

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 13 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 13 de Março de 2014 Funções - Aula 07 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Funções Inversas Definição

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento marcio@matematicauva.org

Leia mais

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita). QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Paridade das Funções Seno e Cosseno Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Notas de Aula de Matemática Básica I

Notas de Aula de Matemática Básica I UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Material Teórico - Círculo Trigonométrico. Seno, cosseno e tangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Seno, cosseno e tangente. Primeiro Ano do Ensino Médio Material Teórico - Círculo Trigonométrico Seno, o e tangente. rimeiro Ano do Ensino Médio Autor: rof. Fabrício Siqueira Benevides Revisor: rof. Antonio Caminha M. Neto 0 de outubro de 08 Seno, o e tangente

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3 Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Em um plano α, a

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2 Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Considerando o círculo

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Sabe-se que o resto

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JUNHO 06 GRUPO I. Como P ( A B ) P A B P B temos que: P 6, ( A B ) 6 P( B ) P ( A B ) 6 0 P ( A B ) 0

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MTMÁT - 3o ciclo 011 - Época especial Proposta de resolução 1. 1.1. onstruindo uma tabela para identificar todos os pares de pares de bolas que existem, e calculando o produto dos dois números,

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:? Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Obter as equações paramétricas das cônicas.

Obter as equações paramétricas das cônicas. MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: CADERNO I (60 minutos com calculadora) 1 Em R, a equação ( π) cos x = π : (A) admite a solução x = π ; (B)

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. Primeiro Ano do Ensino Médio Material Teórico - Redução ao rimeiro uadrante e Funções Trigonométricas Redução ao rimeiro uadrante rimeiro Ano do Ensino Médio Autor: rof. Fabrício Siqueira enevides Revisor: rof. Antonio Caminha M.

Leia mais

4 Trigonometria no círculo trigonométrico

4 Trigonometria no círculo trigonométrico 37 4 Trigonometria no círculo trigonométrico Com o surgimento do cálculo infinitesimal e posteriormente da análise matemática as noções básicas da trigonometria ganharam uma nova dimensão. Passaremos a

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

Ruas e esquinas. Dinâmica 6. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica.

Ruas e esquinas. Dinâmica 6. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Reforço escolar M ate mática Ruas e esquinas Dinâmica 6 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. DINÂMICA Ruas e esquinas.

Leia mais

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV. Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)

Leia mais

Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho

Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho Matemática 1 Ano - 4º Bimestre/2014 Trigonometria na circunferência Cursista: Soraya de Oliveira Coelho Tutor:

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais