Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA"

Transcrição

1 Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1

2 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º. ntão, sen (α + β) = sen 90º = 1 ompetência de área 5: modelar e resolver problemas geométricos realidade, utilizando conhecimentos algébricos. ompetência de área : utilizar o conhecimento geométrico Habilidade 6: interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar o gráfico cartesiano que represente relações entre grandezas. Questão 4 lternativa: Questão lternativa: plicando-se o Teorema de Pitágoras, temos que a = a = 5. α h Sendo assim, sen α= 3 α=arcsen β y x ompetência de área 5: modelar e resolver problemas geométricos realidade, utilizando conhecimentos algébricos. Questão 3 lternativa: omo a < 0 e b 0, temos: 1º) a < 0 e b < 0 ( a, b) 4.º quadrante º) a < 0 e b = 0 ( a, b) eixo das abscissas Temos: 3 tg = x 1 h 3 = x h α x= e tg β= h 1= h h=y h 3 y y x + y = 3 h + h = 3 h = 4 metros. 3 ompetência de área 5: modelar e resolver problemas geométricos 3 ạ série Volume 1

3 Simulado NM 013 Questão 5 lternativa: área do retângulo é =., logo: sen α = = R. sen α R cos α = O O = R. cos α R ssim, =. O. =. R. cos α. R. sen α = = R.. sen α. cos α = R. sen α ompetência de área : utilizar o conhecimento geométrico Habilidade 8: resolver situação-problema que envolva conhecimentos geométricos de espaço e forma. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. Questão 6 lternativa: sen (30º + 45º) = sen30º. cos45º + sen45º. cos30º sen = ( 75 ) 0,96 ompetência de área 5: modelar e resolver problemas Matemática e suas Tecnologias Questão 7 lternativa: h 75º sen = h h ( 75 ) 096, = = h = 384, m 4 4 ompetência de área 5: modelar e resolver problemas realidade, utilizando conhecimentos algébricos. Questão 8 lternativa: nalisando cada alternativa, concluímos que não pode ser a letra, pois, se a = b = 0, a segunda equação não existe. Se a = b = 1, a segunda equação é igual à primeira. Se a = b =, as retas são paralelas, ou seja, o sistema não admite solução. Se a = e b = 1, a solução do sistema é x = 1 e y = 0, ou seja, as retas concorrem em um único ponto. Se a = b = 1, as retas são paralelas. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. 4 3

4 Simulado NM 013 Questão 9 lternativa: Im Questão 11 lternativa: No triângulo retângulo, temos: x 30 4 y Re senα= = 5 13 a figura anterior, temos: sen 30 = y 4 1 y = = 4 x 3 cos30 = x = 4 = 3 4 ssim, às 10h40, a extremidade do ponteiro dos minutos corresponde ao número complexo Z= 3 i. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Questão 10 lternativa: Sendo = x, pelo Teorema de Pitágoras, temos 13 = 5 + x x = 1. Logo, cos α = ompetência de área 5: modelar e resolver problemas senα =. senα. cosα sen α = sen α = ompetência de área 5: modelar e resolver problemas geométricos Questão 1 lternativa: No triangulo retângulo OP, temos OP = 1. plicando-se o Teorema de Pitágoras, temos sen α + cos α = 1 ompetência de área 5: modelar e resolver problemas realidade utilizando conhecimentos algébricos 4 3 ạ série Volume 1

5 Simulado NM 013 Questão 13 lternativa: 1 cos α 1 1 m m ompetência de área 5: modelar e resolver problemas Questão 14 lternativa: O alcance é máximo quando θ = 45º pois, com esse valor, é obtido o valor máximo de sen θ, que é sen 90º = 1. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Questão 15 omo a tangente é positiva, o outro valor possível está localizado no terceiro quadrante. ntão, o arco é de 10º. ompetência de área 5: modelar e resolver problemas Questão 16 lternativa: inequação x + y 1 é equivalente a: x 0 e y 0 x + y 1 x 0 e y < 0 x y 1 x < 0 e y 0 x + y 1 x < 0 e y < 0 x y 1 No plano cartesiano, essas inequações representam um quadrado. x + y 1 y x + y 1 x y 1 x 30º 30º x x y 1 ompetência de área 5: modelar e resolver problemas lternativa: Matemática e suas Tecnologias 5

6 Simulado NM 013 Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Habilidade 1: resolver situação-problema cuja modelagem envolva conhecimentos algébricos. Questão 17 lternativa: posição dos afixos no plano de rgand-gauss é: Z = i Im Z 1 = 1 + i Na 1.ª volta, os ângulos são 60º e 40º, porém a generalização é x = 60º + 180º. k ompetência de área 5: modelar e resolver problemas geométricos Questão 19 Z 3 = i Z 4 = i Z 6 = 1 Z 5 = 1 i Re lternativa: coordenada x + y é a distância d do ponto à origem, logo: O polígono é um pentágono. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Questão 18 d d lternativa: 60º ssim, observa-se que, pela abscissa, o ponto está na região 1 ou 4. onsiderando 0 < x < 1, ao multiplicar x por y (0 < y < 1), o produto x. y é sempre menor que x e y, separadamente. Logo, a ordenada é menor que y. ssim, pertence à região 4. ompetência de área 5: modelar e resolver problemas 6 3 ạ série Volume 1

7 Simulado NM 013 Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Habilidade 1: resolver situação-problema cuja modelagem envolva conhecimentos algébricos. geométricos Questão 0 lternativa: ( ) 3.tg x+tg x=0 tgx. 3.tgx +1 =0 3 tg x = 0 ou tg x = 3. ntão, x = 180º. k ou x = 150º + 180º. k, com k inteiro. ompetência de área 5: modelar e resolver problemas realidade utilizando conhecimentos algébricos. Questão 1 lternativa: onsiderando α o ângulo ^, do triângulo, temos: 6 sen α = 10 = 0,6 8 cos α = 10 = 0,8 Logo, sen α = sen α cos α = 0,6 0,8 = 0,96 ompetência de área : utilizar o conhecimento geométrico Habilidade 6: interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional. Habilidade 8: resolver situação-problema que envolva conhecimentos geométricos de espaço e forma. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. Questão lternativa: sen α = 0,96 = 0, Logo, = 19 7 = 0,96 = 19 7 m 6 = 150 m 7 medida que mais se aproxima é 1,4 m. ompetência de área : utilizar o conhecimento geométrico Habilidade 6: interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional. Habilidade 8: resolver situação-problema que envolva conhecimentos geométricos de espaço e forma. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. Questão 3 lternativa: S= 1. a. b. sen α Matemática e suas Tecnologias 7

8 Simulado NM = sen α sen α = 1 Sendo assim, α = 30º ou α = 150º. Somando-se os possíveis valores temos 180º. ompetência de área 5: modelar e resolver problemas geométricos Questão 4 lternativa: 13 tgα= 0, 71 α ompetência de área : utilizar o conhecimento geométrico Habilidade 8: resolver situação-problema que envolva conhecimentos geométricos de espaço e forma. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano Questão 5 lternativa: 6 sen30 = 1 sen α. 6 =1. 1 sen α= senα omo α é um ângulo agudo, então α mede 45º. ompetência de área 5: modelar e resolver problemas geométricos realidade utilizando conhecimentos algébricos. Questão 6 lternativa: Uma curva cuja soma das distâncias dos pontos aos focos é constante, é denominada de elipse. ompetência de área : utilizar o conhecimento geométrico Habilidade 6: interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano Questão 7 lternativa: x + 9 = 0 x = 9 x = 3i ou x = 3i ompetência de área 5: modelar e resolver problemas realidade utilizando conhecimentos algébricos. Questão 8 lternativa: Temos i 4 = i 3 i = i i= i = ( 1) = 1 e i 17 = (i 16 ). i = = ((i 4 ) 4 ). i = i ompetência de área 5: modelar e resolver problemas 8 3 ạ série Volume 1

9 Simulado NM 013 geométricos realidade utilizando conhecimentos algébricos. Questão 9 lternativa: (1+i) 8 = ((1 + i) ) 4 = (1 + i + i ) 4 = (i) 4 = 16i 4 = 16 ompetência de área 5: modelar e resolver problemas geométricos Questão 30 lternativa: ordem correta é hipérbole, elipse e parábola. ompetência de área : utilizar o conhecimento geométrico Habilidade 6: interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional. Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. Questão 31 lternativa: Para t = 0, o móvel encontra-se na posição inicial que é (0, ), ou seja, no eixo das ordenadas. Para t = 4, o móvel encontra-se na posição que é (4, 0), ou seja, no eixo das abscissas. Matemática e suas Tecnologias Para t = 6, o móvel encontra-se na posição que é (6, 1), ou seja, no 4.º quadrante. Para t 0, os pontos estão alinhados, ou podemos substituir t por x na equação y = t, ou seja, y = x, que é a equação de uma reta. Não existe instante que o móvel esteja no ponto (, ). ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Habilidade 1: resolver situação-problema cuja modelagem envolva conhecimentos algébricos. realidade utilizando conhecimentos algébricos. Questão 3 lternativa: 4i 1 i 4i 4i. = 1+ i 1 i 1 i 4i +4 = =+i ompetência de área 5: modelar e resolver problemas geométricos realidade utilizando conhecimentos algébricos. 9

10 Simulado NM 013 Questão 33 lternativa: reta que não possui coeficiente angular é x = 5, pois não há variação em x. ssa reta é perpendicular ao eixo das abscissas. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. Habilidade 1: resolver situação-problema cuja modelagem envolva conhecimentos algébricos. Questão 34 lternativa: variação no eixo y é o cateto oposto a α e a variação no eixo x é o cateto adjacente a α, logo o quociente entre a variação no eixo y e a variação no eixo x é a tangente do ângulo α. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. ompetência de área : utilizar o conhecimento geométrico Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. Questão 35 lternativa: Temos a = 3 e b = 3. plicando-se a tangente: 3 tg α = 3 tg α = 3 Logo, α = 60 = π 3 ompetência de área 5: modelar e resolver problemas Questão 36 lternativa: ixo maior igual a 10, então a = 5. ixo menor igual a 8, então, b = 4. Sendo assim, a equação reduzida é x 5 + y 16 =1. ompetência de área 5: modelar e resolver problemas 10 3 ạ série Volume 1

11 Simulado NM 013 geométricos Questão 37 lternativa: det () = sen a. cos b sen b. cos a = sen (a b) ompetência de área 5: modelar e resolver problemas geométricos Questão 38 lternativa: m = tg 45º m = 1 ompetência de área 5: modelar e resolver problemas geométricos realidade utilizando conhecimentos algébricos. Questão 39 lternativa: ado ponto P (6 ; 0) e utilizando a equação fundamental, temos: y 0 = 1. (x 6) y = x 6 ompetência de área 5: modelar e resolver problemas Matemática e suas Tecnologias geométricos realidade utilizando conhecimentos algébricos. Questão 40 lternativa: a = arc tg ( 3) tg a = 3 a = 60º b = arc cos (0) cos b = 0 b = 90º c = arc sen 1 sen c = 1 c = 30º ompetência de área : utilizar o conhecimento geométrico Habilidade 9: utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano. ompetência de área 1: construir significados para os números naturais, inteiros, racionais e reais. Habilidade : identificar padrões numéricos ou princípios de contagem. Questão 41 lternativa: m um triângulo qualquer, a soma das medidas dos ângulos internos é 180º. Sendo assim, o outro ângulo interno será de 30º. ssim, o ângulo externo mede 150º. ompetência de área 5: modelar e resolver problemas 11

12 Simulado NM 013 Questão 4 lternativa: oeficiente angular m = tg 150º = tg 30º m = 3 3. ompetência de área 5: modelar e resolver problemas geométricos Questão 43 lternativa: tg  = 1 = e tg  = 4 1 = 4 α =   tg α = tg ( Â) = = tg  tg  4 = = 1+ tg Â. tg  ompetência de área : utilizar o conhecimento geométrico Habilidade 8: resolver situação-problema que envolva conhecimentos geométricos de espaço e forma. Questão 44 lternativa: omo o raio mede 3 e a circunferência é tangente aos dois eixos, o centro é (3; 3). Substituindo na equação reduzida, temos (x 3) + (y 3) = 9. ompetência de área 5: modelar e resolver problemas Questão 45 lternativa: O gráfico correto está na alternativa, pois se a < 0, então, a concavidade é voltada para baixo e se < 0, então a parábola não intersecta o eixo das abscissas. ompetência de área 5: modelar e resolver problemas Habilidade 0: interpretar gráfico cartesiano que represente relações entre grandezas. 1 3 ạ série Volume 1

13 Simulado NM 013 notações Matemática e suas Tecnologias 13

14 Simulado NM 013 notações 14 3 ạ série Volume 1

15 RTÃO-RSPOST SIMULO NM ạ SÉRI VOLUM 1 MTMÁTI SUS TNOLOGIS GRITO

16

Avaliação Diagnóstica do E M 2012

Avaliação Diagnóstica do E M 2012 valiação iagnóstica do M 01 1.ª série Matemática e suas tecnologias ISTRIUIÇÃO GRTUIT VOLUM 1 1.º SMSTR valiação iagnóstica M 01 Questão 1 lternativa: = {3, 6, 9, 1, 15,...} = {5, 10, 15, 0,...} = {15,

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 014 a. série e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 014 1 Gabarito: omentários: ) Gabarito. O custo da produção semanal é dado por ( 10) + ( 15) + ( 1) + ( 18) + ( 4) =

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 20 2a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 20 Questão lternativa: Para uma quantidade de 50% de Q, temos Q(d) = logo: 2 = 4 d 6 2 = 2 2-2 = 2 - d 8 d 6

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 2011 1a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 2011 Questão 1 lternativa: m TOTL (2), há um número natural e não há qualquer número negativo. maior parte

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA Simulado enem 0 a. série e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 0 lternativa: ) Incorreta. 7 + = + =, e não é primo. ) Incorreta. 7 + = + =, e não é primo. ) orreta. + = 6 + = 7, e 7 é

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

Avaliação Diagnóstica do E M 2012

Avaliação Diagnóstica do E M 2012 valiação iagnóstica do M 2012 3a. série Matemática e suas tecnologias ISTRIUIÇÃO GRTUIT VOLUM 2 2.º SMSTR valiação iagnóstica M 2012 Questão 1 lternativa: O total de combinações possíveis é 6 60. ompetência

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências e Habilidades Gerais da Disciplina

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências e Habilidades Gerais da Disciplina PLANO DE ENSINO 2016 Disciplina: Matemática 8 a série Professor: Fábio Girão Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA Simulado enem 014 a. série e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 014 1 Gabarito: ) O aluno, ao multiplicar as dimensões do retângulo para obter a área, não multiplicou os denominadores.

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Análise Vetorial na Engenharia Elétrica

Análise Vetorial na Engenharia Elétrica nálise Vetorial na Engenharia Elétrica ula 13/03/09 1.3 - Medida algébrica de um segmento Segmento: um segmento é determinado por um par ordenado d de pontos. figura 1.8 apresenta um segmento Figura 1.8

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MTMÁT - 3o ciclo 011 - Época especial Proposta de resolução 1. 1.1. onstruindo uma tabela para identificar todos os pares de pares de bolas que existem, e calculando o produto dos dois números,

Leia mais

3 ano E.M. Professores Cleber Assis e Tiago Miranda

3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da

Leia mais

Ciclo trigonométrico

Ciclo trigonométrico COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na

Leia mais

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTMÁTI - o ciclo 014-1 a hamada Proposta de resolução aderno 1 1. omo as grandezas x e y são inversamente proporcionais, sabemos que x y é um valor constante. ntão temos que 15 0 = 1 a 00

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MTMÁTI - o ciclo 017 - a ase Proposta de resolução aderno 1 1. omo no histograma estão representados todos os alunos a probabilidade de um aluno, escolhido ao acaso, ter uma massa corporal

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MTMÁTI - o ciclo 017 - a ase Proposta de resolução aderno 1 1. omo no histograma estão representados todos os alunos a probabilidade de um aluno, escolhido ao acaso, ter uma massa corporal

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

MATRIZ DE REFERÊNCIA PARA O ENEM 2009

MATRIZ DE REFERÊNCIA PARA O ENEM 2009 MINISTÉRIO DA EDUCAÇÃO INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA MATRIZ DE REFERÊNCIA PARA O ENEM 2009 EIXOS COGNITIVOS (comuns a todas as áreas de conhecimento) I. Dominar

Leia mais

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita Simulado 5 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Questão Matemática e suas Tecnologias A intersecção entre o conjunto A e B indica que os dois conjuntos

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução aderno 1 1. 1.1. omo o ponto de coordenadas (,) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1 14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Revisando habilidades. Prof. Msc. Hamilton Vinícius Gomes

Revisando habilidades. Prof. Msc. Hamilton Vinícius Gomes ENEM Revisando habilidades Prof. Msc. Hamilton Vinícius Gomes H1 Reconhecer, no contexto social, diferentes significados e representações dos números e operações naturais, inteiros, racionais ou reais.

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Colégio Militar de Manaus

Colégio Militar de Manaus olégio Militar de Manaus ame de admissão ao ensino médio 017/018 Resoluções sugeridas www.matematicaemdados.com.br Matemática em dados Material de poio Resolução MM 018 1. Leis: = e π = + 1 plicando as

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 01 a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 ados Internacionais para atalogação na Publicação (IP) (Luciane M. M. Novinski /R 9/15 /uritiba, PR, rasil) P187 Pan, Peter

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP Cônicas e Equações Quadráticas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Parábolas 2 3 4 5 Introdução Parábolas Parábolas

Leia mais

M A T E M Á T I C A Desenho Curricular por Área

M A T E M Á T I C A Desenho Curricular por Área M A T E M Á T I C A Desenho Curricular por Área Módulo 1 Conteúdo... Habilidades e Competências... 10 unidades... Matemáticas Módulo 2 Conteúdo... Habilidades e Competências... 10 unidades... Módulo 3

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y

Leia mais

Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase)

Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase) Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase) GRUPO I (versão 1) 1. Como há dois rapazes e quatro raparigas, existem duas maneiras de sentar os rapazes nas duas extremidades do

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2 ESOL SEUNÁRI OM º ILO. INIS OIMR º NO E ESOLRIE MTEMÁTI FIH E VLIÇÃO Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só

Leia mais

Exercícios de Geometria Analítica - Prof. Ademir

Exercícios de Geometria Analítica - Prof. Ademir Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 4

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 4 ESCOL SECUNDÁRI COM º CICLO D. DINIS COIMR 11º NO DE ESCOLRIDDE MTEMÁTIC FICH DE VLIÇÃO Nº 4 Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA FUVEST 08/0/009 //008 Seu pé direito nas melhores Faculdades MTEMÁTIC 0. Na figura, a reta r tem equação y x + no plano cartesiano Oxy. lém disso, os pontos 0,,, estão na reta r, sendo 0 0,). Os pontos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Udesc) Assinale a alternativa que corresponde ao valor da expressão: 7 cos cos sen tg A) B) 5 C) 9 D) E). (Aman) Os pontos P e Q representados no círculo

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c

Leia mais

18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1

18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1 18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais

Leia mais

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1 SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução 1. aderno 1 1.1. omo o ponto de coordenadas (, ) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A. Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 Matemática Semi-Extensivo V. Exercícios 01 (x, x; (, 1; (7, d, = d, x x x x = x + 4x + 4 + x + x + 1 = x 14x + 49 + x 4x + 4 4x = 48 x = (, 0 (1, 1; G(, ; M(, 1 (x, y = x = 1 x x = 5 = y x y 1 = 1 y x

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Exercícios de Aprofundamento 2015 Mat Geo. Analítica

Exercícios de Aprofundamento 2015 Mat Geo. Analítica Exercícios de Aprofundamento 015 Mat Geo. Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0), (t, 0)

Leia mais

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais