Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

Tamanho: px
Começar a partir da página:

Download "Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15"

Transcrição

1 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a livros de texto e folhas da disciplina ª Parte Em cada alínea, assinale com verdadeiro (V) ou falso (F) cada um dos quadrados, sabendo que podem existir todas as combinações possíveis de verdadeiro e falso. A cotação das respostas é a seguinte: Quadrado correctamente preenchido,5 valores. Quadrado em branco Quadrado incorrectamente preenchido -,5 valores.. Na solução (numérica) das equações de Navier-Stokes em média temporal de Reynolds o campo de velocidade médio é permanente (estacionário), pelo que o efeito das flutuações de velocidade do campo instantâneo são desprezadas. a aplicação da condição de não escorregamento numa parede depende do modelo de turbulência seleccionado. para determinar a tensão de corte na parede é obrigatório determinar a derivada do perfil U y. de velocidade média na parede ( ) y= os modelos de viscosidade turbulenta são independentes do campo de velocidade média, pelo que podem ser calculados à priori.. A transição de uma camada limite de regime laminar a turbulento depende do número de Reynolds e da rugosidade da superfície. conduz a uma diminuição da tensão de corte na parede. não pode ocorrer em gradiente de pressão favorável. pode originar uma redução do coeficiente de resistência de um corpo finito.

2 3. A figura em baixo apresenta os perfis de velocidade média de três camadas limite turbulentas para as quais a velocidade exterior U e é idêntica. Na região D, as tensões de Reynolds são desprezáveis. O perfil corresponde a gradiente de pressão favorável. O eixo horizontal ξ está em escala logarítmica. Na região E a tensão de corte total é aproximadamente igual a τ total µ U y. 4. A figura em baixo apresenta o simétrico do coeficiente de pressão ( p) ao longo da corda (x/c) determinado em fluido perfeito para dois perfis simétricoss sendo um fino (3%) e um espesso (8%) Os ângulos de ataque são simétricos (α A =-αα B ) e as linhas a cheio representam o extradorso dos perfis. O ângulo de ataque positivo corresponde ao perfil espesso. Os dois perfis têm o mesmomo coeficiente de momento em torno do centro aerodinâmico. O valor absoluto do coeficiente de sustentação do perfil espesso é maior do que o valor absoluto do coeficiente de sustentação do perfil fino. O perfil fino tem coeficiente de momento em torno do centro do perfil positivo.

3 5. A figura em baixo representa o coeficiente de sustentação de um perfil simples e com três tipos de hiper-sustentadores em função do ângulo de ataque α. Os hiper-sustentadores A e B têm controle de camada limite. Os três hiper-sustentadores têm deflecção significativamente diferentes. O perfil simples exibe perda tipo bordo de ataque. A linha corresponde ao flap simples. 6. A figura em baixo apresenta a distribuição de circulação Γ, coeficiente de sustentação l, ângulo de ataque efectivo α e e ângulo de ataque induzido α i ao longo da semienvergadura (raíz da asa em y=) de duas asas finitas de secção idêntica e ao mesmo ângulo de ataque. Uma das asas é rectangular e a outra tem afilamento. c r é a corda na raíz da asa. -Γ A B D c l.. α E F G H 3 4 y/c r y/c r A secção das asas tem curvatura positiva. A linha A corresponde ao coeficiente de sustentação da asa com afilamento. A linha H corresponde ao α i da asa rectangular. A asa com afilamento tem torção positiva.

4 7. A figura em baixo apresenta quatro corpos distintos (A, B, e D) ) com o mesmo comprimento de referência L que vão estar imersos num escoamento uniforme horizontal. O corpo B apresenta a maior influência da rugosidade da superfície no coeficiente de resistência. O coeficiente de sustentação médio (média temporal) não depende do número de Reynolds e é nulo para os quatro corpos. O coeficiente de resistência de atrito é maior do que o coeficiente de resistência de forma para os corpos B e. O corpo A apresenta o menor coeficiente de resistência de forma dos 4 corpos, independentemente do número de Reynolds. 8. A figura em baixo apresenta o coeficiente de resistência F de uma placa plana de comprimento L a um número de Reynolds de 7 em função do grau de refinamento da malha h i /h e a distribuição do coeficiente de tensão de corte superficial f ao longo da placa. Os resultados foram obtidos com as equações de Navier-Stokes em média temporal de Reynolds suplementadas por 3 modelos de viscosidade turbulenta: k-ω SST, k- k L (KSKL) e Spalart & Allmaras (SPAL)..95 F SST p=.74 KSKL p=.9 SPAL αh.65 h i /h 3 4 f Re x SST KSKL SPAL Blasius Solution 6 7 A condição de não escorregamento foi aplicada com leis da parede. A incerteza numérica das três soluções de F (SST, KSKL e SPAL) obtidas na malha mais refinada (h i /h =) é idêntica. Os resultados sugerem que as soluções obtidas com os modelos de turbulência SST e SPAL são idênticas. F L = f dx.

5 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Hora : 8: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a livros de texto e folhas da disciplina ª Parte. A figura ilustra uma das malhas que foram utilizadas para calcular o escoamento em torno do perfil Eppler 374 com as equações de Navier-Stokes em média temporal de Reynolds suplementadas pelo modelo de viscosidade turbulenta k-ω SST. O ângulo de ataque é de zero graus ( α = o ) e o número de Reynolds baseado na velocidade do 5 escoamento de aproximação U e na corda do perfil c é igual a Rec = U c ν = 3. Os cálculos foram feitos com dois tipos de condições de fronteira na superfície do perfil: aplicação directa da condição de não escorregamento (NS na legenda); leis da parede (WF na legenda). A figura apresenta ainda a distribuição do (simétrico) do coeficiente de pressão ao longo da corda (- p em função de x/c), a distribuição do coeficiente de tensão de corte superficial ao longo da corda ( f = τ w ( ρu ) em função de x/c) e o coeficiente de resistência de atrito do perfil em função do grau de refinamento da malha (( D ) F em função de h i /h ). y/c ( D ) F.4 B p=.4 B p= Eppler 374 α= o, Re=3 5 x/c h /h 3 4 i f Eppler 374 α= o, Re= x/c A B D - p Figura NS, Lado A NS, Lado B WF, Lado A WF, Lado B Eppler 374 α= o, Re= x/c

6 a) Identifique qual o lado (A ou B) que corresponde ao extradorso e intradorso do perfil no gráfico de - p em função de x/c. Justifique a sua resposta. b) Identifique o tipo de condição de fronteira (NS ou WF) e o lado do perfil (se necessário) nas legendas dos gráficos f = τ w ( ρu ) em função de x/c e ( D ) F em função de h i /h. Justifique a sua resposta. c) Estime o coeficiente de resistência de atrito ( D ) F do perfil assumindo gradiente de pressão nulo para as camadas limites do extradorso e intradorso do perfil. Faça as aproximações adicionais necessárias para obter a melhor concordância possível com os resultados apresentados na figura. Faça as estimativas para os dois tipos de condições de fronteira na parede, NS e WF. d) Qual dos valores obtidos no cálculo se deve aproximar mais do resultado experimental? Justifique a sua resposta. Figura. onsidere o escoamento estacionário, bi-dimensional, potencial e incompressível em torno de um cilindro circular. O cilindro tem um raio de m e está centrado no ponto ; i do referencial ζ=ξ+iη com a. O escoamento de aproximação uniforme faz ( ) a um ângulo α, ( α <π/5), com o eixo real ξ e tem uma velocidade com um módulo igual a U. No centro do cilindro existe um vórtice com a intensidade necessária para que o ponto de intersecção do cilindro com o eixo real positivo, ξ=b, seja um ponto de estagnação. a) Escreva o potencial complexo que representa o escoamento em função do ângulo de ataque α e de a indicando claramente o sistema de eixos que utilizou.

7 b) Determine a gama de valores de a para a qual o valor absoluto da coordenada real do(s) ponto(s) de coeficiente de pressão máximo é sempre maior ou igual do que,95, π ξ ( ),95 para α. p max 5 onsidere a transformação conforme de Joukowski transforma o cilindro num perfil sustentador. b z = ζ + com z = x + i y ζ que c) Determine a gama de valores de a que conduzem a um coeficiente de sustentação menor do que,37 para a gama de ângulos de ataque dada, l,37 para (Se não resolver esta alínea admita a,5 ). π α. 5 d) Determine a gama de valores que o coeficiente de pressão p no bordo de ataque pode apresentar para os valores de a e α da alínea anterior. Justifique a sua resposta. 3. Uma pequena aeronave que pesa 3kN tem uma asa trapezoidal de alongamento Λ=, área S=6m e corda c=,6m na raíz, cuja secção é um perfil que não varia ao longo da ' envergadura com = π l π rad- e β = rad. A pequenos ângulos de ataque, os 9 coeficientes de força aerodinâmica da asa são dados por L D 8π 4π = α =,45 +,38 L com α em radianos. Admita em primeira aproximação que a força de resistência da aeronave se deve apenas à 5 3 asa. ν =,5 m /s, ρ =, kg/m. ar ar a) Indique quais as características da asa da aeronave, i.e. afilamento, torção, distribuição de circulação. Justifique a sua resposta. b) Admitindo voo a altitude e velocidade constante, determine a velocidade a que deve voar a aeronave para que numa zona sem vento se obtenha a potência de propulsão mínima. c) Determine o coeficiente de sustentação para as condições da alínea b). Arbitre uma velocidade plausível se não resolver a alínea b).

8 d) Determine a energia mínima necessária para percorrer 3km a altitude e velocidade constante numa zona sem vento.

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 8 de Janeiro de 6 Nome : Hora : 8:3 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: uração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a livros

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 05/6 Exame de ª época, 5 de Janeiro de 06 Nome : Hora : :30 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 9 de Julho de 6 Nome : Hora : 4: Número: Duração : horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 6/ Exame de ª época, 4 de Janeiro de Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 013/14 Exame de 3ª época, 15 de Julho de 014 Nome : Hora : 9:00 Número: Duração : 3 horas 1ª Parte : Sem consulta ª Parte : onsulta limitada

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14 Mestrado Integrado em Engenhia Mecânica Aerodinâmica 1º Semestre 13/14 Exame de ª época, 9 de Janeiro de 14 Nome : Hora : 8: Número: Duração : 3 horas 1ª Pte : Sem consulta ª Pte : onsulta limitada a livros

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2017/18

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2017/18 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 217/18 Exame de 1ª época, 2 de Janeiro de 218 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta livre

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 212/13 Exame de 2ª época, 2 de Fevereiro de 213 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14 Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I º Semestre 01/14 Prova de Avaliação de 6 de Junho de 014 Nome : Hora : 15:00 Número: Duração : horas 1ª Parte : Sem consulta ª Parte : onsulta

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 3ª época, 19 de Julho de 2013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 1ª época, 18 de Janeiro de 2013 Nome : Hora : 8:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14. Exame de 2ª Época 28 de Junho de 2014 Nome :

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2013/14. Exame de 2ª Época 28 de Junho de 2014 Nome : Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I º Semestre 013/14 Exame de ª Época 8 de Junho de 014 Nome : Hora : 8:00 Número: Duração : 3 horas 1ª Parte : Sem consulta ª Parte : onsulta

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2014/15. 1º Exame, 9 de Junho de 2015 Nome :

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2014/15. 1º Exame, 9 de Junho de 2015 Nome : Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I º Semestre 014/15 1º Exame, 9 de Junho de 015 Nome : Hora : 11:30 Número: Duração : 3 horas 1ª Parte : Sem consulta ª Parte : onsulta limitada

Leia mais

Propagação de momentos. cos. Aerodinâmica Perfis Sustentadores Momento de Picada em Torno do Bordo de Ataque. α M c. M V r BA

Propagação de momentos. cos. Aerodinâmica Perfis Sustentadores Momento de Picada em Torno do Bordo de Ataque. α M c. M V r BA Momento de Picada em Torno do Bordo de Ataque y M V r BA α L α M c - x Propagação de momentos M C M BA = M = C c M + L cos + C l ( α ) cos c M 2 1 c c + 2 L ( α ) CM + Cl BA c c 2 2 1 y M V r BA α Momento

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2014/15

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 2º Semestre 2014/15 Mestrao Integrao em Engenharia Aeroespacial Aeroinâmica I º Semestre 014/15 Repescagem º este, e Julho e 015 Nome : Hora : 18:30, uração : horas Número: 1ª Parte : Sem consulta, ª Parte : onsulta limitaa

Leia mais

Perfis Sustentadores Efeitos da Viscosidade

Perfis Sustentadores Efeitos da Viscosidade Em fluido real existe viscosidade e a condição de não escorregamento, o que vai alterar o escoamento (e as forças) previstas pela teoria de fluido perfeito YouTube - how wings work? Smoke streamlines around

Leia mais

Perfis Sustentadores Efeitos da Viscosidade

Perfis Sustentadores Efeitos da Viscosidade Em fluido real existe viscosidade e a condição de não escorregamento, o que vai alterar o escoamento (e as forças) previstas pela teoria de fluido perfeito YouTube - how wings work? Smoke streamlines around

Leia mais

Asas Finitas Redução dos efeitos da extremidade Efeitos da viscosidade

Asas Finitas Redução dos efeitos da extremidade Efeitos da viscosidade Redução dos efeitos da extremidade Efeitos da viscosidade Aerodinâmica I Redução dos efeitos da extremidade Efeitos da viscosidade Redução dos efeitos da extremidade Efeitos da viscosidade Redução dos

Leia mais

Superfícies Sustentadoras

Superfícies Sustentadoras Superfícies Sustentadoras Uma superfície sustentadora gera uma força perpendicular ao escoamento não perturado, força de sustentação, astante superior à força na direcção do escoamento não perturado, força

Leia mais

Asas Finitas Redução dos efeitos da extremidade Efeitos da viscosidade

Asas Finitas Redução dos efeitos da extremidade Efeitos da viscosidade Método da Malha de Vórtices Método numérico para a determinação da sustentação e resistência induzida de superfícies sustentadoras Discretização da asa em planta em paineis rectangulares nos quais é colocado

Leia mais

Superfícies Sustentadoras

Superfícies Sustentadoras Uma superfície sustentadora gera uma força perpendicular ao escoamento não perturado, força de sustentação, astante superior à força na direcção do escoamento não perturado, força de resistência. Sustentação

Leia mais

Utilização de Métodos de Cálculo Numérico em Aerodinâmica

Utilização de Métodos de Cálculo Numérico em Aerodinâmica Erro Numérico: - Erro de arredondamento - Erro iterativo - Erro de discretização Três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento

Leia mais

Perfis Sustentadores Transformação de Joukowski

Perfis Sustentadores Transformação de Joukowski Transformação de Joukowski. Cilindro centrado no eixo imaginário ζ ( β ), b cos( β ) o 0 + i asen a η β a b ξ Transformação de Joukowski. Cilindro centrado no eixo imaginário η z ζ + b ζ y b ξ -b f β f

Leia mais

Utilização de Métodos de Cálculo Numérico em Aerodinâmica

Utilização de Métodos de Cálculo Numérico em Aerodinâmica Cálculo Numérico em Erro vs Incerteza - Um erro define-se como a diferença entre uma determinada solução e a verdade ou solução exacta. Tem um sinal e requer o conhecimento da solução exacta ou verdade

Leia mais

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S ( P) σ Aerodinâmica I [ ln( r( P, q) )] σ ( q) ds + ( V ) + γ ov np = vwp + Γ S π np O método dos paineis transforma a equação integral de Fredholm da segunda espécie num sistema de equações algébrico,

Leia mais

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA E ARQUITECTURA NAVAL HIDRODINÂMICA EXERCÍCIOS J.A.C. Falcão de Campos 2006-2007 Capítulo 2 Aplicação da Análise Dimensional a Problemas de Hidrodinâmica.

Leia mais

Escoamentos Externos

Escoamentos Externos Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,

Leia mais

4 Configurações estudadas

4 Configurações estudadas 4 Configurações estudadas Neste capítulo são descritas as diferentes configurações geométricas estudadas no presente trabalho, i.e., a entrada NACA convencional, o gerador de vórtices isolado e também

Leia mais

Escoamentos externos. PME2230 Mecânica dos Fluidos I

Escoamentos externos. PME2230 Mecânica dos Fluidos I Escoamentos externos PME2230 Mecânica dos Fluidos I Aplicações Aeronaves Veículos terrestres Embarcações e submarinos Edificações Camada limite Camada limite: região delgada próxima à parede, onde as tensões

Leia mais

Arrasto e sustentação

Arrasto e sustentação Arrasto e sustentação J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Arrasto e sustentação 1 / 16 Sumário 1 Noção de camada limite 2 Separação do escoamento e esteira

Leia mais

( k) Perfis Sustentadores Perfis de Kármán-Treftz. τ π. O expoente k está relacionado com o ângulo do bordo de fuga, τ, através de

( k) Perfis Sustentadores Perfis de Kármán-Treftz. τ π. O expoente k está relacionado com o ângulo do bordo de fuga, τ, através de z = b Perfis de Kármán-Treftz ( ζ + b) + ( ζ b) ( ζ + b) ( ζ b) O epoente está relacionado com o ângulo do bordo de fuga, τ, através de ( ) τ = π = b b = corresponde à transformação de Jouowsi z z + τ

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 (Método das imagens, escoamento em torno de um cilindro com circulação, transformação conforme) EXERCÍCIO 1 [Problema 6 das folhas do

Leia mais

Mecânica dos Fluidos Formulário

Mecânica dos Fluidos Formulário Fluxo volúmétrico através da superfície Mecânica dos Fluidos Formulário Fluxo mássico através da superfície Teorema do transporte de Reynolds Seja uma dada propriedade intensiva (qtd de por unidade de

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Cálculo Numérico das Características Aerodinâmicas de um Perfil Alar

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Cálculo Numérico das Características Aerodinâmicas de um Perfil Alar Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I 1. Objectivos Cálculo Numérico das Características Aerodinâmicas de um Perfil Alar Este trabalho tem três objectivos: 1. Realizar um exercício

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar 1ª Parte Introdução Alguns fenômenos que ocorrem quando um fluxo externo é aplicado sobre um corpo: U

Leia mais

MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos:

MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos: MECÂNICA DOS FLIDOS II Conceitos: Camada limite; Camada limite confinada e não-confinada; Escoamentos de corte livre e Esteira; Camadas limites laminares e turbulentas; Separação da camada limite; Equações

Leia mais

Introdução ao Projeto de Aeronaves. Aula 11 Distribuição de Sustentação, Arrasto e Efeito Solo

Introdução ao Projeto de Aeronaves. Aula 11 Distribuição de Sustentação, Arrasto e Efeito Solo Introdução ao Projeto de Aeronaves Aula 11 Distribuição de Sustentação, Arrasto e Efeito Solo Tópicos Abordados Distribuição Elíptica de Sustentação. Aproximação de Schrenk para Asas com Forma Geométrica

Leia mais

Ponto de Separação e Esteira

Ponto de Separação e Esteira Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região

Leia mais

PROJETO DE AERONAVES Uma abordagem teórica sobre os conceitos de aerodinâmica, desempenho e estabilidade Prof. MSc. Luiz Eduardo Miranda J.

PROJETO DE AERONAVES Uma abordagem teórica sobre os conceitos de aerodinâmica, desempenho e estabilidade Prof. MSc. Luiz Eduardo Miranda J. PROJETO DE AERONAVES Uma abordagem teórica sobre os conceitos de aerodinâmica, desempenho e estabilidade Conceitos Fundamentais Fundamentos do Projeto Projeto conceitual Aerodinâmica Desempenho Estabilidade

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao

Leia mais

Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.

Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui

Leia mais

White NOTA METODOLOGIA

White NOTA METODOLOGIA White 7.116 O avião do problema anterior foi projectado para aterrar a uma velocidade U 0 =1,U stall, utilizando um flap posicionado a 60º. Qual a velocidade de aterragem U 0 em milhas por hora? Qual a

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Aula prática 6 (Semana de 26 a 30 de Outubro de 2009) EXERCÍCIO 1 Um jacto de ar, escoando-se na atmosfera, incide perpendicularmente a uma placa e é deflectido na direcção tangencial

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6 (Equação de Von-Kármán; Escoamento na camada limite turbulenta) EXERCÍCIO Considere o escoamento de um fluido com massa específica ρ,

Leia mais

Corpos Não-Fuselados

Corpos Não-Fuselados Escoamentos com esteiras de grandes dimensões (ordem de grandeza da dimensão transversal do corpo), com alterações significativas do escoamento relativamente à situação de fluido perfeito (elevados δ *

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Disciplina: Camada Limite Fluidodinâmica Exercícios 2ª Parte Prof. Fernando Porto Exercício 3 Uma chaminé com 3m de diâmetro na base, m de diâmetro no topo, e 25m de altura está exposta a um vento uniforme

Leia mais

Escoamentos Externos

Escoamentos Externos Escoamentos Externos PME3222 - Mecânica dos Fluidos Para Eng. Civil PME/EP/USP Prof. Antonio Luiz Pacífico 1 Semestre de 2017 PME3222 - Mecânica dos Fluidos Para Eng. Civil (EP-PME) Esc. Ext. 1 Semestre

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Escoamento em Regime Turbulento

Escoamento em Regime Turbulento http://www.youtube.com/watch?v=xoll2kediog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Flutuações caóticas com grandes gamas de frequência

Leia mais

Escoamento em Regime Turbulento Equações de Reynolds

Escoamento em Regime Turbulento Equações de Reynolds Escoamento em Regime Turbulento Equações de Reynolds Condições de fronteira - Paredes sólidas a) Condição de não escorregamento aplicada directamente + + uτ y τ w y < 1, y =, uτ = ν ρ b) Leis da parede

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Aerofólio fino em regime incompressível não estacionário (baseado nas Notas de Aula do Prof Donizeti de Andrade) Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Relembrando

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13. Exame de 3ª época, 19 de Julho de 2013 Nome :

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13. Exame de 3ª época, 19 de Julho de 2013 Nome : Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 01/13 Exame de 3ª época, 19 de Juho de 013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consuta ª Parte : onsuta imitada

Leia mais

MVO-11: Dinâmica de Veículos Aeroespaciais

MVO-11: Dinâmica de Veículos Aeroespaciais (carga horária: 64 horas) Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica Instituto Tecnológico de Aeronáutica 2014 PARTE II Modelo Aerodinâmico resultante aerodinâmica sustentação velocidade

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/2 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 3 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/2 Fluido

Leia mais

Mestrado Integrado em Engenharia Mecânica. Aerodinâmica. Trabalho experimental

Mestrado Integrado em Engenharia Mecânica. Aerodinâmica. Trabalho experimental Mestrado Integrado em Engenharia Mecânica Aerodinâmica Trabalho experimental Objectivos: 1. Descrever qualitativamente o comportamento de um perfil alar na região da perda de sustentação para ângulos de

Leia mais

Escoamentos exteriores. Escoamento em torno de um cilindro/esfera. Matéria:

Escoamentos exteriores. Escoamento em torno de um cilindro/esfera. Matéria: Escoamentos exteriores Matéria: Escoamento em torno de cilindro e esfera: localização dos ponto de separação, sua influência na distribuição da pressão e coeficiente de resistência. Escoamento em torno

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar: Escoamento de Fluidos ao Redor de Corpos Submersos 4ª Parte Introdução Se o corpo estiver se movendo

Leia mais

Introdução ao Projeto de Aeronaves. Aula 10 Características do Estol e Utilização de Flapes na Aeronave

Introdução ao Projeto de Aeronaves. Aula 10 Características do Estol e Utilização de Flapes na Aeronave Introdução ao Projeto de Aeronaves Aula 10 Características do Estol e Utilização de Flapes na Aeronave Tópicos Abordados O Estol e suas Características. Influência da Forma Geométrica da Asa na Propagação

Leia mais

Introdução ao Projeto de Aeronaves. Aula 8 Características Aerodinâmicas dos Perfis

Introdução ao Projeto de Aeronaves. Aula 8 Características Aerodinâmicas dos Perfis Introdução ao Projeto de Aeronaves Aula 8 Características Aerodinâmicas dos Perfis Tópicos Abordados Forças aerodinâmicas e momentos em perfis. Centro de pressão do perfil. Centro aerodinâmico do perfil.

Leia mais

2a LISTA DE EXERCÍCIOS

2a LISTA DE EXERCÍCIOS IPH 01107 a LISTA DE EXERCÍCIOS 1) Para o escoamento de 15 N/s de ar [R = 87 m /(s.k)] a 30 o C e 100 kpa (absoluta), através de um conduto de seção transversal retangular com 15 X 30 cm, calcule (a) a

Leia mais

Fundamentos da Mecânica dos Fluidos

Fundamentos da Mecânica dos Fluidos Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos

Leia mais

Aerodinâmica. Professor: Luís Eça

Aerodinâmica. Professor: Luís Eça Aerodinâmica Professor: Luís Eça Programa 1. Introdução Forças aerodinâmicas. Caracterização do escoamento. Variáveis e princípios físicos que regem o escoamento. Programa 2. Escoamento Incompressível

Leia mais

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6 ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6.1. Introdução Até agora foram analisados escoamentos bidiemensionais. Os escoamentos em torno dos corpos e perfis dos capítulos anteriores envolvem apenas duas

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Programa de pós-graduação em engenharia de recursos hídricos e ambiental TH705 Mecânica dos fluidos ambiental II Prof. Fernando Oliveira de Andrade Os escoamentos turbulentos

Leia mais

Adimensionalizando a expressão acima utilizando mais uma vês a velocidade da ponta da pá e o comprimento da pá: 4 1.3

Adimensionalizando a expressão acima utilizando mais uma vês a velocidade da ponta da pá e o comprimento da pá: 4 1.3 1 Teoria conjunta elementos de pá e momento linear A teoria de elementos de pá parte de um determinado número de simplificações sendo que a maior (e pior) é que a velocidade induzida é uniforme. Na realidade

Leia mais

Camada limite laminar

Camada limite laminar Camada limite laminar J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Camada limite laminar 1 / 24 Sumário 1 Introdução 2 Equações da camada limite laminar 3 Solução

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Revisão dos primeiros capítulos (Setembro Outubro de 2008) EXERCÍCIO 1 Um êmbolo de diâmetro D 1 move-se verticalmente num recipiente circular de diâmetro D 2 com água, como representado

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Parte II: 2 Estudo da Transferência de Calor por Convecção 02 Objetivos 1. Mecanismo físico: o o o Origem física; Parâmetros

Leia mais

Aerodinâmica. Professor: Luís Eça

Aerodinâmica. Professor: Luís Eça Professor: Luís Eça 1. Introdução Forças aerodinâmicas. Caracterização do escoamento. Variáveis e princípios físicos que regem o escoamento. 2. Escoamento Incompressível de Fluido Real Soluções analíticas

Leia mais

Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200

Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200 Segundo Exercício de Modelagem e Simulação Computacional Maio 01 EMSC# - MECÂNICA B PME 00 1. ENUNCIADO DO PROBLEMA Um planador (vide Fig. 1) se aproxima da pista do aeroporto para pouso com ângulo de

Leia mais

1 03 Ge G om o etr t i r a i do o A v A iã i o, o, Fo F r o ç r as A e A ro r d o in i â n mic i as Prof. Diego Pablo

1 03 Ge G om o etr t i r a i do o A v A iã i o, o, Fo F r o ç r as A e A ro r d o in i â n mic i as Prof. Diego Pablo 1 03 Geometria do Avião, Forças Aerodinâmicas Prof. Diego Pablo 2 - Asa - Hélice - Spinner - Carenagem da Roda - Roda - Trem de Pouso do Nariz / Bequilha - Trem de Pouso Principal - Trem de pouso - Fuselagem

Leia mais

Forças e Momentos Aerodinâmicos

Forças e Momentos Aerodinâmicos João Oliveira Departamento de Engenharia Mecânica, ACMAA Instituto Superior Técnico, MEAero (Versão de 20 de Setembro de 2011) Planta da asa c: corda (chord) b: envergadura (span) A: alongamento (aspect

Leia mais

Disciplina: Camada Limite Fluidodinâmica

Disciplina: Camada Limite Fluidodinâmica Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar 3ª Parte Camada Limite Laminar sobre Placa Plana com Gradiente de Pressão Nulo Na maioria dos casos de

Leia mais

Escola Politécnica da Universidade de São Paulo

Escola Politécnica da Universidade de São Paulo Escola Politécnica da Universidade de São Paulo Elementos de Aeronaves e Dinâmica de Voo PME-2553 Primeira série de exercícios Prof. Dr. Adson Agrico 13 de outubro de 2016 1. Explique porque uma asa gera

Leia mais

TM LINGUAGEM DE PROGRAMAÇÃO I TURMA B (2010/1) AVISO 1

TM LINGUAGEM DE PROGRAMAÇÃO I TURMA B (2010/1) AVISO 1 TM-225 - LINGUAGEM DE PROGRAMAÇÃO I TURMA B (2/) AVISO Prof. Luciano K. Araki. Exercício extraclasse: Excel (utilize o mesmo documento para os dois exercícios seguintes, deixando cada um em uma planilha).

Leia mais

1 o Exame de Estabilidade de Voo O exame tem a duração de 3h00m. Justifique convenientemente todas as respostas.

1 o Exame de Estabilidade de Voo O exame tem a duração de 3h00m. Justifique convenientemente todas as respostas. Instituto Superior Técnico Ano Lectivo de 2014/2015 Mestrado Integrado em Engenharia Aeroespacial 5 de Janeiro de 2015 1 o Exame de Estabilidade de Voo O exame tem a duração de 3h00m. Justifique convenientemente

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II NOME: Não esqueça 1) (4 VAL.) de escrever o nome a) Uma partícula descreve um movimento no espaço definido pelas seguintes trajectória e lei horária: z + y 1 = 2 t = y = x + y 1 = (... e ) y s = 2 t Caracterize-o

Leia mais

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2 (Aerodinâmica de Turbomáquinas - EEK 511) N 0 DE AULAS Princípios básicos Considerações gerais de projeto Escoamento através da carcaça e aspectos de escoamentos tridimensionais Escoamento ao redor de

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por:

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por: 1 a Série de exercícios Aeroelasticidade Estática Prof. Gil 2º semestre 2009 1ª Questão: Estude o problema de um modelo de uma bomba cuja geometria é axissimétrica, a ser testado em túnel de vento. Os

Leia mais

1 Teoria de elementos de pá

1 Teoria de elementos de pá 1 Teoria de elementos de pá A teoria do momento linear é um método simples e rápido para estimar a potência e a velocidade induzida no rotor, baseando apenas na área total do rotor, no peso do helicóptero

Leia mais

EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas

EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas Universidade Federal do ABC EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas EN2411 Consideremos o escoamento de um fluido na direção normal do eixo de um cilindro circular,

Leia mais

Avaliação Energética do Escoamento em Tubos. Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: =0

Avaliação Energética do Escoamento em Tubos. Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: =0 Escoamentos Internos (cont.) Avaliação Energética do Escoamento em Tubos Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: 0 Q & + W & eixo + W & cisalhamento + W

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos

Leia mais

Introdução Equações médias da turbulência Estrutura turbulenta de cisalhamento Transporte de energia cinética turbulenta. Turbulência. J. L.

Introdução Equações médias da turbulência Estrutura turbulenta de cisalhamento Transporte de energia cinética turbulenta. Turbulência. J. L. Turbulência J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Turbulência 1 / 29 Sumário 1 Introdução 2 Equações médias da turbulência 3 Estrutura turbulenta de cisalhamento

Leia mais

( ) ( ) 2. C = 0, ,1242 log Re+ 0,1558 log Re para

( ) ( ) 2. C = 0, ,1242 log Re+ 0,1558 log Re para 63 24 0,6305 CD= 1 + 0,1935 ( Re ), Re para 20 Re 260 (4.10) ( ) ( ) 2 C = 0,16435 1,1242 log Re+ 0,1558 log Re para D 10 10 3 260< Re 1,5 10. (4.11) Outros parâmetros igualmente importantes, obtidos de

Leia mais

AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve.

AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve. AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve. CONCEITOS 1. Massa: Quantidade de matéria que forma um corpo ; Invariável.

Leia mais

Meteorologia. Exame 2, 3 de Fevereiro de 2012

Meteorologia. Exame 2, 3 de Fevereiro de 2012 Meteorologia Exame, 3 de Fevereiro de 01 PARTE 1 1. Um sala importa ar à taxa de 10 m 3 /min, com o fluxo medido no exterior onde se encontra à temperatura de 10 com uma humidade relativa de 80%, sendo

Leia mais

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014 Conservação de Quantidade de Movimento 1. A componente de velocidade v y de um escoamento bi-dimensional,

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 8

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 8 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 8 (Física e modelação de escoamentos turbulentos) EXERCÍCIO 1 Considere a erupção vulcanica do Eyjafjallajokull na Islândia em Abril de

Leia mais

1 a experiência Escoamento ao redor de um cilindro

1 a experiência Escoamento ao redor de um cilindro 1 a experiência Escoamento ao redor de um cilindro 1) Força de Arrasto sobre um cilindro Quando um fluido escoa ao redor de um objeto, exerce sobre este uma força que pode ser decomposta em uma componente

Leia mais

Escolha do Perfil e da Geometria

Escolha do Perfil e da Geometria Escolha do Perfil e da Geometria Antes de se iniciar o desenho da aeronave é necessário definir alguns parâmetros: Perfil; Geometria da asa; Geometria da cauda; Carga alar; Carga de tracção ou carga de

Leia mais

PARTE TEÓRICA (Duração: 1.00h)

PARTE TEÓRICA (Duração: 1.00h) INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÃO DE HIDRÁULICA E RECURSOS HÍDRICOS E AMBIENTAIS HIDRÁULICA I (º Semestre 008/009) 1º Exame 3/06/009 Resolva os problemas

Leia mais

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: marcellohmartins@gmail.com

Leia mais

Exame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de º Semestre

Exame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de º Semestre Eame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de 2012 1º Semestre Observações: 1- Duração do eame: 3 h 2- Tempo aconselhado para a parte

Leia mais