Andréa Maria Pedrosa Valli

Tamanho: px
Começar a partir da página:

Download "Andréa Maria Pedrosa Valli"

Transcrição

1 1-24 Equações Diferenciais Ordinárias Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil

2 2-24 Introdução Equações Diferenciais Ordinárias 1 Introdução Equações de Ordem Superior

3 3-24 Introdução Problema de Valor Inicial Problema de Valor de Contorno Métodos de Solução Método de Euler Um Problema de Valor Inicial (PVI) de primeira ordem pode ser definido como: encontrar y(x) para x > x 0 que satisfaça a equação diferencial dy = f (x, y(x)), (1) dx sujeita às condições de fronteira y(x 0 ) = y 0 (2) onde f (x, y) é uma função conhecida assim como x 0 e y 0. Uma solução para o PVI é uma função y(x) da variável independente x que satisfaz a equação diferencial ordinária (1) e às condições de fronteira (2).

4 4-24 Introdução Problema de Valor Inicial Problema de Valor de Contorno Métodos de Solução Método de Euler Um Problema de Valor de Contorno (PVC) de primeira ordem pode ser definido como: encontrar y(x) para a < x < b que satisfaça a equação diferencial dy = f (x, y(x)) (3) dx sujeita às condições de contorno y(a) = y a (4) y(b) = y b (5) onde f (x, y) é uma função conhecida assim como a, b, y a e y b. Uma solução para o PVC é uma função y(x) da variável independente x que satisfaz a equação diferencial ordinária (3) e às condições de contorno (4) e (5).

5 Problema de Valor Inicial Problema de Valor de Contorno Métodos de Solução Método de Euler Alguns métodos de Solução Numérica para PVI e PVC: Métodos de Passo Simples (Runge-Kutta) e Passo Múltiplo Método de Diferenças Finitas, Elementos Finitos, Volumes Finitos, Elementos de Contorno. O objetivo dos métodos de passo simples é encontrar uma solução aproximada y i+1 y(x i+1 ), dada a solução no instante anterior (x i, y i ), i = 0, 1,, n 1. Para isso, precisamos definir uma malha de pontos em x. Aqui usaremos uma malha de pontos igualmente espaçados, x 0, x 1,, x n, a uma distância h = xn x 0 n, x i = x 0 + i h, i = 0, 1,, n Os métodos fornecem a solução em uma tabela de pontos (x i, y i ), i = 0, 1,, n. Através da interpolação podemos traçar o gráfico da solução.

6 Problema de Valor Inicial Problema de Valor de Contorno Métodos de Solução Método de Euler Método de Euler [2]: y(x i+1 ) y i+1 Considere a reta R(x) tangente à curva y(x) no ponto (x i, y i ). O valor Previsto, y i+1, é definido como sendo o valor R(x i+1 ), ou seja, o valor da reta tangente no ponto x i+1. Reta R(x): R(x) y i x x i = dy dx (x i,y i ) = f (x i, y i ) y i+1 = y i + h f (x i, y i ) 6-24

7 Problema de Valor Inicial Problema de Valor de Contorno Métodos de Solução Método de Euler Exemplo: resolva o PVI no intervalo [0, 1] usando o método de Euler com h = 0.5 e h = Calcule o erro exato para cada h, sabendo-se que a solução exata é y(x) = e x. dy dx = e x y(0) = 1

8 8-24 Introdução Série de Taylor de ordem 1 de ordem 2 Série de Taylor de y(x) em torno de x i : y(x) = y(x i ) + y (x i ) (x x i ) + y (x i ) 2! + y (n) (x i ) (x x i ) n + R n n! onde R n é o resto dado por R n = y (n+1) (ξ x ) (n + 1)! com ξ x um ponto entre x i e x. (x x i ) n+1 (x x i ) 2 +

9 Série de Taylor de ordem 1 de ordem 2 Vamos aproximar y(x) em torno do ponto x i por uma reta usando a série de Taylor: y(x) y(x i ) + y (x i ) (x x i ) E 1 = y (ξ x ) (x x i ) 2, ξ x entre x e x i 2! Definindo uma malha de pontos em x igualmente espaçados, podemos obter uma aproximação para a solução y(x) em x i+1 = x i + h, da seguinte forma: y(x i+1 ) y i+1 = y i + h f (x i, y i ) E 1 = y (ξ x ) h 2, ξ x entre x e x i (erro local) 2! assumindo h pequeno. Quanto maior h maior é o erro local. Dizemos que o erro local é O(h 2 ) Ch 2, onde C é uma constante que depende do valor da derivada segunda de y(x) em ξ x. É possível verificar numericamente que o erro global é O(h).

10 Série de Taylor de ordem 1 de ordem 2 Vamos aproximar y(x) em torno do ponto x i por um polinômio de grau 2, usando a série de Taylor: y(x) y(x i ) + y (x i ) (x x i ) + y (x i ) (x x i ) 2 2! E 2 = y (3) (ξ x ) (x x i ) 3, ξ x entre x e x i 3! Precisamos calcular y (x): d dx (dy dx ) = d f dx (f (x, y(x)) = dx x dx + f dy y dx = f x(x, y) + f (x, y) f y (x, y) Assumindo x = x i+1 = x i + h onde h é um número pequeno, temos: y i+1 = y i + h f (x i, y i ) + h2 2! ( f x(x i, y i ) + f (x i, y i )f y (x i, y i ) ) E 2 = y (3) (ξ x ) h 3 = O(h 3 ), ξ x entre x e x i 3! Dificuldade: cálculo de derivadas de f (x, y)

11 11-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Propriedades: 1 os métodos de Runge-Kutta são de passo um; 2 não exigem o cálculo de qualquer derivada de f (x, y); 3 coincidem com o método de série de Taylor de mesma ordem. Observação: o método de Euler é um método de Runge-Kutta de primeira ordem, y i+1 = y i + h f (x i, y i ), i = 0, 1,, n 1 = y(x i ) + y (x i ) (x i+1 x i ) Erro Local = y (ξ x ) 2! h 2 = O(h 2 ), ξ x entre x e x i Erro Global = O(h)

12 12-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Método do Ponto Médio ou Euler Modificado [2]:

13 13-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Método do Ponto Médio ou Euler Modificado [2]: x i+ 1 2 = x i h y i+ 1 2 = y i h f (x i, y i ) (método de Euler) Reta R(x) que passa por (x i, y i ) e tem inclinação f (x i+ 1, y 2 i+ 1 ): 2 R(x) y i = f (x x x i+ 1, y i 2 i+ 1 ) y i+1 = R(x i+1 ) 2 y i+1 = y i + h f (x i+ 1 2 y i+1 = y i + h f, y i+ 1 ) 2 ( x i h, y i h f (x i, y i ) )

14 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Método do Ponto Médio ou Euler Modificado: y i+1 = y i + h k 2 k 1 = f (x i, y i ) k 2 = f (x i h, y i h k 1) Observação: temos que avaliar a função f (x, y) em dois pontos diferentes em cada passo do método. Vamos verificar que este é um método de Runge-Kutta de ordem 2.

15 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 de ordem s: y i+1 = y i + h (b 1 k 1 + b 2 k 2 + b s k s ) onde k 1 = f (x i, y i ) k 2 = f (x i + c 2 h, y i + ha 21 k 1 ) k 3 = f (x i + c 3 h, y i + h[a 31 k 1 + a 32 k 2 ]). k s = f (x i + c s h, y i + h[a s1 k 1 + a s2 k a s,s 1 k s 1 ]) Erro Local: O(h s+1 ) (E s = y (s+1) (ξ x ) (s+1)! h s+1, ξ x entre x e x i ) Erro Global: O(h s )

16 16-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Notação de Butcher: 0 c 2 a 21 c 3 a 31 a 32.. c s a s1 a s2 a s,s 1 b 1 b 2 b s 1 b s a, b, c definidas para cada método. Exemplo: Método do Ponto Médio ou Euler Modificado: c 2 = 1/2, a 21 = 1/2, b 1 = 0 e b 2 = /2 1/2 0 1

17 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Método de Euler Melhorado (Runge-Kutta de ordem 2): c 2 = 1, a 21 = 1, b 1 = 1/2 e b 2 = 1/ /2 1/2 Runge-Kutta de ordem 4: c 2 = 1/2, c 3 = 1/2, c 4 = 1 a 21 = 1/2, a 31 = 0, a 32 = 1/2, a 41 = a 42 = 0, a 43 = 1 b 1 = 1/6, b 2 = b 3 = 1/3, b 4 = 1/6 0 1/2 1/2 1/2 0 1/ /6 1/3 1/3 1/

18 18-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 Verificar numericamente a ordem de convergência dos métodos p: erro(h) Ch p log( erro(h) ) p log(h) + log(c) Ou seja, o gráfico de uma função real erro(h) da forma Ch p é uma reta com inclinação p em um gráfico log log: erro 0 h 2 e erro E h 1, na figura abaixo.

19 19-24 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 de ordem 2: y i+1 = y i +h f (x i, y i )+ h2 2! ( f x(x i, y i ) + f (x i, y i )f y (x i, y i ) )+ (6) de ordem 2: y i+1 = y i + h ( b 1 f (x i, y i ) + b 2 f (x i + c 2 h, y i + a 21 hf (x i, y i ) ) (7) Expandindo f (x, y) em série de Taylor em torno de (x i, y i ) f (x i + c 2 h, y i + a 21 hf (x i, y i )) f i + c 2 h f i x + a 21hf i f i y + (8) Substituindo (8) em (7), temos [ y i+1 = y i + hb 1 f i + hb 2 f i + c 2 h f ] i x + a f i 21hf i y +

20 y i+1 = y i + h(b 1 + b 2 )f i + h2 2 de ordem 2 de ordem s Exemplos Ordem de Convergência dos métodos Dedução dos métodos de RK de ordem 2 [ ] f i 2b 2 c 2 x + 2b f i 2a 21 f i y + Comparando a equação com a série de Taylor de ordem 2, y i+1 = y i + h f (x i, y i ) + h2 2! ( f x(x i, y i ) + f (x i, y i )f y (x i, y i ) ) + temos b 1 + b 2 = 1 2 b 2 c 2 = 1 2 b 2 a 21 = 1 Observação: Temos 4 incógnicas e 3 equações infinitas soluções temos vários métodos de Runge-Kutta de ordem

21 21-24 Sistema de Eq. Dif. Ordinárias de primeira ordem dy 1 dx dy 2 dx = f 1 (x, y 1, y 2,, y m ) = f 2 (x, y 1, y 2,, y m ). dy m dx = f m (x, y 1, y 2,, y m ) sujeita às condições iniciais y 1 (x 0 ) = y 01 y 2 (x 0 ) = y 02. y m (x 0 ) = y 0m

22 Forma Vetorial: dy (x) dx = F (x, Y (x)) Y (x 0 ) = Y 0 onde y 1 (x) f 1 (x, Y (x)) y 2 (x) f 2 (x, Y (x)) Y (x) =, F (x, Y (x)) =.., Y 0 = y m (x) f m (x, Y (x)) Método de Euler: Y n+1 = Y n + h F (x n, Y n ) y 01 y 02. y 0m

23 23-24 Introdução Bibliografia Básica Equações Diferenciais Ordinárias de ordem superior: [ y1 y 2 ] = [ y dy dx Método de Euler: ] [ y1 y 2 d 2 y dy 5x dx 2 dx xy 2 = 0 y(1) = 2 dy dx (1) = 0 ] n+1 [ dy1 ] [ dx dy 2 = dx = [ y1 y 2 ] n y 2 5xy 2 xy 2 1 ], [ ] y + h 2 5xy 2 xy1 2 [ ] y1 (1) = y 2 (1) n [ ] 2 0

24 Bibliografia Básica Bibliografia Básica [1] Algoritmos Numéricos, Frederico F. Campos, Filho - 2 a Ed., Rio de Janeiro, LTC, [2] Métodos Numéricos para Engenharia, Steven C. Chapa e Raymond P. Canale, Ed. McGraw-Hill, 5 a Ed., [3] Cálculo Numérico - Aspectos Teóricos e Computacionais, Márcia A. G. Ruggiero e Vera Lúcia da Rocha Lopes, Ed. Pearson Education, 2 a Ed., 1996.

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario EQUAÇÕES DIFERENCIAIS ORDINÁRIAS MÉTODO DE EULER MÉTODOS DE SÉRIES DE TAYLOR MÉTODOS DE RUNGE KUTTA EQUAÇÕES DIFERENCIAIS

Leia mais

Sistemas Lineares - Decomposição LU

Sistemas Lineares - Decomposição LU Sistemas Lineares - Decomposição LU Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES,

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

O Método de Diferenças Finitas

O Método de Diferenças Finitas 1-16 O Método de Diferenças Finitas Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES,

Leia mais

Aproximações e Erros

Aproximações e Erros Aproximações e Erros Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando métodos

Leia mais

Sistemas Lineares - Eliminação de Gauss

Sistemas Lineares - Eliminação de Gauss 1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Introdução Método de Diferenças: { w0 = α w i+1 = w i + h φ(t i, w i ),

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

Métodos de Runge-Kutta

Métodos de Runge-Kutta Solução numérica de Equações Diferenciais Ordinárias: Métodos de Runge-Kutta Marina Andretta/Franklina Toledo ICMC-USP 31 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D.

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

y(x n+1 ) = y(x n ) + hy (x n ) + h2 q! y (q) (x n )

y(x n+1 ) = y(x n ) + hy (x n ) + h2 q! y (q) (x n ) 2. Método de Taylor de ordem q Seja y(x) a solução exata do p.v.i., contínua e suficientemente derivável em [a, b]. A expansão em série de Taylor para y(x n + h) em torno do ponto x n é dada por: y(x n+1

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Leia mais

Solução Numérica de EDOs

Solução Numérica de EDOs Solução Numérica de EDOs Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 10 de Novembro, 2010 Introdução Equação Diferencial de 1a. Ordem y = f (x, y) f : função real dada, de duas variáveis

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 16 Integração Numérica Integração Numérica Cálculo Numérico 3/41 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

Diferenciais Ordinárias

Diferenciais Ordinárias Capítulo 1 Solução Numérica de Equações Diferenciais Ordinárias 1.1 Introdução Muitos problemas encontrados em engenharia e outras ciências podem ser formulados em termos de equações diferenciais. Por

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Equações diferenciais ordinárias Laura Goulart UESB 9 de Abril de 2016 Laura Goulart (UESB) Equações diferenciais ordinárias 9 de Abril de 2016 1 / 13 Muitos problemas encontrados em engenharia e outras

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EDOs de primeira ordem Problema de Valor Inicial (PVI) dy dx = f x, y y x 0 = y 0 Método de passo simples valor novo = valor antigo + inclinação passo Método de Euler y

Leia mais

Erros nas aproximações numéricas

Erros nas aproximações numéricas Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR emilio@ufpr.br 4 de março de 2013 Resumo: O objetivo

Leia mais

Capítulo 7 - Equações Diferenciais Ordinárias

Capítulo 7 - Equações Diferenciais Ordinárias Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Introdução à Resolução de Equações Diferenciais Ordinárias

Leia mais

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma:

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: Edgard Jamhour Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: n f x, x 0 = n=0 a n x x 0 f(x,x 0 ) = a 0 + a 1 (x-x 0 ) + a 2 (x-x

Leia mais

Modelagem Numérica. Andréa Maria Pedrosa Valli

Modelagem Numérica. Andréa Maria Pedrosa Valli Modelagem Numérica Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-26 Técnicas

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Numérico 3/55 Introdução Em geral, experimentos geram uma gama de dados que devem

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 2004/2005 Equações Diferenciais Ordinárias PROBLEMAS 1 Considere a equação diferencial dy dx = y(x2 1) com y(0) = 1 e x [0,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 11 Sistemas de Equações não-lineares SISTEMAS NÃO-LINEARES Cálculo Numérico 3/39 SISTEMA NÃO LINEAR Vamos considerar o problema

Leia mais

Ordinárias. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.

Ordinárias. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. Resolução Numérica de Equações Diferenciais Ordinárias Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

Métodos Numéricos para EDO S

Métodos Numéricos para EDO S Métodos Numéricos para EDO S 9.1 Introdução O estudo das equações diferenciais foi motivado inicialmente por problemas da física, ou seja problemas de mecânica, eletricidade termodinâmica, magnetismo etc.

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Aula 10. Integração Numérica

Aula 10. Integração Numérica CÁLCULO NUMÉRICO Aula Integração Numérica Integração Numérica Cálculo Numérico 3/4 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 4- Diferenciação numérica: - Fórmulas de diferença avançada e recuada

Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 4- Diferenciação numérica: - Fórmulas de diferença avançada e recuada Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 4- Diferenciação numérica: - Fórmulas de diferença avançada e recuada - Fórmula de três pontos - Fórmula de cinco pontos Aula 4

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Diferenciação Numérica Diogo Pineiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenaria de Computação e Automação ttp://www.dca.ufrn.br/ diogo

Leia mais

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE

Leia mais

CÁLCULO NUMÉRICO PLANO DE ENSINO 5º P. ENG. BIOMÉDICA/CIVIL Prof. Rodrigo Baleeiro Silva

CÁLCULO NUMÉRICO PLANO DE ENSINO 5º P. ENG. BIOMÉDICA/CIVIL Prof. Rodrigo Baleeiro Silva CÁLCULO NUMÉRICO 5º P. ENG. BIOMÉDICA/CIVIL 2016 Prof. Rodrigo Baleeiro Silva APRESENTAÇÃO Rodrigo Baleeiro Silva; Mestrando em Modelagem computaciol e sistemas(unimontes); Pós Graduado em Docência em

Leia mais

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Modelagem Computacional. Aula 5 2

Modelagem Computacional. Aula 5 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 5 2 Prof. Thiago Alves de Queiroz 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Integração Numérica 1. Considere o integral: 1 0 e x2 dx a) Determine o seu valor aproximado, considerando 4 subintervalos e utilizando: i. A regra dos

Leia mais

Lista de Exercícios 3 e soluções

Lista de Exercícios 3 e soluções Lista de Exercícios 3 e soluções MAT 069 - Cálculo Numérico Prof Dagoberto Adriano Rizzotto Justo 2 de Dezembro de 2006 Calcule a integral (a) A f dx = 0 (0) = = (b) A f 0 dx = 0 (0) = = 0 (c) A ( 2 f

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

Capítulo 3 - Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias

Capítulo 3 - Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Capítulo 3 - Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Métodos Numéricos Código: INF065 Carga horária: 67 horas Semestre previsto: 3º Pré-requisito(s):

Leia mais

Potenciais e campos. Métodos computacionais II

Potenciais e campos. Métodos computacionais II Potenciais e campos Métodos computacionais II Potencial elétrico Potencial elétrico Encontrando o potencial elétrico e o campo elétrico para em uma região do espaço: Potencial elétrico Encontrando o potencial

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

dn dt = kn mudança de variável dn N = kdt dn N = k dt Solução: ln (N)=-kt + C N 0 =e k 0 e C t=0 resolvendo a equação diferencial tem-se N t =N 0 e kt

dn dt = kn mudança de variável dn N = kdt dn N = k dt Solução: ln (N)=-kt + C N 0 =e k 0 e C t=0 resolvendo a equação diferencial tem-se N t =N 0 e kt 1 CAPITULO 6 6.0 SOLUÇÕES NUMÉRICAS DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Conforme VILATTE ( 2001, p.1), Equação diferencial é qualquer relação entre uma função e suas derivadas. As equações diferenciais

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO

Leia mais

Capítulo 5 - Integração e Diferenciação Numérica

Capítulo 5 - Integração e Diferenciação Numérica Capítulo 5 - Integração e Diferenciação Numérica Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa

Leia mais

Cálculo Numérico - Splines

Cálculo Numérico - Splines Cálculo Numérico - Splines Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Splines 1/27 Exemplo 1 Considere f (x) = 1 1+25x 2 tabelada no

Leia mais

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yara de Souza Tadano yaratadano@utfpr.edu.br 03/2014 Aula 1 Yara de Souza Tadano Email: yaratadano@utfpr.edu.br Página Pessoal: paginapessoal.utfpr.edu.br/yaratadano Cálculo

Leia mais

CÁLCULO NUMÉRICO UFRJ Lista 0: revisão de cálculo e álgebra linear

CÁLCULO NUMÉRICO UFRJ Lista 0: revisão de cálculo e álgebra linear CÁLCULO NUMÉRICO UFRJ 2016 LISTAS DE EXERCÍCIOS Lista 0: revisão de cálculo e álgebra linear 1. Ao longo desta curso usaremos frequentemente as seguintes propriedades de uma função contínua g definida

Leia mais

Aula 12. Interpolação Parte 1

Aula 12. Interpolação Parte 1 CÁLCULO NUMÉRICO Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura: Temperatura ( o C) 20 25 30 35 40 Densidade (g/m

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Revisão de Cálculo Diferencial e Integral

Revisão de Cálculo Diferencial e Integral Cálculo Numérico Diferencial e Integral Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Limite, continuidade e derivadas Uma das noções mais básicas e importantes

Leia mais

Aula: Equações diferenciais lineares de ordem superior

Aula: Equações diferenciais lineares de ordem superior Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx

Leia mais

2.1 Equações diferenciais ordinárias da primeira ordem

2.1 Equações diferenciais ordinárias da primeira ordem 2.1-1 2.1 Equações diferenciais ordinárias da primeira ordem A solução de uma equação diferencial é uma função que satisfaz a equação diferencial sobre algum intervalo aberto. Uma equação diferencial ordinária

Leia mais

Cálculo Numérico. Resumo e Exercícios P2

Cálculo Numérico. Resumo e Exercícios P2 Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Introdução ao Curso de Algoritmos Numéricos I

Introdução ao Curso de Algoritmos Numéricos I Introdução ao Curso de Algoritmos Numéricos I Lucia Catabriga luciac@inf.ufes.br August 29, 2017 Lucia Catabriga (UFES) ANI/DI August 29, 2017 1 / 31 Computação Científica O que é Computação Científica

Leia mais

O que é o Cálculo Numérico? 05/06/13. Prof. Dr. Alexandre Passito

O que é o Cálculo Numérico? 05/06/13. Prof. Dr. Alexandre Passito Prof. Dr. Alexandre Passito passito@icomp.ufam.edu.br Parte do material cedido pelos Professores Fabíola Guerra/ Arilo DCC/UFAM. 1 } Quem sou eu? Alexandre Passito de Queiroz Doutor em Informática passito@icomp.ufam.edu.br

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli 1-27 Ajuste de Curvas Lucia Catabriga e Adréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempeho (LCAD) Departameto de Iformática Uiversidade Federal do Espírito Sato - UFES, Vitória, ES,

Leia mais

Sistemas Lineares. Métodos Iterativos Estacionários

Sistemas Lineares. Métodos Iterativos Estacionários -58 Sistemas Lineares Estacionários Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo -

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Computação Fundamentos IV. Clarimar J. Coelho

Pontifícia Universidade Católica de Goiás Departamento de Computação Fundamentos IV. Clarimar J. Coelho Pontifícia Universidade Católica de Goiás Departamento de Computação Fundamentos IV Clarimar J. Coelho Essência do cálculo Conceitos matemáticos relacionados com a diferenciação e a integração Diferenciar

Leia mais

PLANO DE ENSINO DA DISCIPLINA

PLANO DE ENSINO DA DISCIPLINA PLANO DE ENSINO DA DISCIPLINA Docente: FABIO LUIS BACCARIN Telefones: (43) 3422-0725 / 9116-4048 E-mail: fbaccarin@fecea.br Nome da Disciplina: Cálculo Diferencial e Integral II Curso: Licenciatura em

Leia mais

PUC-GOIÁS - Departamento de Computação

PUC-GOIÁS - Departamento de Computação PUC-GOIÁS - Departamento de Computação Fundamentos IV/Enfase Clarimar J. Coelho Goiânia, 28/05/2014 O que é interpolação polinomial? Ideia básica Permite construir um novo conjunto de dados a partir de

Leia mais

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras MATEMÁTICA COMPUTACIONAL Cap.. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial Filipe J. Romeiras Departamento de Matemática Instituto Superior Técnico Apontamentos das

Leia mais

Um polinômio p de grau, com coeficientes reais na variável é dado por:

Um polinômio p de grau, com coeficientes reais na variável é dado por: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 3- Aproximação polinomial de Funções - Polinômios de Taylor Interpolação - Polinômios de Lagrange Aula 3 - Aproximação polinomial

Leia mais

EDO - PVI por método de Euler

EDO - PVI por método de Euler EDO - PVI por método de Euler André Scarmagnani 1, Isaac da Silva 1, Valmei A. Junior 1 1 UDC ANGLO - Faculdade Anglo Americano (FAA) Av.Paraná, 5661, CEP: 85868-030 - Foz do Iguaçu - PR - Brasil andre-scar@hotmail.com,

Leia mais

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 1 Sumário 1 Equações diferenciais ordinárias Métodos de Euler Exemplo de EDO linear: Método implícito Métodos multi-passo lineares Fórmulas de Adams-Bashforth Fórmulas de Adams-Moulton Fórmulas do tipo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

3 Equações diferenciais

3 Equações diferenciais 3 Equações diferenciais 3. Forma geral das equações diferenciais Uma equação diferencial ordinária ou de forma abreviada, EDO de ordem n é uma relação entre uma função y(x) e as suas derivadas y, y,...,

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste)

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste) Exame (º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de 6, h-6h (º Teste) ) [] a) Determine p, o polinómio de menor grau tal que p() = a, p() = b, p () = p () =

Leia mais

Métodos Previsor-Corretor

Métodos Previsor-Corretor Solução numérica de Equações Diferenciais Ordinárias: Métodos Previsor-Corretor Marina Andretta/Franklina Toledo ICMC-USP 7 de novembro de 2013 Baseado no livro Cálculo Numérico, de S. Arenales e A. Darezzo.

Leia mais

3 Revisão da literatura II: Fluxo em meios porosos

3 Revisão da literatura II: Fluxo em meios porosos 46 3 Revisão da literatura II: Fluxo em meios porosos 3.1. Meio poroso saturado e parcialmente saturado O solo na sua estrutura apresenta duas zonas em função do seu conteúdo de umidade, zona saturada

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais