Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste)

Tamanho: px
Começar a partir da página:

Download "Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste)"

Transcrição

1 Exame (º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de 6, h-6h (º Teste) ) [] a) Determine p, o polinómio de menor grau tal que p() = a, p() = b, p () = p () = c, b) Indique condições em f C 6 [, ] para que o p anterior verique f p f (6) 6! 6 ) [3] Estabeleça o algoritmo para o cálculo do spline quadrático interpolador s na lista de pontos {(x, f ),, (x n, f n )}, e com condição na derivada s (x ) = f[x, x ], mostrando em particular que f[x k, x k+ ] = s k +s k+ 3) [] Explicite n k= k v k, em função de V n = n k= v k 4) [3] Pretende-se uma fórmula de diferenciação numérica para aproximar f (z) a) Para obter essa fórmula, use os nós x = z h, x = z, x = z + h, x 3 = z + h b) Estabeleça a expressão do erro, incluindo erros de arredondamento, e discuta a sua in- uência Auxiliar E(x) = f ( α +m+) (ξ x) ( α +m+)! m k= (x x k) α k+

2 Exame (º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de 6, 6h-7h3 (º Teste) ) [3] Determine D = ( 4 min (x ) ( x a bx ) ) dx + max a,b,c,d R x [,4] x c dx ) [] Considere o método implícito de passo duplo: y k+ = y k + αhf k + βh (f(t k+, y k ) + f(t k, y k+ )) Com uma inicialização apropriada, discuta em função de α, β R, a convergência até ordem 3) [] No intervalo [, ] considere a equação diferencial ordinária u (t) = v(t) + p(t)u (t) + q(t)u(t), a) Sendo u() = A, u () =, com p = q = v =, indique a iteração do ponto xo a executar aplicando o método de Adams-Moulton de passo duplo b) Sendo u() = A, u() = B, aplicando um método de diferenças nitas, centradas de ª ordem, apresente o sistema linear que se obtém, onde a matriz M é tridiagonal da forma M kk = q k h, M k,k+ = p k h, M k,k = + p k h 4) [] Considere o cálculo dos valores próprios da matriz M denida em 3b) com h > a) Admitindo que h (suf pequeno), localize os valores próprios de M, pelo T Gerschgorin, e comente a invertibilidade b) Para M matriz 3 3, com h =, aplique duas iterações do Método das Potências, iniciando com (,, ), e apresente a aproximação do maior valor próprio Auxiliar y k+ = y k + h f k+ + h 3 f k h f k (Adams Moulton passo duplo)

3 χ-resolução: a) Construímos a tabela de diferenças generalizadas para a interpolação de Hermite desconhecendo p () = A e também p () = B, que podemos arbitrar x : p(x) : a a a b b b A A b a B B c/ b a A B b + a c/ exigindo que c/ = b a A, e que c/ = B b + a, obtemos A e B de forma a que as diferenças divididas seguintes sejam nulas Assim, resulta A = b a c/, B = b a + c/ e pela F Newton obtemos p(x) = a + Ax + c x = a + (b a c )x + c x b) No processo anterior denimos uma interpolação de Hermite cujo erro é dado por f(x) p(x) = f[,,,,,, x](x ) 3 (x ) 3 = f (6) (ξ) (x(x )) 3 com ξ [, ] 6! ou seja, obtemos f p f (6) 6! max x [,] x(x ) 3 f (6) ( ) 3 6! 4, pois x(x ) 4 em [, ] Finalmente a função é interpolada pelo polinómio f se vericar f() = a, f() = b, f () = f () = c, e além disso sendo A = f (), B = f (), devem vericar-se as condições A = b a c/ f () = f() f() f ()/, B = b a + c/ f () = f() f() + f ()/ ) [ do º Trabalho] Começamos pela interpolação como spline linear da derivada, assegurando ser C Assim, se x [x k, x k+ ] temos s (x) = s (x k ) + s [x k, x k+ ](x x k ), e primitivando obtemos s(x) = s(x k ) + s (x k )(x x k ) + s [x k, x k+ ](x x k ), () que verica a interpolação se for vericado (denindo h k = x k+ x k ) f k+ = f(x k+ ) = s(x k+ ) = f(x k ) + s (x k )h k + s [x k, x k+ ]h k = f k + s kh k + s k+ s k h k Portanto, obtemos f k+ f k h k = s k + s k+ s k, ou f[x k, x k+ ] = s k+ +s k, com uma recursividade s k+ = f[x k, x k+ ] s k que dene todos os s k iniciando com s = f[x, x ] A partir daí usamos a fórmula () 3) Calculamos usando a soma por partes n k v k = [ k ] k=n v k k= k= n n (k + ) v k+ = n v n (k + ) v k+ k= e por outro lado, n k= (k+) v k+ = [(k + )v k+ ] k=n k= n k= v k+ = (n+)v n+ v (V n+ v v ) Ou seja, k= 3

4 k v k = n (v n+ v n ) (n + )v n+ + V n+ v v n k= 4a) Pela F Newton, = (n ) v n+ + ( n )v n + V n v v p 3 (x) = f(x ) + f[x, x ](x x ) + f[x, x, x ](x x )(x x ) + f[x, x, x, x 3 ](x x )(x x )(x x ), e a aproximação de f (z) é p 3 (z) = 6f[x, x, x, x 3 ] Como os nós são igualmente espaçados, podemos usar diferenças progressivas p 3 (z) = 6f[x, x, x, x 3 ] = 6 3 f 3!h 3 = (S I)3 f h 3 = f 3 3f + 3f f h 3, ou seja p 3 (z) = h 3 (f(z + h) 3f(z + h) + 3f(z) f(z h)) = Q(f) 4b) O erro de interpolação dá f(x) p 3 (x) = f[z h, z, z + h, z + h, x] (x z + h)(x z)(x z h)(x z h) = F (x)e(x) }{{}}{{} F (x) W (x) Assim, f (x) p 3 (x) = (F (x)w (x) + F (x)w (x)) = (F (x)w (x) + F (x)w (x) + F (x)w (x)) = F (x)w (x) + 3F (x)w (x) + 3F (x)w (x) + F (x)w (x) notando que F (x) = f (4) (ξ )/4!, F (x) = f () (ξ )/!, F (x) = f (6) (ξ 3 )/6!, F (x) = f (7) (ξ 3 )/7!, e como z = x obtemos W (z) =, e ainda: concluindo-se que W (x) = (x x )(x x )(x x ) + (x x )(x x )(x x 3 ) +(x x )(x x )(x x 3 ) + (x x )(x x )(x x 3 ) = W (z) = + + (z x )(z x )(z x 3 ) + = h( h)( h) = h 3 W (x) = (x x )(x x ) + (x x )(x x ) + (x x )(x x ) +(x x )(x x 3 ) + (x x )(x x 3 ) + (x x )(x x 3 ) = W (z) = h + 4h + + 4h = h W (x) = 6(x x ) + 6(x x ) + 6(x x ) + 6(x x 3 ) = W (z) = 6( h) + + 6(h) + 6( h) = h f (z) p 3 (z) = + 3 f (6) (ξ 3 ) 6! = f (6) (ξ 3 ) (h 3 ) + 3 f () (ξ )! ( h ) + 3 f (4) (ξ ) ( h) 4! h 3 f () (ξ ) h 3 f (4) (ξ )h = O(h) A inuência dos erros de arredondamento será dada pelos ε k = f k f k, com ε k ɛ Q(f) Q( f) f 3 3f + 3f f = h 3 f 3 3 f + 3 f f h 3 = ε 3 3ε + 3ε ε h 3 8ɛ h 3 4

5 O erro total é assim A(f) Q( f) O(h) + O( ɛ h ), e a fórmula só é ecaz se 3 Para ɛ = 6, corresponde a escolher h 4 ɛ h 3 = O(h), ou seja, ɛ = O(h 4 ) ) Começamos por notar que o mínimo da soma positiva é a soma dos mínimos, e vemos o º termo, considerando x = (y + ) D = min max a,b,c,d R x [,4] x c dx = min max 4(y + c,d R y [,] ) c d(y + ) como em [, ] os polinómios mónicos P são minimizados pelo de Chebyshev com valor mínimo logo D = 4 min max (y + c,d R y [,] ) c/4 d(y + )/ = 4/ = Por outro lado, usando x = y + obtemos ( 4 D = min a,b,c,d R = min A,B R ( (x ) ( x a bx ) dx ) = min a,b R y ( y A By ) ) dy ( y ( (y + ) a b(y + ) ) ) dy com A = 4 a b; B = b =, Escrevemos agora o sistema normal para u, v w = y u(y)v(y)dy, notando dar zero, se o integrando for impar [, w = ] [ y = 6 ] [, 3, y w = A y, y w = y, y w = y4 = 64 = = ] w y4 = 64 B y, y = w Portanto, A = 64 / 6 D = 3 =, B =, e obtemos ( y y ) dy = ( y 6 4 y ) y dy = = 8 = D = 78 7 ) A estabilidade tem-se porque a equação às diferenças associada é y k+ = y k com eq característica r =, em que as duas raízes r = ± são simples e r = ± = Basta agora avaliar a ordem de consistência, para obtermos a mesma ordem de convergência, ou seja E = y(t k+) y(t k ) h =y (t k ) {}}{ α f(t k, y(t k )) β(f(t k+, y(t k )) + f(t k, y(t k+ ))) = O(h r ) e como y(t k± ) = y(t k )±hy (t k )+ h y (t k )+O(h 3 ) concluímos que y(t k+) y(t k ) h usamos agora a F Taylor a duas variáveis E = ( α)y (t k ) + O(h ) β(f(t k+, y(t k )) + f(t k, y(t k+ ))) = y (t k )+O(h ) Portanto =y (t k ) = hy (t {}}{ f(t k±, y(t k )) = f(t k, y(t k )) ±h f k )+O(h ) {}}{ t (t k, y(t k )) + ( y(t k ) y(t k )) f y (t k, y(t k )) + O(h ) ( ) concluindo E = ( α)y (t k )+O(h ) β y (t k ) + + O(h ) f y (t k, y(t k )) + O(h ) = ( α β)y (t k )+O(h ) e haverá pelo menos ª ordem de convergência, se = α + β (inicializando com um método unipasso de ordem ), não havendo convergência noutro caso

6 3a) Consideramos y = u, y = u, para transformar na forma vectorial y (t) = [ ] [ y (t) = y ] [ y (t) = + y + y aplicando o método de Adams-Moulton de passo duplo, temos ] [ y(t) + ] = f(t, y(t)) y [k+] = y [k] + h f(t k+, y [k+] ) + h 3 f(t k, y [k] ) h f(t k, y [k ] ) Iniciando com x [] = y [k], dene-se a iteração x [m+] = g(x [m] ), onde g(x) = y [k] + h f(t k+, x) + h 3 f(t k, y [k] ) h f(t k, y [k ] ) = y [k] + h [ ] ( x + 4y [k] 3y [k ]) [ ] + h 3b) Aplicando diferenças centradas de ordem, nos pontos t k = k/n, com u k = u(t k ) u (t k ) = u k+ u k h + O(h ); u (t k ) = u k+ u k + u k h + O(h ) Assim, para cada t k para k =,, N : u k+ u k +u k h = v k + p k u k+ u k h + q k u k, ou seja, ( p k h)u k+ ( + h q k )u k + ( + p k h)u k = v k, obtendo-se o sistema linear: h q p h u h v + p h h q = pn h + p N h h q N u N h v N 4a) Pelo T Gerschgorin, os valores próprios estão na reunião das bolas ( + p h)a ( p N h)b N B( q h, p h ) k= B( q k h, p k h + + p k h ) B( q N h, + p N h ) e quando h isto corresponde a B( + O(h ), + O(h)), que tende no limite para B(, ), podendo não ser invertível Mas, se q > e p = podemos concluir que as bolas B( q k h, ) nunca intersectam a origem, concluindo a invertibilidade 4b) A matriz é M = com v () = (,, ) resulta v () = Mv () = [ ], e v () = Mv () = [ 4 ] Portanto, u () = + v() v () = [ 8 ], e assim λ () = (Mu () ) = 8, é aproximação do valor próprio dominante 6

2º Exame (1ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 27 de Janeiro de 2015, 15h00-16h15-17h30

2º Exame (1ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 27 de Janeiro de 2015, 15h00-16h15-17h30 º Exame (ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 7 de Janeiro de 5, 5h-h5-7h3.) [.] Pretende-se f(x) = p n (x)/x (onde p n é um polinómio) que verique a interpolação a)

Leia mais

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00 Exame de Análise Numérica, ª Parte/ º Teste (LMAC, MMA) Instituto Superior Técnico, 0 de Janeiro de 07, 8h0-9h5-h00.) [.0] Considere f(x) = x 0 g(t)dt que verica f() = g() = 0, e ainda f() = g (). a) Determine

Leia mais

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste)

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste) Exame/Teste () de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de, 8h-h (º Teste) ) [] Seja f(x) = e x a) Determine um p n polinómio interpolador de f nos nós {, }, tal que

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional MEEC 1 ạ Parte/ 1 ọ Teste 019/01/ 18h30 (+1h30) Apresente todos os cálculos e justifique convenientemente as respostas. 1. Nas duas alíneas seguintes apresente os resultados num

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Instituto de Matemática - UFRGS - Mat Cálculo Numérico

Instituto de Matemática - UFRGS - Mat Cálculo Numérico Primeira Verificação Questão 1. (2. pt) Sendo x =.4334 e y = 156.41, encontre fl(x + y) em F L(B, p, L, U) com dígito guarda, onde B = 1, p = 5, L = 6, U = 7. Problema: Numa máquina digital onde as operações

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ] SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Integração Numérica 1. Considere o integral: 1 0 e x2 dx a) Determine o seu valor aproximado, considerando 4 subintervalos e utilizando: i. A regra dos

Leia mais

Lista de Exercícios 3 e soluções

Lista de Exercícios 3 e soluções Lista de Exercícios 3 e soluções MAT 069 - Cálculo Numérico Prof Dagoberto Adriano Rizzotto Justo 2 de Dezembro de 2006 Calcule a integral (a) A f dx = 0 (0) = = (b) A f 0 dx = 0 (0) = = 0 (c) A ( 2 f

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados

Leia mais

Cálculo Numérico. Resumo e Exercícios P2

Cálculo Numérico. Resumo e Exercícios P2 Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003 INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo 00/003 ANÁLISE NUMÉRICA Formulário 1. Representação de Números e Teoria

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Interpolação polinomial

Interpolação polinomial Cálculo Numérico Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343 1970 94, 508583 1980

Leia mais

Exercícios de Mínimos Quadrados

Exercícios de Mínimos Quadrados INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA Exercícios de Mínimos Quadrados 1 Provar que a matriz de mínimos quadrados é denida positiva, isto é,

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP1]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Matemática Computacional. Exercícios. Teoria dos erros

Matemática Computacional. Exercícios. Teoria dos erros Matemática Computacional Exercícios 1 o Semestre 2014/15 Teoria dos erros Nos exercícios deste capítulo os números são representados em base decimal. 1. Represente x em ponto flutuante com 4 dígitos e

Leia mais

Resolução do Exame Tipo

Resolução do Exame Tipo Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),

Leia mais

Laboratório de Simulação Matemática. Parte 3 2

Laboratório de Simulação Matemática. Parte 3 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 3 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

Lista de exercícios de MAT / I

Lista de exercícios de MAT / I 1 Lista de exercícios de MAT 271-29 / I 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Introdução ao Cálculo Numérico Lista de Exercícios 1. (x x k )ω (x k ) = 1.

Introdução ao Cálculo Numérico Lista de Exercícios 1. (x x k )ω (x k ) = 1. Introdução ao Cálculo Numérico 2005 Lista de Exercícios 1 Problema 1. Seja Q π n. Provar que L n (Q; x) Q(x), quaisquer que sejam os nos distintos x 0, x 1,..., x n. Problema 2. Se n N e x 0, x 1,...,

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

Modelagem Computacional. Aula 5 2

Modelagem Computacional. Aula 5 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 5 2 Prof. Thiago Alves de Queiroz 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

Análise Numérica (Exercícios)

Análise Numérica (Exercícios) Análise Numérica (Exercícios) Carlos J S Alves Instituto Superior Técnico Versão 0 (Dezembro de 0 - compilação) LMAC, MMA, MEIC Conteúdo Formulário Geral 4 Interpolação de Lagrange 4 Regularização e TFD

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário Matemática Computacional Ficha 5 (Capítulo 5) Integração numérica 1. Revisão matéria/formulário A técnica de aproximar o integral de f pelo integral do seu polinómio interpolador passando num conjunto

Leia mais

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 1 Sumário 1 Equações diferenciais ordinárias Métodos de Euler Exemplo de EDO linear: Método implícito Métodos multi-passo lineares Fórmulas de Adams-Bashforth Fórmulas de Adams-Moulton Fórmulas do tipo

Leia mais

de Interpolação Polinomial

de Interpolação Polinomial Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

Modelagem Computacional. Parte 3 2

Modelagem Computacional. Parte 3 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 3 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

Capı tulo 5: Integrac a o Nume rica

Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Sumário Quadratura de Fórmula para dois pontos Fórmula geral Mudança de intervalo Polinômios de Legendre Fórmula de Interpretação

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Introdução Método de Diferenças: { w0 = α w i+1 = w i + h φ(t i, w i ),

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 2 o semestre de 2005/2006 - LEE, LEGI e LERCI Programação em Mathematica 1. Calcule no Mathematica e comente os resultados: (a) 7; (b) 7.0; (c) 14406; (d) cos π 6

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Método de Newton. Podemos escrever este problema na forma vetorial denindo o vetor x = [x 1, x 2,..., x n ] T e a função vetorial

Método de Newton. Podemos escrever este problema na forma vetorial denindo o vetor x = [x 1, x 2,..., x n ] T e a função vetorial Método de Newton 1 Introdução O método de Newton aplicado a encontrar a raiz x da função y = fx) estudado na primeira área de nossa disciplina consiste em um processso iterativo Em cada passo deste processo,

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo III Resolução Numérica de Sistemas de Equações Normas, Erros e Condicionamento.

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

MAP Exercício programa Data de entrega: 21/11/2012

MAP Exercício programa Data de entrega: 21/11/2012 Introdução MAP-2220 - Exercício programa 2-2012 Data de entrega: 21/11/2012 Interpolação Baricêntrica e Métodos de Colocação Este exercício programa tem como objetivo uma implementação da fórmula baricêntrica

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico Integração Numérica Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 27 de Outubro, 2010 e 8 de Novembro, 2010 Introdução Nas últimas aulas: MMQ: aproximar função y = f (x) por uma função F(x),

Leia mais

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras MATEMÁTICA COMPUTACIONAL Cap.. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial Filipe J. Romeiras Departamento de Matemática Instituto Superior Técnico Apontamentos das

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Testes Formativos de Computação Numérica e Simbólica

Testes Formativos de Computação Numérica e Simbólica Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Parte II. Análise funcional II

Parte II. Análise funcional II Parte II Análise funcional II 12 Capítulo 5 Produto de Operadores. Operadores inversos Neste capítulo vamos introduzir a noção de produto de operadores assim como a de operador invertível. Para tal precisamos

Leia mais

Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial

Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial.. Departamento de Matemática Universidade da Beira Interior Matemática Computacional - Capítulo 6 Questão 6.1 Questão

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

Algoritmos Numéricos I. Lucia Catabriga 1

Algoritmos Numéricos I. Lucia Catabriga 1 Algoritmos Numéricos I Problema de Valor no Contorno (PVC) Método das Diferenças Finitas Lucia Catabriga 1 1 DI/UFES - Brazil Novembro 2014 Introdução Introdução A solução de Problemas de Valor no Contorno

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Capítulo 5 - Optimização Não-Linear

Capítulo 5 - Optimização Não-Linear Capítulo 5 - Optimização Não-Linear balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais