Algoritmos Numéricos I. Lucia Catabriga 1

Tamanho: px
Começar a partir da página:

Download "Algoritmos Numéricos I. Lucia Catabriga 1"

Transcrição

1 Algoritmos Numéricos I Problema de Valor no Contorno (PVC) Método das Diferenças Finitas Lucia Catabriga 1 1 DI/UFES - Brazil Novembro 2014

2 Introdução Introdução A solução de Problemas de Valor no Contorno (PVC) pelo método das Diferenças Finitas consiste em: Discretizar o domínio; Aplicar aproximações de diferenças finitas nas derivadas da equação diferencial; Aplicar condições de contorno

3 Problema de Valor no Contorno - 1D PVC - 1D Dadas as funções p(x), q(x) e r(x) contínuas em (a, b), encontrar u(x) tal que d 2 u dx 2 + p(x)du + q(x)u = r(x) dx a com condições de contorno do tipo: < x < b α a du(a) dx u(a) = u a u(b) = u b ou du(a) dx = σ a du(b) dx = σ b ou + β a u(a) = γ a α b du(b) dx + β b u(b) = γ b onde u a, u b, σ a, σ b, α a, β a, α b, β b, γ a e γ b são constantes conhecidas do problema

4 Problema de Valor no Contorno - 1D Discretização do Domínio Discretização do Domínio h = (b a) (n 1) x i = a + (i 1)h, sendo a = x 1, b = x n e n número de incógnitas a = x 1 < x 2 < < x i 1 < x i < x i+1 < < x n = b Objetivo: obter aproximações u i u(x i ) i = 1,, n

5 Problema de Valor no Contorno - 1D Aproximação das derivadas por Diferenças finitas Diferenças finitas u (x i ) u i+1 u i, h θ(h) (Diferença Adiantada) u (x i ) u i u i 1, h θ(h) (Diferença Atrasada) u (x i ) u i+1 u i 1, 2h θ(h 2 ) (Diferença Central) u (x i ) u i 1 2u i + u i+1 h 2, θ(h 2 )

6 Problema de Valor no Contorno - 1D Aproximação das derivadas por Diferenças finitas Aplicando as Diferenças finitas na equação diferencial onde: ( ui 1 2u i + u i+1 h 2 b i u i 1 + a i u i + c i u i+1 = r i ) ( ) ui+1 u i 1 + p i + q i u i = r i 2h i = 1,, n a i = q i ( 2/h 2) b i = ( 1/h 2) p i /(2h) c i = ( 1/h 2) + p i /(2h) a 1 c 1 u 1 r 1 b 2 a 2 c 2 u 2 r 2 b i a i c i u i = r i b n 1 a n 1 c n 1 b n a n Matriz Tridiagonal!!! u n 1 u n r n 1 r n

7 Problema de Valor no Contorno - 1D Condições de Contorno Valor Prescrito A função u é conhecida em x 1 = a e/ou x n = b, ou seja, u 1 = u(x 1 ) = u a e/ou u n = u(x n ) = u b Ação: a 1 ā 1 = 1, c 1 c 1 = 0, r 1 r 1 = u a e/ou a n ā n = 1, b 1 b 1 = 0, r n r n = u b Supondo valor prescrito em x 1 = a e x n = b: 1 0 b 2 a 2 c 2 b i a i c i b n 1 a n 1 c n u 1 u 2 u i u n 1 u n = u a r 2 r i r n 1 u b

8 Problema de Valor no Contorno - 1D Condições de Contorno Fluxo Prescrito du(a) A derivada de u é conhecida: dx = σ a ou du(b) dx = σ b A variável u i 1 (para i = 1) ou a variável u i+1 (para i = n) deve ser substituida na equação linear b i u i 1 + a i u i + c i u i+1 = r i Para isso, deve ser usado aproximações de diferenças finitas convenientes na condição de derivada conhecida no contorno: Para i = 1 u i u1 u0 h = σ a u 0 = u 1 hσ a Para i = n u n un+1 un h = σ b u n+1 = u n + hσ b Ação: a 1 ā 1 = a 1 + b 1, r 1 r 1 = r 1 + b 1 hσ a ou a n ā n = a n + c n, r n r n = r n c n hσ b Supondo valor prescrito em x 1 = a e derivada prescrita em x n = b: 1 0 b 2 a 2 c 2 b n 1 a n 1 c n 1 b n a n + c n u 1 u 2 u n 1 u n = u a r 2 r n 1 r n c nhσ b

9 Problema de Valor no Contorno - 1D Condições de Contorno Condição mista Um combinação linear entre u e u é conhecida: α a u (a) + β a u(a) = γ a ou α b u (b) + β b u(b) = γ b A variável u i 1 (para i = 1) ou a variável u i+1 (para i = n) deve ser substituida na equação linear b i u i 1 + a i u i + c i u i+1 = r i Para isso, deve ser usado aproximações de diferenças finitas convenientes na condição no contorno: u i = 1 α 1 u 0 a h u i = n α n+1 u n b + β a u 1 = γ a u 0 = (1 + hβ a /α a )u 1 hγ a /α a h + β b u n = γ b u n+1 = (1 hβ b /α b )u n + hγ b /α b Ação: a 1 ā 1 = a 1 + b 1 (1 + hβ a /α a ), r 1 r 1 = r 1 + b 1 hγ a /α a ou a n ā n = a n + c n (1 hβ b /α b ), r n r n = r n c n hγ b /α b Supondo condição mista em x 1 = a e valor prescrito em x n = b: ā 1 c 1 b 2 a 2 c 2 b n 1 a n 1 c n u 1 u 2 u n 1 u n r 1 r2 = r n 1 u b

10 PVC - 2D Supor k, β x (x, y), β y (x, y), γ(x, y), g(x, y), h(x, y) e f (x, y) conhecidas, encontrar u(x, y) em Ω R 2 tal que: k ( 2 ) u x u u y 2 + β x x + β u y + γu y = f em Ω u = g em Γ g k u n = h em Γ h Ω = Γ g + Γ h

11 Discretização do Domínio Discretização do Domínio Ω = {(x, y), a < x < b, c < y < d} h x h y = (b a) (n 1) x i = a + (i 1)h x, i = 1,, n = (d c) (m 1) y j = c + (j 1)h y, j = 1,, m Objetivo: obter aproximações u ij u(x i, y j ) i = 1,, n e j = 1,, m

12 Aproximação das derivadas por Diferenças finitas Diferenças finitas u x (x i, y j ) u i+1,j u i 1,j 2h x u y (x i, y j ) u i,j+1 u i,j 1 2h y 2 u x 2 (x i, y j ) u i 1,j 2u ij + u i+1,j hx 2 2 u y 2 (x i, y j ) u i,j 1 2u ij + u i,j+1 h 2 y = u I +1 u I 1 2h x, θ(h 2 x) = u I +n u I n 2h y θ(h 2 y ) = u I 1 2u I + u I +1 hx 2, θ(hx) 2 = u I n 2u I + u I +n hy 2, θ(hx) 2 I = 1, 2,, m n

13 Aproximação das derivadas por Diferenças finitas Aplicando as diferenças finitas na equação diferencial ( ui 1 2u I + u I +1 k h 2 x (β x ) I ( ui +1 u I 1 2h x + u ) I n 2u I + u I +n hy 2 ) ) ( ui +n u I n + (β y ) I 2h y γ I u I + + = f I d I u I n + b I u I 1 + a I u I + c I u I +1 + e I u I +n = f I a I = γ I + 2k ( 1/hx 2 + 1/hy 2 ) b I = ( k/h 2 x) (βx ) I /(2h x ) c I = ( k/h 2 x) + (βx ) I /(2h x ) d I = ( k/h 2 y ) (βy ) I /(2h y ) e I = ( k/h 2 y ) + (βy ) I /(2h y ) I = 1,, m n

14 Aproximação das derivadas por Diferenças finitas Sistema Resultante - Matriz Pentadiagonal a 1 c 1 e 1 b 2 a 2 c 2 e 2 d n+1 b n+1 a n+1 c n+1 e n+1 d I b I a I c I e I d N 1 b N 1 a N 1 c N 1 d N b N a N u 1 u 2 u n+1 u I f N 1 u N = f 1 f 2 f n+1 f Ị f N 1 f N

15 Condições de Contorno Valor Prescrito A função u é conhecida em I, ou seja, u I = u(x i, y j ) = g(x i, y j ) = g I Ação: a I ā I = 1, d I d I = 0, b I b I = 0, c I c I = 0, e I ē I = 0, e f I f I = g I Representando a linha I do sistema: n 1 I 1 I I + 1 I + n u n I u I 1 u I u I +1 u I +n = g I

16 Condições de Contorno Fluxo Prescrito A derivada de u é conhecida em I, ou seja, k du dn I = h(x i, y j ) = h I O domínio Ω é retangular, portanto a derivada com relação a normal exterior unitária (n) é definida por: du dn = du dy du dx du dy du dx para I = 1, 2,, n (1) para I = n, 2 n,, m n (2) para I = (m 1) n + 1, (m 1) n + 2,, m n(3) para I = 1, n + 1,, (m 1) n + 1 (4) Dependendo da posição I no contorno, uma das variáveis I n, I 1, I + 1, I + n estará fora do domínio, portanto a equação: d I u I n + b I u I 1 + a I u I + c I u I +1 + e I u I +n = f I deverá sofrer as modificações necessárias considerando uma das possibilidades descritas de (1)-(4)

17 Condições de Contorno - Fluxo Prescrito I = 1, 2,, n k du ( dn I = k du ) I u I u I n dy h y Substituindo na equação I : Ação: a I ā I = a I + d I, = h I u I n = u I + h y k h I b I u I 1 + (a I + d I )u I + c I u I +1 + e I u I +n = f I d I h y k h I d I d I = 0 e f I f I = f I d I h y k h I

18 Condições de Contorno - Fluxo Prescrito I = n, 2 n,, m n k du dn I = k Substituindo na equação I : Ação: a I ā I = a I + c I, ( ) du I u I +1 u I dx h x = h I u I +1 = u I h x k h I d I u I n + b I u I 1 + (a I + c I )u I + e I u I +n = f I + c I h x k h I c I c I = 0 e f I f I = f I + c I h x k h I

19 Condições de Contorno - Fluxo Prescrito I = (m 1) n + 1, (m 1) n + 2,, m n k du dn I = k Substituindo na equação I : Ação: a I ā I = a I + e I, ( ) du I u I +n u I dy h y = h I u I +n = u I h y k h I d I u I n + b I u I 1 + (a I + e I )u I + c I u I +1 = f I + e I h y k h I e I ē I = 0 e f I f I = f I + e I h y k h I

20 Condições de Contorno - Fluxo Prescrito I = 1, n + 1,, (m 1) n + 1 k du ( dn I = k du ) I u I u I 1 = h I u I 1 = u I + h x dx h x k h I Substituindo na equação I : Ação: a I ā I = a I + b I, d I u I n + (a I + b I )u I + c I u I +1 + e I u I +n = f I b I h x k h I b I b I = 0 e f I f I = f I b I h x k h I

Problema de Valor no Contorno (PVC) - 1D e 2D Método das Diferenças Finitas

Problema de Valor no Contorno (PVC) - 1D e 2D Método das Diferenças Finitas Problema de Valor no Contorno (PVC) - 1D e 2D Método das Diferenças Finitas Lucia Catabriga luciac@infufesbr June 14, 2017 Lucia Catabriga (UFES) ANII e CC DI/PPGI/PPGEM June 14, 2017 1 / 32 Introdução

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

Método de Diferenças Finitas

Método de Diferenças Finitas Método de Diferenças Finitas Câmpus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Aplicações Quase todos os problemas em ciências físicas e engenharia podem ser reduzidos a uma equação diferencial.

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

6 MÉTODO DE ELEMENTOS FINITOS - MEF

6 MÉTODO DE ELEMENTOS FINITOS - MEF 6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios

Leia mais

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste)

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste) Exame (º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de 6, h-6h (º Teste) ) [] a) Determine p, o polinómio de menor grau tal que p() = a, p() = b, p () = p () =

Leia mais

Solução Numérica de EDOs

Solução Numérica de EDOs Solução Numérica de EDOs Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 10 de Novembro, 2010 Introdução Equação Diferencial de 1a. Ordem y = f (x, y) f : função real dada, de duas variáveis

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

Colegiado do Mestrado em Informática - UFES/CT Disciplina: Elementos Finitos - 11/2

Colegiado do Mestrado em Informática - UFES/CT Disciplina: Elementos Finitos - 11/2 Colegiado do Mestrado em Informática - UFES/CT Disciplina: Elementos Finitos - 11/2 Implementação do Método dos Elementos Finitos Bidimensional Data de entrega: 10/12/2011 O objetivo deste trabalho é implementar

Leia mais

3 o Trabalho de Algoritmos Numéricos II /1 Algoritmos de Avanço no Tempo para problemas Parabólicos Data de entrega:

3 o Trabalho de Algoritmos Numéricos II /1 Algoritmos de Avanço no Tempo para problemas Parabólicos Data de entrega: 3 o Trabalho de Algoritmos Numéricos II - 2017/1 Algoritmos de Avanço no Tempo para problemas Parabólicos Data de entrega: Considerar os algoritmos explícito, implícito e Crank-Nicolson para resolver a

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

O Método de Diferenças Finitas

O Método de Diferenças Finitas 1-16 O Método de Diferenças Finitas Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES,

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

MAP Exercício programa Data de entrega: 21/11/2012

MAP Exercício programa Data de entrega: 21/11/2012 Introdução MAP-2220 - Exercício programa 2-2012 Data de entrega: 21/11/2012 Interpolação Baricêntrica e Métodos de Colocação Este exercício programa tem como objetivo uma implementação da fórmula baricêntrica

Leia mais

Data de entrega: 20 de junho de 2014

Data de entrega: 20 de junho de 2014 Universidade Federal do Espírito Santo DI/PPGEM/PPGI 1 o Trabalho de Algoritmos Numéricos II Computação científica - 14/1 Método das Diferenças finitas aplicado a problemas bidimensionais Estudo de Precondicionadores

Leia mais

Conceitos fundamentais em uma dimensão Bases

Conceitos fundamentais em uma dimensão Bases fundamentais em uma dimensão PME5425 Métodos de Elementos Finitos de Alta Ordem com Aplicações em Mecânica dos Fluidos e Transferência de Calor Prof. Programa de Pós-Graduação em Engenharia Mecânica Escola

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação

Leia mais

Álgebra Linear Equações Diferenciais Parciais Problemas de Sturm Liouville. Ney Lemke. logo

Álgebra Linear Equações Diferenciais Parciais Problemas de Sturm Liouville. Ney Lemke. logo Revisão Matemática Ney Lemke Mecânica Quântica 2011 Outline 1 Álgebra Linear 2 Equações Diferenciais Parciais 3 Problemas de Sturm Liouville Outline 1 Álgebra Linear 2 Equações Diferenciais Parciais 3

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Modelagem Computacional. Aula 9 2

Modelagem Computacional. Aula 9 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 9 2 Prof. Thiago Alves de Queiroz 2 [Cap. 12] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010.

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

TEMPO DE PROVA: 2h30 Questão 1: (2.5 pontos) Estude a convergência, convergência absoluta ou divergência das séries abaixo. ( 1) m m.

TEMPO DE PROVA: 2h30 Questão 1: (2.5 pontos) Estude a convergência, convergência absoluta ou divergência das séries abaixo. ( 1) m m. Instituto de Matemática - IM/UFRJ Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 26/09/208 TEMPO DE PROVA: 2h30 Questão : (2.5 pontos) Estude a convergência, convergência absoluta

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Introdução Método de Diferenças: { w0 = α w i+1 = w i + h φ(t i, w i ),

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   6 MÉTODO DOS ELEMENTOS FINITOS LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito

Leia mais

UD V. Orientação Exterior

UD V. Orientação Exterior UD V Orientação Exterior Conceitos Básicos Matriz de Rotação Resseção Espacial Condição de Colinearidade Modelo Matemático Ajustamento pelo MMQ Aproximações Iniciais Implementação do Algoritmo UD V - Orientação

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli 1-24 Equações Diferenciais Ordinárias Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

10 Estabilidade de Métodos de Passo Simples

10 Estabilidade de Métodos de Passo Simples MAP 2310 - Análise Numérica e Equações Diferenciais I 1 o Semestre de 2008 Análise Numérica NÃO REVISADO! 10 Estabilidade de Métodos de Passo Simples Continuamos interessados em estudar Métodos de Discretização

Leia mais

Regras de Produto e Quociente

Regras de Produto e Quociente Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo

Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo Sistemas lineares Aula 3 Sistemas Lineares Invariantes no Tempo SLIT Introdução Resposta de um SLIT Resposta de Entrada Nula Resposta de Estado Nulo Resposta ao Impulso Unitária Introdução Sistemas: Modelo

Leia mais

Soluções dos trabalhos de 1 a 7

Soluções dos trabalhos de 1 a 7 Universidade Federal Rural do Semiárido-UFERSA Departamento de Ciências Exatas e Naturais Curso: Bacharelado em Ciência e Tecnologia e Computação Disciplina: Álgebra Linear Aluno(a): Soluções dos trabalhos

Leia mais

UN ALGORITMO DE PUNTO INTERIOR PARA LA RESOLUCIÓN DE PROBLEMAS DE CONTACTO

UN ALGORITMO DE PUNTO INTERIOR PARA LA RESOLUCIÓN DE PROBLEMAS DE CONTACTO UN ALGORITMO DE PUNTO INTERIOR PARA LA RESOLUCIÓN DE PROBLEMAS DE CONTACTO Sandro Rodrigues Mazorche Universidade Federal de Juiz de Fora - UFJF, Dep. de Matemática - ICE, Campus Universitário - CEP 36036-330

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

1 Definição de uma equação diferencial linear de ordem n

1 Definição de uma equação diferencial linear de ordem n Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn

Leia mais

Introdução aos Escoamentos Compressíveis

Introdução aos Escoamentos Compressíveis Introdução aos Escoamentos Compressíveis José Pontes, Norberto Mangiavacchi e Gustavo R. Anjos GESAR Grupo de Estudos e Simulações Ambientais de Reservatórios UERJ Universidade do Estado do Rio de Janeiro

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Capítulo 7 - Equações Diferenciais Ordinárias

Capítulo 7 - Equações Diferenciais Ordinárias Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

Fatoração LU André Luís M. Martinez UTFPR

Fatoração LU André Luís M. Martinez UTFPR Fatoração LU André Luís M. Martinez UTFPR Agosto de 2011 Sumário 1 Introdução Sumário 1 Introdução 2 Fatoração LU Sumário 1 Introdução 2 Fatoração LU 3 Método de Crout Sumário 1 Introdução 2 Fatoração

Leia mais

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO III por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 07, 09 e 14 de novembro de 2018 Teorema (D Alembert): Sejam y 1 (x) uma solução, não nula, da EDO y + p(x)y

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenaria de Materiais (DEMAR) Escola de Engenaria de Lorena (EEL) Universidade de São Paulo (USP) LOM310 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

Programa de Pós-Graduação em Engenharia Mecânica e Informática- UFES/CT Disciplina: Elementos Finitos - 16/2

Programa de Pós-Graduação em Engenharia Mecânica e Informática- UFES/CT Disciplina: Elementos Finitos - 16/2 Programa de Pós-Graduação em Engenharia Mecânica e Informática- UFES/CT Disciplina: Elementos Finitos - 16/2 Implementação do Método dos Elementos Finitos Bidimensional Data de entrega: 01/12/2016 O objetivo

Leia mais

Elasticidade linear unidimensional

Elasticidade linear unidimensional Elasticidade linear unidimensional Projeto - MAP3121 Entrega: 12/6 1 Deslocamentos longitudinais de uma barra Nesta seção apresentaremos a equação diferencial que modela deslocamentos de uma barra elástica

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Polinômios homogêneos no estudo de fluidos

Polinômios homogêneos no estudo de fluidos Polinômios homogêneos no estudo de fluidos Saulo P. Oliveira Resumo Um polinômio px, y é homogêneo de grau k se ptx, ty t k px, y. Além disso, px, y é harmônico se p. Temos que uma função vetorial fx,

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

Elementos Finitos - Parte 2

Elementos Finitos - Parte 2 Elementos Finitos - Parte 2 Formulações Forte e Fraca Ramiro Brito Willmersdorf ramiro@willmersdorf.net Segundo Semestre 211 Sumário 1 Introdução 2 Formulação Forte Unidimensional 3 Formulação Fraca 4

Leia mais

JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL

JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA JOÃO CARLOS MOREIRA CÁLCULO DIFERENCIAL E INTEGRAL FUN COLEÇÃO ESCOLA DE CÁLCULO VOLUME 2 - FUNÇÕES RACIONAIS UMA NOVA ABORDAGEM NO ENSINO DA MATEMÁTICA CÁLCULO

Leia mais

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Análise Numérica para Um Problema de Difusão Termoelástica em Domínios Não-Cilíndricos

Análise Numérica para Um Problema de Difusão Termoelástica em Domínios Não-Cilíndricos Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Análise Numérica para Um Problema de Difusão Termoelástica

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Métodos multi-malhas aplicados à equação de Poisson bidimensional

Métodos multi-malhas aplicados à equação de Poisson bidimensional Métodos multi-malhas aplicados à equação de Poisson bidimensional Leticia Braga Berlandi, Analice Costacurta Brandi Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia, UNESP Presidente

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados 1: Usando o método dos mínimos quadrados de maneira conveniente, aproxime os pontos da tabela abaixo por uma

Leia mais

Álgebra Linear e Aplicações - Lista para Primeira Prova

Álgebra Linear e Aplicações - Lista para Primeira Prova Álgebra Linear e Aplicações - Lista para Primeira Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. Os exercícios

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

17.1 multiplicidade de um ponto da curva

17.1 multiplicidade de um ponto da curva Aula 17 multiplicidades de interseção (Anterior: C é fecho algébrico de R ) Voltamos ao estudo de curvas planas O assunto agora diz respeito à compreensão das multiplicidades O exemplo modelo bem conhecido

Leia mais

Instituto de Matemática - UFRGS - Mat Cálculo Numérico

Instituto de Matemática - UFRGS - Mat Cálculo Numérico Primeira Verificação Questão 1. (2. pt) Sendo x =.4334 e y = 156.41, encontre fl(x + y) em F L(B, p, L, U) com dígito guarda, onde B = 1, p = 5, L = 6, U = 7. Problema: Numa máquina digital onde as operações

Leia mais

= onde c = e ao se definir as condições de contorno e inicias, chega-se ao problema de um cabo fixo em ambas as extremidades na horizontal:

= onde c = e ao se definir as condições de contorno e inicias, chega-se ao problema de um cabo fixo em ambas as extremidades na horizontal: 5 Análise Modal 5.1 Solução modal Conceitos importantes para a análise da dinâmica de sistemas tais como os modelados nas seções anteriores serão aqui apresentados, sendo para tal utilizados como referência

Leia mais

3 Revisão da literatura II: Fluxo em meios porosos

3 Revisão da literatura II: Fluxo em meios porosos 46 3 Revisão da literatura II: Fluxo em meios porosos 3.1. Meio poroso saturado e parcialmente saturado O solo na sua estrutura apresenta duas zonas em função do seu conteúdo de umidade, zona saturada

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Sumário e Objectivos. Método dos Elementos Finitos 3ªAula. Setembro

Sumário e Objectivos. Método dos Elementos Finitos 3ªAula. Setembro Sumário e Objectivos Sumário: Método dos Resíduos Pesados. Princípio Variacional. Discretização Pelo Método dos Elementos Finitos (MEF). Objectivos da Aula: Apreensão do Processo de Discretização pelo

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

Modelagem em Sistemas Complexos

Modelagem em Sistemas Complexos Modelagem em Sistemas Complexos Bifurcação local de campos vetoriais Marcone C. Pereira Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo - Brasil Abril de 2012 Nesta aula discutiremos

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

Métodos Iterativos para a Solução da Equação de Poisson

Métodos Iterativos para a Solução da Equação de Poisson Métodos Iterativos para a Solução da Equação de Poisson Valdirene da Rosa Rocho, Dagoberto Adriano Rizzotto Justo, Programa de Pós-Graduação em Matemática Aplicada, PPGMap, UFRGS, 91509-900, Porto Alegre,

Leia mais

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S ( P) σ Aerodinâmica I [ ln( r( P, q) )] σ ( q) ds + ( V ) + γ ov np = vwp + Γ S π np O método dos paineis transforma a equação integral de Fredholm da segunda espécie num sistema de equações algébrico,

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

Geração de aproximações de diferenças finitas em malhas não-uniformes para as EDPs de Laplace e Helmholtz

Geração de aproximações de diferenças finitas em malhas não-uniformes para as EDPs de Laplace e Helmholtz Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N., 7. Trabalho apresentado no CNMAC, Gramado - RS, 6. Proceeding Series of the Brazilian Society of Computational

Leia mais

ORDINÁRIAS. Víctor Arturo Martínez León

ORDINÁRIAS. Víctor Arturo Martínez León INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Víctor Arturo Martínez León September 3, 2017 Súmario 1 Equações diferenciais lineares de primeira ordem 2 2 Equações diferenciais lineares de segundo ordem

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

Sistemas Lineares Métodos Diretos

Sistemas Lineares Métodos Diretos Sistemas Lineares Métodos Diretos Andrea M. P. Valli, Lucia Catabriga avalli@inf.ufes.br, luciac@inf.ufes.br March 19, 2018 Andrea M. P. Valli, Lucia Catabriga (UFES) DI-PPGI/UFES March 19, 2018 1 / 34

Leia mais

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas)

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) 1 Exame Final de EDI-38 Concreto Estrutural I rof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) Esta prova tem 4 páginas e 5 questões (divididas em 9 itens). Considere os

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Modelagem de um circuito RLC

Modelagem de um circuito RLC Universidade Federal de Santa Catarina Física Geral IV Professora: Natalia Vale Asari Modelagem de um circuito RLC Lucas Guesser Targino da Silva 9 de Setembro de 2016 Conteúdo 1 Circuitos 1 2 Equação

Leia mais

Sistemas Lineares. Métodos Iterativos Estacionários

Sistemas Lineares. Métodos Iterativos Estacionários -58 Sistemas Lineares Estacionários Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo -

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

DIM Resolução e método tableaux DIM / 37

DIM Resolução e método tableaux DIM / 37 DIM0436 21. Resolução e método tableaux 20141014 DIM0436 20141014 1 / 37 Sumário 1 Demostração automática de fórmulas 2 Resolução 3 O método tableaux DIM0436 20141014 2 / 37 1 Demostração automática de

Leia mais