Teoria unificada da relatividade absoluta B (I) António José Saraiva Bases teóricas da teoria da relatividade absoluta

Tamanho: px
Começar a partir da página:

Download "Teoria unificada da relatividade absoluta B (I) António José Saraiva Bases teóricas da teoria da relatividade absoluta"

Transcrição

1 Toria uniiada da rlatividad absoluta B (I António José Saraiva ajs@otail.o Introdução Tudo é absolutant rlativo, inluindo a vloidad da luz. A artir d u quno ornor atátio das quaçõs d Lorntz, dduzios ua toria qu vriia todos os dados xrintais onidos qu uniona b, ontráriant à rlatividad lássia, ara as salas sub-atoias. Coo tal, od sr uniiada o a ânia quantia. Bass tórias da toria da rlatividad absoluta A artir das quaçõs d Lorntz: x + vt x 1 v / t + vx / t 1 v / t x t x ( Esta é anas ua solução. Exist outras qu od sr xloradas. Para n rrniais rlativos o v n vloidads rlativas: tn xn ( onstant D aordo o Einstin, assi x t a vloidad da luz t d sr onstant. Mas, s t u quno valor ositivo? Vaos xlorar sta ióts. Nu qualqur, arbitrário, rrnial rouso: t x t é o riodo da onda; x é o orinto d onda; 1/ t é a rqunia; x / t é a vloidad d roagação; é a lássia vloidad da luz (Todos os valors nst artigo são dados no sista S.I. d unidads 1

2 Vloidad das ondas ltroagntias M i 1 7 Exlo: Para a luz visivl 5 1 Hz s s 1 Corinto d onda x x M i ix Enrgia d ua artiula rouso Equivalnia onda-artiula: E + E 1 E Massa d ua onda-artiula:

3 otõs.ltri os ± bosão bosão z otõs.agnti os rotão nutrão ltrão nutrino M A xliação das assas sub-atoias rsnts é vidnt. As assas arosoias tê ua rqunia artiular M /. O liit da rqunia da radiação gaa é aroxiadant o valor rqunia da áxia nrgia d ligação nular ara o M Ni assi 1. Exist assas ositivas ngativas E L 8. 8MV.1 1 Hz, Sitria gral das ondas-artiulas M ν S n S + + n N ν N Na igura odos vr o ltrão, o rotão, o nutrão, o nutrino as suas antiartiulas. Os bosõs tab az art dsta dsrição assi oo todas as ondasartiulas xistnts. A soa d tudo o qu xist é igual a zro. Alguas orulas das artiulas t x otõs ltrios:

4 + + ; x + + ; x otõs agnétios: + + ; x + ; x Constant d Plan orça uniiada Todas as orças dv tr u únio aniso ua únia orula. Coo a vloidad das ondas ltroagntias é variávl odos suor qu ao rdor d ua artiula xist u ao d variação d vloidad ou d alração: / t Alração: d g dt g A orça: g ( / Mas ntr o rrnial loal rouso o ntro do nosso univrso, xist a vloidad loal d xansão v. Da quação d Lorntz do to ( riodo : v ( v + v ( + v ( + v orula gral da orça uniiada. Coo já sabos os valors das orças ( ort ltria odos alular o valor das onstants v. Constants d aolanto: Valor absoluto das orças orça ltria -- 1 orça ort orça raa --???

5 orça ltria ntr dois ltrõs: q ε πε λ λ 1 ε ; 1 19 q ; orça ltria uniiada: 1 ε orça ltria aarnt ntr dois rotõs: q ε πε orça ort: 17. ε ( v ( + v ( ( v ( + v ( + v + v Ua das soluçõs é: v 1. 1 s 1 Valors xatos d v Para o alulo, ostrior, do onoolo dsobrios a rlação: qq ( Constant d Plan q - arga agntia ; q - arga ltria Partios do riniio qu a orula xata é: q q q Φ 5

6 Φ - quantu d luxo agntio ; 15 q Wbr O valor xato d v é: v s Para o alulo do onto agntio do ltrão dsobrios qu a razão giroagntia g é igual a: g artios do riniio qu sta rlação é xata: / / g o valor xato d é: O onoolo A orula da orça uniiada t ua solução artiular ara ua artiula nutra qu ar sr o onoolo. iv -- Partiula nutra ( agntia. ( v ( + V ( + ivv ( v + iv v ( + V ( + v V ( v V ( + V ( + v V ( v V va a a ( v v + v v + V V ; a V.V O onoolo od sr o to quar. x V i + V x i

7 S sta artiular é o onoolo, ntão a sua orça é igual a: 1 q. ; µ x 7 µ π 1 15 Carga agntia -- q Wbr ( As sas unidads qu o luxo agntio Aont qu: q q O quantu d luxo agntio: Φ q Φ q O gravitão A orça ntr dois gravitõs dv sr: ( v ( + v ( + v x G Constant d gravitação -- G Coo é uito quno: G v ( v i s O valor iaginário diz-nos qu o gravitão é ua artiula nutra g ; M -- rqunia da atéria x i Vloidad da orça da gravidad V V dx / dt V / V s ; V O nutrino Coo a vloidad d roagação do ao do nutrino iv é uito lvada,a orça ntr dois nutrinos é: 7

8 .( v. v ν ν E a orça ntr dois nutrinos é: ( v ν x il i ( l + ivl ( v l + il l n ; α ( v / ν ( v n v( v n + + α. v( v n α. (v n n ( + v v ( v + n n ν ν g ν 1. 1 V ν.159 ; 1 ν i É iossivl xliar o nutrino antndo a vloidad da luz onstant. Porqu razão é qu o quadrado da variação da assa do nutrino, todas as xrinias, surg o u valor ngativ? É uito sils: Rlação ntr a assa intrinsa a nrgia E Para os otõs agntios: E + + Coo a assa do nutrino é uito quna: E ν ν Assi, o valor ν é ngativo, orqu: 8

9 ν E ν ν E ν E ν Contráriant à orula lássia da rlação ntr a assa a nrgia, na orula orrta ara o nutrino, a assa é invrsant roorional à nrgia. Por isso a variação é ngativa. Esta é a riira a únia toria qu xlia st ato. Lista das artiulas v Partiula Massa rqunia Corinto d onda Vloidad Eltrão Nutrino i i Protão Nutrão i i W bosão Z bosão i i Monoolo / i i To Q Gravitão / i i Monto agntio das artiulas É áil vriiar qu as razõs giroagntias do ltrão do uão orrsond ás rlaçõs ntr a toria lássia a nossa. Corrção da ritividad do vazio da arga do ltrão ε µ 1 1 ε Novo µ ε ε Novo 9

10 q qnovo orça ltria: πε λ ε πε x Novo q ( Corrtion o t unitary arg Novo q Monto agntio do ltrão q q µ Novo π. π. µ Valor xrintal: µ Monto agntio do uão q µ µ π. µ µ µ.91 1 Valor xrintal: µ µ Assi, a orrção ntr a vla a nova torias uniona orrtant ara o ltrão o uão. Pnsaos qu o ltrão é oosto d dois onoolos sitrios: E v MP S MP N E v O rotão as artiulas nutras tê ua strutura intrna dirnt or isso dv tr orulas dirnts. Dsobrios ua orula ara o rotão as ainda não sabos o su signiiado: µ q x π λ λ 1

11 A orça raa é a ais ort d todas. Constant d aolanto da orça raa 1 α ε ( v ( + v ( + v q πε λ ε λ 5 ε ; α

Massas do Gravitão, Monopolo e do Neutrino. António José Saraiva

Massas do Gravitão, Monopolo e do Neutrino. António José Saraiva Massas do Gravitão, Monopolo do Nutrino António José Saraiva - 6--8 ajps@otail.o Sgundo a nossa toria (vr outros artigos do autor.babin,nt/paprs.t o sptro oplto da assa das partiulas é dado por: = -- assa

Leia mais

Teoria unificada da relatividade absoluta E (I) António José Saraiva Bases teóricas da teoria da relatividade absoluta

Teoria unificada da relatividade absoluta E (I) António José Saraiva Bases teóricas da teoria da relatividade absoluta Toria unifiada da rlatividad absoluta E (I) António José araiva - 6-7-8 ajps@hotail.o Introdução Tudo é absolutant rlativo, inluindo a vloidad da luz. A partir d u pquno pornor atátio das quaçõs d Lorntz,

Leia mais

As Equações de Maxwell Macroscópicas

As Equações de Maxwell Macroscópicas As Equaçõs d Maxwll Marosópias Dtro da atéria há oléulas por toda part. E ada oléula, há átoos opostos por úlos positivos orbitados por létros gativos. Sobr ada ua dssas iúsulas partíulas, s osidradas

Leia mais

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão.

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão. Moto do dipolo agtico toio araiva ajps@otail.co Para o lctrão: p c + µ p-- Moto caóico; -- Massa do lctrão; c Vlocidad da luz; c-- Moto ciético; µ -- Moto potcial (falso oto do dipolo agético). µ q ; c

Leia mais

Capítulo 2. Mistura e Convecção

Capítulo 2. Mistura e Convecção Caítulo Mistura Convção Mistura Mistura Isobária Mistura Adiabátia Mistura isobária M,, q, w,p M,, q, w,p M,,q,w,P Média Pondrada das assas q q q w w w Uidad sífia Razão d istura Prssão d Vaor S durant

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISRAÇÃO E CONABILIDADE DEPARAMENO DE ECONOMIA EAE 26 Macroconomia I 1º Smstr d 217 Profssor Frnando Rugitsky Lista d Exrcícios 4 [1] Considr uma macroconomia

Leia mais

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados.

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados. Classificação dos Pilars quanto à Esbltz λ λ - Pilars Curtos Os fitos d ª ord pod sr dsprzados. λ < λ 90, ond λ 35 - Pilars dianant Esbltos Os fitos d ª ord são avaliados por procssos siplificados basados

Leia mais

Aula 05. Força elétrica Magnetismo Instrumentos elétricos

Aula 05. Força elétrica Magnetismo Instrumentos elétricos ssuntos: Hirostátia Caloritria Onulatória M.R.U.V Força létria Magntiso Instruntos létrios. (UNES-00) U bloo aira volu V 60 3, totalnt subrso, stá atao ao funo u ripint hio água por io u fio assa sprzívl.

Leia mais

Funções de distribuição quânticas

Funções de distribuição quânticas Bos-Einstin: Funçõs d distribuição quânticas f ε) 1 BE ( ε α 1 Frmi-Dirac: f FD (ε) 1 ε-ε F + 1 Boltzmann (clássica): f Boltz (ε) 1 ε α Essas funçõs d distribuição forncm a probabilidad d ocupação, por

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc o c voc RESOLUÇÃO voc A1 [A] valors ínio áxio igual a -1 1. Portanto, b =. Coo o valor édio a dfasag são nulos a = 0 k = 0. T-s a sguint função: Os valors

Leia mais

4 Modelo Elastoplástico UBCSand

4 Modelo Elastoplástico UBCSand 53 4 Modlo Elastolástico UCSand 4.1. Introdução O odlo UCSand oi dsnvolvido lo rossor tr M. yrn na Univrsidad da ritish Colubia, Vancouvr, Canadá (yrn t al., 1995; aty & yrn; 1998; yrn t al., 004a), sndo

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE Caítulo EUÇÃO EEI P EIE PEEE t caítulo o liro difrncia- batant d todo o outro obr o aunto. Coo já foi fito rlação à quação da continuidad no Caítulo, rtrin- a quação a alicaçõ ri rannt. oant, a auência

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Aula 28 Tópicos em Estabilidade em Sistemas de Potência (continuação)

Aula 28 Tópicos em Estabilidade em Sistemas de Potência (continuação) Anális Sistas Potência Aula 8 Tópicos Estabilia Sistas Potência (continuação 8/6/9 1 Equação oscilação θ Para ua áquina rotativa qualqur, o torqu aclrant é igual ao prouto o onto inércia o rotor pla aclração

Leia mais

hc m 6, ms cin máx 2 max max φ =1,85eV = 2,96.10 J 5-1 q(c) V(V) = E(J) 1 ev = 1q(C) V = 1, CV = 1, J -19 a) E Como

hc m 6, ms cin máx 2 max max φ =1,85eV = 2,96.10 J 5-1 q(c) V(V) = E(J) 1 ev = 1q(C) V = 1, CV = 1, J -19 a) E Como fito fotoléctrico Um fix d luz com comrimnto d onda 40 nm incid num mtal cuja função d trabalo d xtracção é,85 V. Dtrmin: a) a vlocidad máxima dos fotolctrõs mitidos; b) o otncial d aragm; c) a nrgia otncial

Leia mais

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ.

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ. ANALISE ESTÁTICA DA ESTABILIDADE MÉTODO RAYLEIGH RITZ Alguns roblmas d stabilidad d struturas não odm sr rsolvidos or métodos analíticos ou são rsolvidos d forma mais fácil utilizando métodos aroximados

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física P.3 Situação inicial: θ 7 C 7 73 4 K; º Situação final: θ 37 C 37 73 6 K 6 5 º 4 5 5 º P.33 a) Analisando os dados da tabla, concluímos qu a rlação ntr os alors do olum ( ) os corrsondnts alors

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior Fundação Escola écnica Librato Salzano Viira da Cunha Curso d Eltrônica Eltrônica d Potência Prof. Irinu Alfrdo onconi Junior Introdução: O rsnt txto dvrá tratar d uma art da Eltrônica conhcida como Eltrônica

Leia mais

Compressão Paralela às Fibras

Compressão Paralela às Fibras Comprssão Paralla às Fibras Critério imnsionamnto pn o íni sbltz (λ): λ x ou L 0 x ou i x ou i x ou é o raio giração m rlação aos ixos prinipais a sção transvrsal o lmnto strutural L 0 o omprimnto lambagm

Leia mais

LABORATÓRIO CASEIRO PÊNDULO BALÍSTICO. Cad. Cat. Ens. Fis., Florianópolis, 2(3): , dez

LABORATÓRIO CASEIRO PÊNDULO BALÍSTICO. Cad. Cat. Ens. Fis., Florianópolis, 2(3): , dez LABORATÓRIO CASEIRO PÊNDULO BALÍSTICO Isab Bianchi* José d Pinho A Fiho Dto d Física UFSC Forianóois SC O ênduo baístico foi inntado 174, co o objtio d dir ocidads d rojétis or io d coisõs inásticas co

Leia mais

Modelos Determinísticos

Modelos Determinísticos Molos Dtrminísticos osição Instantâna; Pnúria não rmitia. (Em toas as situaçõs assum-s qu a rocura é trminística constant valor, qu não xistm scontos quantia. Nst caso assum-s qu a quantia ncomna é rcbia

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

Décima quarta aula de hidráulica. Primeiro semestre de 2016

Décima quarta aula de hidráulica. Primeiro semestre de 2016 Décia quarta aula d hidráulica Priiro tr d 016 Vao vr ai ua alicação da quação d azn Willia xtraída do livro do rofor Azvdo Ntto ágina 155 Nua cidad do intrior, o núro d caa ating a 1340, gundo a agncia

Leia mais

A geometria do espaço-tempo

A geometria do espaço-tempo A gomtria do spaço-tmpo Uma rvisão da cinmática da dinâmica rlativísticas Uma transformação d Lorntz dixa invariant o intrvalo s 2 AB ntr dois vntos, A B, do spaço-tmpo. Em um rfrncial inrcial S, o intrvalo

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA COMENTÁIO DA POVA DE FÍSICA A prova d conhcimntos spcíficos d Física da UFP 009/10 tv boa distribuição d assuntos, dntro do qu é possívl cobrar m apnas 10 qustõs. Quanto ao nívl, classificamos ssa prova

Leia mais

Determinação da carga específica do electrão, e/m

Determinação da carga específica do electrão, e/m Dtrinação da carga spcífica do lctrão, / Dpartanto d Física da FCTUC Coibra 003 Dtrinação da carga spcífica do lctrão, / 1. Objctivo i) studar o ovinto d partículas carrgadas (lctrõs) sob a acção d u capo

Leia mais

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 rodinâica Oraçõs Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 No quacionanto d 3 stados/corrnts binários, isobáricos, quiantos/stágios

Leia mais

Resposta em frequência

Resposta em frequência Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado

Leia mais

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos ª aula Suário: licação da conservação da energia ecânica a ovientos e caos gravíticos. nergia oteial elástica. Forças não conservativas e variação da energia ecânica. licação da conservação da energia

Leia mais

Leis da elétrica. Tubo de Thomson. Tubo de feixe de elétrons ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS FUNDAMENTOS GERAIS

Leis da elétrica. Tubo de Thomson. Tubo de feixe de elétrons ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS FUNDAMENTOS GERAIS Lis da létrica Tubo d fix d létrons Tubo d Thoson ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS Psquisa do dsvio d u fix d létrons nu capo agnético Psquisa do dsvio d u fix d létrons nu

Leia mais

Leis da elétrica. Tubo de Thomson. Tubo de feixe de elétrons ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS FUNDAMENTOS GERAIS

Leis da elétrica. Tubo de Thomson. Tubo de feixe de elétrons ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS FUNDAMENTOS GERAIS Lis da létrica Tubo d fix d létrons Tubo d Thoson ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS Psquisa do dsvio d u fix d létrons nu capo agnético Psquisa do dsvio d u fix d létrons nu

Leia mais

1.Estudo de ondas electromagnéticas transversais guiadas por linhas de transmissão. k z = 2

1.Estudo de ondas electromagnéticas transversais guiadas por linhas de transmissão. k z = 2 T Aula (3.05.05) inha d transmissão.estudo d ondas lctromagnéticas transvrsais guiadas por linhas d transmissão. Modos TEM :H z E ~ z 0 z f. Estruturas qu suportam ondas TEM: a) inha d planos parallos

Leia mais

Integração numérica: Método de Euler

Integração numérica: Método de Euler Intgração nuérica: Método d Eulr Quando ua partícula s ov sob influência d forças co rsultant constant, sua aclração tabé é constant, podos ncontrar sua vlocidad posição a cada instant a partir d fórulas

Leia mais

Instituto de Física USP. Física V - Aula 6. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 6. Professora: Mazé Bechara Instituto de Físia USP Físia V - Aula 6 Professora: Mazé Behara Aula 6 Deterinação de distribuições e outros resultados da eânia estatístia lássia 1. Valores ais prováveis das oponentes e do ódulo e a

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

LEIS DAS COLISÕES. 1. Resumo. 2. Tópicos teóricos

LEIS DAS COLISÕES. 1. Resumo. 2. Tópicos teóricos Físia Geral I EF, ESI, MAT, FQ, Q, BQ, OCE, EA Protoolos das Aulas Prátias 003 / 004 LEIS DAS COLISÕES. Resuo Faz-se olidir, elástia e inelastiaente, dois lanadores que se ove se atrito nua alha de ar.

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

Cap 16 (8 a edição) Ondas Sonoras I

Cap 16 (8 a edição) Ondas Sonoras I Cap 6 (8 a edição) Ondas Sonoras I Quando você joga ua pedra no eio de u lago, ao se chocar co a água ela criará ua onda que se propagará e fora de u círculo de raio crescente, que se afasta do ponto de

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b)

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b) 3 EQUAÇÕES DIFEENIAIS INEAES 3 Toria Gral Estas quaçõs são uito iortats, ois são alicadas à Egharia ara rsolvr roblas d vibraçõs câicas, circuitos létricos, tc Escial atção srá dada às quaçõs d sguda ord

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Física para Engenharia II - Prova de Recuperação

Física para Engenharia II - Prova de Recuperação 430196 Físia para Engenharia II - Prova de Reuperação - 01 Observações: Preenha todas as folhas om o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a:

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a: I INSIUO DE FÍSIC D UFB DEPRMENO DE FÍSIC GERL DISCIPLIN: FÍSIC GERL E EXPERIMENL II (FIS ) URM: 0 SEMESRE: /00 RESOLUÇÃO D a PROV D URM 0 O tp qu a partícula ai d pnt d dlcant áxi ating pnt d quilíbri

Leia mais

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte:

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte: Oscilaçõs forçadas Dpois d tr visto coo são as oscilaçõs aortcidas, agora você pod facilnt ntndr as oscilaçõs forçadas. Aqui vou ignorar a dissipação apnas introduzir ua força oscilant ao sista assa-ola.

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

Estudo de ondas electromagnéticas guiadas por linhas de transmissão.

Estudo de ondas electromagnéticas guiadas por linhas de transmissão. inhas d Transmissão m Ata Frquência Estudo d ondas ctromagnéticas guiadas por inhas d transmissão. Propagação d Modos TEM Padrão d Onda Estacionária Parâmtros da Onda Estacionária arta d Smith Adaptação

Leia mais

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015 GABARITO DA EGUDA PROVA DE PTC-4 TEORIA DA COMUICAÇÕE II - 9// a. Qustão (, oto Dtrm a míma rlação (/ d um caal tlfôco (bada d Hz ara rmtr a trasmssão cofávl d. bts/s. Comt su rsultado. D C Blog ( + vm

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Capítulo 15. Oscilações

Capítulo 15. Oscilações Capítulo 5 Oscilaçõs O Movinto Harônico Sipls MHS O Sista Massa-Mola Enrgia no Movinto Harônico Sipls O Pêndulo Sipls O Pndulo Físico O Monto d nércia O tora dos Eios Parallos O Movinto Circular Unifor

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia Faculdad d Econoia, Adinistração Contabilidad d Ribirão Prto Dpartanto d Econoia REC00 MICROECONOMIA PRIMEIRA PROVA (0) ROBERTO GUENA () Esboç u apa d curvas d indifrnças para cada ua das funçõs d utilidad

Leia mais

FORÇAS EXTERIORES AS FORÇAS DE ATRITO COMO FORÇAS DE LIGAÇÃO

FORÇAS EXTERIORES AS FORÇAS DE ATRITO COMO FORÇAS DE LIGAÇÃO OÇS EXTEIOES s foças xtios qu atua sob u copo pod faoc o ointo dss copo dsigna-s, nst caso, po foças aplicadas. o caso das foças xtios stingi o ointo do copo, dsigna-s po foças d ligação. S OÇS DE TITO

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS Sja uma strutura hirstática constituida or barras axialmnt indformávis: P 2 P Porqu as barras são axialmnt dformávis, xistm g.l. hirgométricos

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Dpartamnto d Engnharia Mcânica PME-50 MECÂNICA DOS SÓLIDOS II Profs.: Cso P. Psc R. Ramos Jr. 1 a Prova 15/09/011 Duração: 100 minutos 1 a Qustão (5,0 pontos):

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas.

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas. ONDAS I Cap 16: Ondas I - Prof. Wladiir 1 ONDAS l 16.1 Introdução Ondas são perturbações que se propaga transportando energia. Desta fora ua úsica a iage nua tela de tv a counicações utilizando celulares

Leia mais

pode recorrer à derivada da seguinte igualdade válida para uma série geométrica (com

pode recorrer à derivada da seguinte igualdade válida para uma série geométrica (com Aulas rátias: Lasers semiondutores Problema uma avidade ótia a energia média de um modo de osilação é E Do onto de vista da meânia quântia, a energia eletromagnétia deverá estar organizada em níveis disretos

Leia mais

Aula Teórica nº 11 LEM-2006/2007

Aula Teórica nº 11 LEM-2006/2007 Prof. Rsponsávl: Mário J. Pinhiro Aula Tórica nº 11 LEM-2006/2007 Propridads das linhas d força do campo Dfin-s linhas d força (l.d.f.) do campo E como uma linha matmática imaginária à qual o vctor E é

Leia mais