A geometria do espaço-tempo

Tamanho: px
Começar a partir da página:

Download "A geometria do espaço-tempo"

Transcrição

1 A gomtria do spaço-tmpo Uma rvisão da cinmática da dinâmica rlativísticas Uma transformação d Lorntz dixa invariant o intrvalo s 2 AB ntr dois vntos, A B, do spaço-tmpo. Em um rfrncial inrcial S, o intrvalo ntr sss dois vntos é dfinido como s 2 AB c 2 t A t B x A x B y A y B z A z B, ond o vnto A ocorr no instant t A no ponto x A, y A, z A ) o vnto B ocorr no instant t B no ponto x B, y B, z B ). Assim, m um outro rfrncial inrcial S o intrvalo ntr os vntos A B é também s 2 AB, isto é, s 2 AB c 2 t A t B x A x B y A y B z A z B c 2 t A t B x A x B y A y B z A z B, ond, para os obsrvadors m S, o vnto A ocorr no instant t A no ponto x A, y A, z A ), o vnto B ocorr no instant t B no ponto x B, y B, z B ) c > 0 é a magnitud da vlocidad da luz no vácuo. Um xmplo d transformação d Lorntz muito comum é a chamada boost d Lorntz ao longo do ixo x : x γ x βct), y y, z z, t γ t βx ), c ond β v c γ 1 1 β 2. Aqui, v vˆx é a vlocidad rlativa ntr os rfrnciais S S, portanto, v pod sr uma constant positiva ou ngativa. A força d Lorntz sobr uma carga q puntiform é scrita como no sistma CGS, ou no sistma MKS, ond F qe + q c B, F qe + q B, r q r q t) é o vtor posição da carga q no instant t. A Sgunda Li d Nwton continua válida na dinâmica rlativística quando scrvmos ond F dp, p m m, 1

2 com sndo a massa d rpouso da partícula. Portanto, a chamada part spacial da força fica no sistma CGS, ou dp dp qe + q c B, qe + q B, no sistma MKS. Exist uma part tmporal da força, qu sja sua companhira d transformação d Lorntz, assim como o tmpo é o companhiro do spaço no boost d Lorntz acima? Para rspondr a ssa qustão, considrmos o momntum p sua companhira, a nrgia U: U mc 2 c 2 Notmos qu U não é a nrgia cinética. A nrgia cinética é K U c 2. Tmos U 2 c 2 p2 m 2 0c 2 m 2 0c 2 m 2 0c 2. [. m 2 0 Como m 2 0c 2 é um valor fixo m qualqur rfrncial inrcial, concluímos qu U/c p s transformam xatamnt como tmpo posição, rspctivamnt. Assim, vmos qu U/c é a companhira do momntum p m transformaçõs d Lorntz. No ntanto, 1 du c dp não s transformam como U/c p pois não é invariant por transformaçõs d Lorntz. Como o tmpo próprio da partícula, τ, é o msmo m qualqur rfrncial inrcial, podmos dfinir o par 1 du c Essa dupla d quantidads s comporta como tmpo spaço m transformaçõs d Lorntz. O tmpo próprio é o tmpo no rfrncial d rpouso instantâno da partícula, com a origm sobr a partícula. Notmos qu o rfrncial d rpouso instantâno da partícula é aqul qu, no instant t d S, tm vlocidad dx q / m S, supondo qu scolhamos os rfrnciais S S com sus ixos x x ao longo da vlocidad instantâna da partícula. Fixando o rfrncial S com vlocidad constant dx q / calculada m t, rlativamnt a S, podmos utilizar o boost d Lorntz acima scrvr dp. ] 1 dx q c 2 dx q dxq 0 dx q dxq dxq, rsultando m dxq. 2

3 Como smpr podmos scolhr os ixos dos rfrnciais ao longo da vlocidad da partícula, d forma gral, 1 1 c 2. Logo, 1 du c dp du c dp. Para simplificar a notação nss contxto, sjam γ β 1 c β 2. Podmos considrar também a drivada γ. Obviamnt, a companhira dssa quantidad m transformaçõs d Lorntz é Tmos, portanto, as rlaçõs U c c mc cγ. γc d ct) É convnint dfinirmos p m γ. u 0 d ct) u. 3

4 Logo, U c u 0 p u. Com ssas dfiniçõs, podmos scrvr du dp γ dp γ qe + q ) c B q γe + 1 ) c B q c u 0E + u B), no sistma CGS, ou du dp γ dp γ q q qe + q ) B ) γe + B ) E u 0 c + u B, no sistma MKS, ond usamos Também tmos Da quação obtida acima, calculamos qu du 0 γ u 0 c 1 c du. U 2 c 2 p2 m 2 0c 2, ou sja, 1 du 2 c 2 2U du c 2 dp2, 2p dp, 4

5 rsultando m 1 du c cp U dp p mc dp 1 γc u dp 1 c u dp q c u E, tanto no sistma CGS como no sistma MKS. Rsumindo, as quaçõs dinâmicas para a partícula podm sr xprssas por tanto no sistma CGS como no sistma MKS, no sistma CGS, ou no sistma MKS. A gomtria do spaço-tmpo Vamos utilizar a sguint notação: du du du 0 qu E c, q c u 0E + u B), ) E q u 0 c + u B, x 0 ct, x 1 x, x 2 y x 3 z. Com ssa notação, o boost d Lorntz ilustrado acima pod sr scrito como x 0 γ x 0 βx 1), x 1 γ x 1 βx 0), x 2 x 2, x 3 x 3. Em trmos matriciais, tmos x 0 x 1 x 2 x 3 γ γβ 0 0 γβ γ x 0 x 1 x 2 x 3. 5

6 Como, nss caso, a transformação d Lorntz invrsa é obtida pla troca d β por β, obtmos x 0 γ γβ 0 0 x 0 x 1 x 2 γβ γ 0 0 x x 2. x x 3 Com o xmplo acima m mnt, no caso d uma transformação d Lorntz gral, cujos lmntos da matriz d transformação são A α β, para α, β 0, 1, 2, 3, podmos scrvr x α A α βx β, para α 0, 1, 2, 3, ond já stamos utilizando a convnção d Einstin, isto é, subntndmos uma soma sobr o índic β, d 0 a 3, pois β aparc rptido no msmo trmo da xprssão. É important também o fato d β figurar como um subscrito m A α β, nquanto aparc como um sobrscrito m xβ. A razão para sss dois tipos difrnts d índics dcorr do sinal d mnos na dfinição do intrvalo ntr dois vntos, como xplicado acima. Assim, é convnint dfinirmos dois conjuntos d coordnadas spaço-tmporarais: as contravariants, como já vimos, x 0 x 1 x 2 x 3 as covariants, com a mudança d sinal das componnts spaciais contravariants, x 0 ct x 1 x 2 x y. x 3 z Com ssa notação, para dois vntos infinitsimalmnt próximos o intrvalo é dado por ds 2 dx β dx β ct x y z, c 2 dx dy dz. Podmos, também, dfinir uma matriz, com lmntos g αβ, qu abaixa os índics: x α g αβ x β, ond [g αβ ] O intrvalo, portanto, também pod sr scrito como Com ssa notação, podmos scrvr já qu é um invariant. Mas, ds 2 g αβ dx α dx β. dx α dx α dx β dx β, dx α dx α g αβ dx α dx β g αβ A α γ dx γ) A β δ dxδ) ) g αβ A α γa β δ dx γ dx δ. 6

7 Como dx α dx α dx γ dx γ g γδ dx γ dx δ, sgu qu ) g αβ A α γa β δ dx γ dx δ g γδ dx γ dx δ, para qualqur scolha d dx 0, dx 1, dx 2 dx 3. Escolhamos dx 0, dx 1, dx 2, dx 3) 1, 0, 0, 0). Então, ncssariamnt, g αβ A α 0A β 0 g Escolhndo, agora, dx 0, dx 1, dx 2, dx 3) 0, 1, 0, 0), sgu D forma análoga, dduzimos também qu g αβ A α 1A β 1 g g αβ A α 2A β 2 g g αβ A α 3A β 3 g Tommos, ntão, dx 0, dx 1, dx 2, dx 3) 1, 1, 0, 0). Nss caso, tmos g αβ A α 0A β 0 + g αβa α 0A β 1 + g αβa α 1A β 0 + g αβa α 1A β 1 g 00 + g 01 + g 10 + g , dos rsultados acima, concluímos qu Como sgu qu g αβ A α 0A β 1 + g αβa α 1A β 0 0. g αβ g βα, 0 g αβ A α 1A β 0 g βα A α 1A β 0 g βα A β 0 Aα 1 g αβ A α 0A β 1, portanto, d g αβ A α 0A β 1 + g αβa α 1A β 0 0 vm 2g αβ A α 0A β 1 0, 7

8 isto é, g αβ A α 0A β 1 0. Com scolhas análogas d dx 0, dx 1, dx 2, dx 3), dduzimos, finalmnt, qu g αβ A α γa β δ g γδ. Aqui é convnint dfinirmos a matriz com lmntos g µν, dada por [g µν ] É fácil vrmos, agora, qu ond δ µ ν é a dlta d Kronckr. É vidnt qu tmos g µγ g γν δ µ ν, δ µ ν δ µ ν. Portanto, scrvrmos smpr δ µ ν ao invés d δ µ ν ou δ µ ν. Multipliqumos, ntão, ambos os mmbros da quação por g ηζ sommos sobr η. Logo, Dfinamos: g αβ A α γa β η g γη g αβ A α γa β ηg ηζ g γη g ηζ δ ζ γ. A βγ g βα A α γ A βζ g ζη A β η. Assim, A βγ A βζ δ ζ γ, portanto, a invrsa da matriz com lmntos A βγ é a transposta da matriz com lmntos A βζ. Também dnotarmos: α α x α x α. Porqu a li d transformação para as componnts contravariants é, como vimos, x α A α βx β, sgu qu a li d transformação para as componnts covariants fica x α A β α x β. 8

9 Mas, multiplicando por A αµ somando sobr α a primira dssas duas quaçõs, vm ou sja,, portanto, Analogamnt, podmos invrtr também a quação obtndo Então, A αµ x α A αµ A α βx β A αµ A αβ x β δ β µx β x µ, x µ A αµ x α x µ A µ α x α. x α A β α x β, x β A α βx α. α x α x β x α x β A α β x β A α β β, mostrando qu β são componnts contravariants, o qu justifica o uso do sobrscrito. Analogamnt, α x α xβ x α A β α β, x β justificando o subscrito, já qu as componnts β covariants. Além disso, podmos obsrvar qu s transformam d acordo com a li para componnts dx α dx α A µ αdx µa α ν dx ν dx µdx µ, analogamnt ao raciocínio usado antriormnt, concluímos qu A µα A να δ µ ν. Agora podmos dfinir o qu é um quadrivtor no spaço-tmpo. Toda quantidad d quatro componnts, w α α 0, 1, 2, 3), é um quadrivtor s, somnt s, transforma-s como x β β 0, 1, 2, 3). Assim, s x α A α βx β, para α 0, 1, 2, 3, ntão w α α 0, 1, 2, 3) é um quadrivtor s, somnt s, w α A α βw β, para α 0, 1, 2, 3. 9

10 Com ssa dfinição, fica claro qu U/c, p) é um quadrivtor, assim como também o são du/c, dp/) u 0, u). Uma outra obsrvação important é qu dois quadrivtors, a b, multiplicados componnt a componnt, também formam um invariant: pois a α b α A α µa µ Aα ν b ν δµa ν µ b ν a µ b µ, A α µa ν α g µλ A αλ g νκ A ακ g µλ g νκ δ λ κ δ ν µ. Agora, suponhamos tr uma quação para as componnts d um quadrivtor como sgu: a α M α βb β, ond a α b β, para α, β 0, 1, 2, 3, são as componnts d dois quadrivtors. Mundando d rfrncial inrcial através d uma matriz d transformação d commponnts A α κ, tmos Tomando as rlaçõs invrsas, scrvmos A quação pod sr, ntão, rscrita como Logo, Como concluímos qu ond a α A α βa β b α A α βb β. a α A α β a β b β A β γ b γ. a α M α βb β A α β a β M α βa β γ b γ. A κ αa α β a β A κ αm α βa β γ b γ. A κ αaβ α A κα A βα δβ, κ a κ A κ αm α βaγ β b γ M κ γ b γ, M κ γ A κ αa β γ M α β, 10

11 ou ainda, M κγ A κ αa γ β M αβ. Mas ssa é a rlação qu dfin M αβ como as componnts d um quadritnsor d sgunda ordm. Por xmplo, quadritnsors d sgunda ordm podm sr construídos com uma dupla d quadrivtors assim: N µν f µ g ν, ond f µ g ν, para µ, ν 0, 1, 2, 3, são as componnts d dois quadrivtors. A transformação d N µν é, obviamnt, dada por N µν f µ g ν A µ αf α A ν βg β A µ αa ν βn αβ. É por isso qu é natural dfinirmos a transformação d um quadritnsor d sgunda ordm gral como acima. 11

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Sistemas de coordenadas em movimento

Sistemas de coordenadas em movimento Sistmas d coordnadas m movimnto Na suprfíci da Trra stamos m movimnto d translação m torno do Sol rotação m torno do ixo trrstr, além, é claro, do movimnto qu o sistma solar intiro tm pla nossa galáxia.

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Ângulos de Euler. x y z. onde

Ângulos de Euler. x y z. onde Ângulos d Eulr Considr um corpo rígido sus três ios principais, ê, ê 2 ê 3, qu são ortonormais. Vamos dfinir o sistma d coordnadas fio ao corpo rígido, S, com os ios, 2 3 ao longo dos vrsors ê, ê 2 ê 3,

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio Matrial Tórico - Módulo: Vtors m R R Exrcícios Sobr Vtors Trciro Ano - Médio Autor: Prof Anglo Papa Nto Rvisor: Prof Antonio Caminha M Nto 1 Exrcícios sobr vtors Nsta aula, discutimos alguns xrcícios sobr

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

A reflexão e a transmissão por uma camada fina

A reflexão e a transmissão por uma camada fina A rflxão a missão por uma camada fina Nsta postagm vamos invstigar o qu acontc com as ondas planas qu incidm sobr uma camada dilétrica fina Há portanto três mios dilétricos sparados por duas intrfacs planas

Leia mais

Reexão e refração de ondas eletromagnéticas em interfaces planas entre dielétricos

Reexão e refração de ondas eletromagnéticas em interfaces planas entre dielétricos Rxão rfração d ondas ltromagnéticas m intrfacs planas ntr dilétricos Para ilustrar a utilização das condiçõs d contorno para os campos tratmos a rxão a rfração d ondas ltromagnéticas planas por intrfacs

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

11 Trabalho e Variação da Energia Elétrica. Exercício Resolvido 11.1 Uma força depende das coordenadas de acordo com a seguinte expressão: x y z.

11 Trabalho e Variação da Energia Elétrica. Exercício Resolvido 11.1 Uma força depende das coordenadas de acordo com a seguinte expressão: x y z. Trabalho Variação da Enrgia Elétrica Exrcícios solvidos Exrcício solvido. Uma força dpnd das coordnadas d acordo com a sguint xprssão: F = axzi + byxj + czk Ond a, b c são constants adquadas. Essa força

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

7.1 Densidade de corrente elétrica

7.1 Densidade de corrente elétrica Capítulo VII Rlatividad Eltromagntismo Embora a toria ltromagnética basada nas quatro quaçõs formulada por Maxwll (1864) sja antrior à Rlatividad Rstrita, é uma toria rlativística por xclência, sndo inclusiv

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

CAPÍTULO 14. Exemplo : Mostre que y = g(x) = 1 x 2, x 1 está dado de forma implícita na equação x 2 + y 2 1 = 0.

CAPÍTULO 14. Exemplo : Mostre que y = g(x) = 1 x 2, x 1 está dado de forma implícita na equação x 2 + y 2 1 = 0. CAPÍTULO 4 TEOREMA DA FUNÇÃO IMPLÍCITA 4 Introdução No studo d funçõs da rta na rta dfinimos qu uma função y = gx x Domg stá dada implicitamnt numa quação nvolvndo as variávis x y s para todo x Domg o

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

Funções de distribuição quânticas

Funções de distribuição quânticas Bos-Einstin: Funçõs d distribuição quânticas f ε) 1 BE ( ε α 1 Frmi-Dirac: f FD (ε) 1 ε-ε F + 1 Boltzmann (clássica): f Boltz (ε) 1 ε α Essas funçõs d distribuição forncm a probabilidad d ocupação, por

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Formulação Covariante do Eletromagnetismo

Formulação Covariante do Eletromagnetismo Capítulo 12 Formulação Covariante do Eletromagnetismo O objetivo deste capítulo é expressar as equações do Eletromagnetismo em forma manifestamente covariante, i.e. invariante por transformações de Lorentz

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

= 0. O campo electrostático não tem fontes de circulação, não roda.

= 0. O campo electrostático não tem fontes de circulação, não roda. Aula Tórica nº 3-7 Prof. Rsponsávl: Mário J. Pinhiro 1. Opradors difrnciais (conclusão) Exrcício 1: Provar qu rot gradu = 1. Usando coordnadas cartsianas. rot u x u y u z U U grad U = = u x +... = x y

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Segunda Prova de Física Aluno: Número USP:

Segunda Prova de Física Aluno: Número USP: Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá

Leia mais

Condensação de Bose. Um sistema de bósons livres confinados num recipiente pode sofrer o fenômeno

Condensação de Bose. Um sistema de bósons livres confinados num recipiente pode sofrer o fenômeno Capítulo 7 Condnsação d Bos 7. Bósons Introdução Um sistma d bósons livrs confinados num rcipint pod sofrr o fnômno da condnsação d Bos. Ess fnômno é consquência dirta da distribuição d Bos-Einstin sgundo

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais