Como a Lei de Snell pode ser obtida do Princípio de Fermat?

Tamanho: px
Começar a partir da página:

Download "Como a Lei de Snell pode ser obtida do Princípio de Fermat?"

Transcrição

1 Como a Lei e Snell poe ser obtia o Prinípio e Fermat? Maria Fernana Araujo e Resene resene@if.usp.br Instituto e Físia, Universiae e São Paulo, CP 66318, São Paulo SP, Brasil 1 Comentários iniiais A primeira oisa que evemos ter em mente para responer esta pergunta é a efinição o ínie e refração absoluto e um meio homogêneo, que é aa por n = v, (1) seno a veloiae relaionaa à luz no váuo, e v a veloiae (eperimentalmente observaa) a luz se propagano no meio supramenionao. que Aliás, omo é a maior veloiae já observaa na Natureza, e aoro esta efinição é bem fáil pereber sempre teremos n 1 e, portanto, o menor ínie e refração absoluto será o o váuo pois, para v =, n = = 1. Em posse esta informação, ao notar que o Prinípio e Fermat preoniza que, e toos os aminhos possíveis para ir e um ponto a outro, a luz segue aquele que é perorrio no tempo mínimo [1], se torna interessante fazer uma estimativa para este tempo, para ver aone isso nos leva. 2 Caminho óptio Para isso, tomemos ois pontos O e F e uma únia vizinhança U, que está relaionaa a um meio fisiamente homogêneo. Diante o fato (eperimentalmente observao) e que, ao assoiarmos O e F aos respetivos pontos e saía e e hegaa e um feie luminoso, o seu trajeto se ientifia om o segmento e reta OF, ao assumirmos que veloiae v este feie é onstante, poemos epressá-la omo v = t, (2) 1

2 one é a istânia entre O e F, enquanto t é o tempo gasto para o feie se loomover entre esses ois pontos. Deste moo, pela ombinação e (1) om (2), é fáil pereber que t = v = n. (3) Com base neste último resultao é possível notar uma oisa uriosa. Afinal, a mesma maneira que poemos interpretar t omo o tempo que este feie luminoso leva para perorrer uma istânia, om a veloiae v onstante que é araterístia o meio por one ele se propaga, também poemos interpretar t e um outro jeito: omo seno o tempo que a luz levaria para perorrer, om sua traiional veloiae o váuo, uma nova istânia n. Ou seja, se enararmos a situação por uma outra perspetiva, que nos permite onsierar que, mesmo passano por um meio homogêneo iferente o váuo, a luz nuna altera a sua veloiae, tuo funionaria omo se a traiional istânia (assoiaa aos pontos O e F ) fosse ampliaa pelo fator n: esta nova istânia, epressa por = n é o que hamamos e aminho óptio. Obviamente eistem situações mais gerais relaionaas a propagação e um feie luminoso, e uma elas surge, por eemplo, ao supormos que O e F pertenem a ois meios que, apesar e serem onsieraos homogêneos, não têm neessariamente a mesma homogeneiae. Neste aso, se onsierarmos que estes são os únios meios pelos quais um feie e luminoso eve transitar, é imeiato que o trajeto efetuao por este feie (que se origina em O e hega até F ) poe ser interpretao pela omposição e ois segmentos e reta OP e P F, seno P um ponto a interfae estes ois meios, onforme ilustra a Figura 1. Figura 1: Comportamento e um feie luminoso que se propaga iniialmente através e um meio homogêneo e que, epois e iniir sobre a interfae que separa este primeiro meio e um outro (também homogêneo, mas (a priori) istinto) é refratao. 2

3 Aliás, omo aa um os segmentos suprarreferios estão relaionaos a propagação, em linha reta, este feie luminoso por um únio meio homogêneo, utilizano o mesmo raioínio que nos levou a (3), ao notar que t 1 = n 1 1 é o tempo relaionao ao perurso o feie por um meio om ínie e refração n 1, one está inserio o segmento OP ujo tamanho é 1, enquanto t 2 = n 2 2 é o tempo gasto pelo mesmo feie que, ao emergir o meio anterior, transita pelo meio e ínie e refração n 1 no qual onsta o segmento OP e tamanho 2, por eemplo, se torna possível fazer uma estimativa para o tempo total gasto no perurso too (que vai e O até F passano por P ) pela superposição t total = t 1 + t 2. (4) 3 Responeno a pergunta Porém, iante e toas estas estimativas e observações, é natural fazer a seguinte pergunta: E este ponto P a interfae: ele poe ser um ponto qualquer? Para responê-la, vamos onsierar o aso mais geral possível, apenas supono que feie luminoso que se propaga no primeiro meio inie sobre a interfae fazeno um ângulo θ 1 (a priori) arbitrário om a sua normal enquanto, no seguno meio, o feie sai esta mesma interfae om um ângulo θ 2 também (a priori) arbitrário relação à mesma normal, e aoro om o que mostra a Figura 2. Aliás, uma oisa bem simples que segue esta figura é que, omo 1 é a hipotenusa e um triângulo retângulo om atetos e tamanhos a e, assim omo 2 também é a hipotenusa e outro triângulo retângulo ujos atetos possuem tamanhos b e y, 2 1 = a = a e 2 2 = b 2 + (y ) 2 2 = b 2 + (y ) 2. (5) Desta forma, omo as onsierações anteriores nos iniam que o tempo total que um feie luminoso leva, para ir e O até F passano por P, é ao pela superposição (4), por efeito estes ois últimos resultaos, temos t total = n n 2 2 = n 1 a n 2 b 2 + (y ) 2. (6) seno a, b e y onstantes reais enquanto, iante o esejo e avaliarmos se P poe ser arbitrário ou não, eve ser tomao omo uma variável real: ou seja, t total eve ser visto omo uma função a sua únia variável que, no aso, é. 3

4 Figura 2: Desenho esquemátio o mesmo omportamento já ilustrao na Figura 1, porém om a presença e algumas onstantes e variáveis úteis à obtenção a Lei e Snell que será feita a seguir. Uma as oisas que naturalmente seguem e (6) é que t total = n 1 a n 2 b 2 + (y ) 2 = n 1 a2 + 2 n 2 y b 2 + (y ) 2 a qual, pelo uso e (5), se reuz a t total = n 1 n 2 1 y 2 (7) Assim, teno em vista que o prinípio e Fermat nos iz que (6) eve ser mínimo, para que isso realmente oorra eve, pelo menos, eistir um valor e que anule este último resultao. Aliás, olhano para este mesmo resultao (7), é muito fáil pereber que esse eiste, pois t total = 0 n 1 n 2 1 y 2 = 0 = n 2 1 (n n 2 1 ) y. (8) Nestes termos, omo 2 2 t total = n n 2 2 > 0, vemos que o valor e obtio em (8) realmente o únio que minimiza t total [2]: ou seja, se o prinípio e Fermat é válio, P não poe ser um ponto arbitrário sobre a interfae estes ois meios e, portanto, os ângulos θ 1 e θ 2 estão relaionaos entre si. Aliás, para entener omo funiona o relaionamento entre θ 1 e θ 2, basta tomarmos a igualae (8) e olharmos para ela e outra maneira: afinal, omo toas as onstantes e variáveis que onstam na Figura 2 4

5 nos permitem notar que sin θ 1 = 1 e sin θ 2 = y 2, é muito fáil pereber que o mesmo valor obtio em (8) também é aquele que satisfaz a n 1 sin θ 1 n 2 sin θ 2 = 0 n 1 sin θ 1 = n 2 sin θ 2, resultao o qual se ientifia om o já observao (eperimentalmente) por Snell. Referênias [1] H. M. Nussenzveig: Curso e Físia Básia, Volume 4: Ótia, Relativiae, Físia Quântia (Eitora Egar Blüher Lta., São Paulo 1998). [2] T. M. Apostol: Calulus, Volume I: One-Variable Calulus, with a Introution to Linear Algebra (John Willey & Sons In., New York 1996). 5

peso de cada esfera: P; comprimento do fio: L; ângulo entre o fio e a vertical: θ; constante eletrostática do meio: k.

peso de cada esfera: P; comprimento do fio: L; ângulo entre o fio e a vertical: θ; constante eletrostática do meio: k. www.fisiaexe.om.br rês esferas, aa uma elas e peso P e eletrizaa om arga, estão suspensas por fios isolantes e omprimento presos a um mesmo ponto. Na posição e equilíbrio os fios formam um ângulo om a

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM:

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: Relembrano...(números inteiros: soma e subtração) Observe os eeríios resolvios, e a seguir resolva os emais:. + =. + 7 = Obs.: failmente entenemos que essas

Leia mais

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas Introução ao rocessamento e íntese e imagens ransformações e Visualiação: Matries Homogêneas Júlio Kioshi Hasegawa Fontes: Esperança e Cavalcanti UFRJ; raina e Oliveira 4 U; e Antonio Maria Garcia ommaselli

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

O E. Se Q distasse 3,2 km de O, quais

O E. Se Q distasse 3,2 km de O, quais Esola Seunária om 3º ilo D. Dinis º Ano e Matemátia A Tema I Geometria no Plano e no Espaço II Tarefa nº 4 O Círulo Trigonométrio. Num eran e raar o raio OP faz 5 om O E e a istânia e P à origem representa,8

Leia mais

ESFORÇO CORTANTE. CAPÍTULO 6 Volume Introdução. σ e tensão tangencial. Entre as cargas: flexão pura Tensões normais: σ x e σ

ESFORÇO CORTANTE. CAPÍTULO 6 Volume Introdução. σ e tensão tangencial. Entre as cargas: flexão pura Tensões normais: σ x e σ CAPÍTULO 6 olume 1 ESFORÇO CORTANTE Pro. José Milton e Araújo - FURG 1 6.1 - Introução a P l-2a P a Entre as argas: lexão pura Tensões normais: σ x e σ y + M + M - Entre a arga e o apoio: lexão simples

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Físia D Extensivo V. esolva Aula 9 Aula 1 9.01) C 9.0) B 1.01) E 1.0) C Aula 0 0.01) B 0.0) 5 01. Correta. Frequênia a luz violeta (lâpaa e 15 W): f violeta f violeta. 7 9,. f violeta 7,7. 14 Hz Coo a

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Esola de Engenharia de Lorena EEL LOB0 - FÍSICA IV Prof. Dr. Dural Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR Esola de Engenharia de Lorena (EEL Uniersidade

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Distâncias inacessíveis

Distâncias inacessíveis U UL L esse: http://fuvestibular.om.br/ Distânias inaessíveis Introdução Na ula 20 aprendemos a alular distânias que não podiam ser medidas diretamente. Nessa aula, os oneitos utilizados foram a semelhança

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday Eletromagnetismo I Prof. Ricaro Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 24 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que se o

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

Descobrindo medidas desconhecidas (II)

Descobrindo medidas desconhecidas (II) A UU L AL A Desobrindo medidas desonheidas (II) Q uem trabalha no ramo da meânia sabe que existem empresas espeializadas em reforma de máquinas. As pessoas que mantêm esse tipo de atividade preisam ter

Leia mais

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s Simulao 1 Física AFA/EFOMM 1- A face inferior e uma camaa e nuvens é plana e horizontal. Um rojão estoura entre o solo e a camaa e nuvens. Uma pessoa situaa na mesma vertical e junto ao solo vê o clarão

Leia mais

Equações Diofantinas Lineares

Equações Diofantinas Lineares Equações Diofantinas Lineares Equações, com uma ou mais incógnitas, e que se procuram soluções inteiras esignam-se habitualmente por Equações iofantinas. Vamos apenas consierar as equações iofantinas lineares,

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

k 1. Admita, então, que k ˆ e

k 1. Admita, então, que k ˆ e Doente Responsável: Prof Carlos R Paiva Duração: horas de Janeiro de 7 Ano etivo: 6 / 7 PRIMEIRO EXAME NOTA Nesta resolução apenas se apresentam as soluções dos problemas que não fazem parte do segundo

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes UNIERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 ET74C Prof.ª Elisabete Nakonezny Moraes Aula 3 Amplifiaor Operaional Malha Fehaa Curitiba, 09 e junho e 017.

Leia mais

Eletromagnetismo II. Aula 23. Professor Alvaro Vannucci

Eletromagnetismo II. Aula 23. Professor Alvaro Vannucci Eletromagnetismo II Aula Professor Alaro annui Na última aula imos... Poteniais de Lienard-Wiehert para argas pontuais, om moimento qualquer. q z ϕ ( r, ˆ e w r µ q y A( r, ϕ ( r, 4π eˆ q ( ) E r, t u

Leia mais

Ábacos de concreto armado solicitado à flexão reta

Ábacos de concreto armado solicitado à flexão reta Ábaos e onreto armao soliitao à fleão reta Graphis of reinfore onrete with uniaial bening moments Elias Antonio Niolas (); Flávio e Oliveira Costa (); Clayton Reis e Oliveira (); Nilson Taeu Maa(3) ()

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007 Eletromagnetismo II o Semestre de 7 Noturno - Prof. Alaro annui aula jun/7 imos: Para uma distribuição arbitrária de argas em moimento, em torno da origem, os poteniais etor e esalar orrespondentes são:

Leia mais

XIII. PROGRAMAÇÃO POR METAS

XIII. PROGRAMAÇÃO POR METAS XIII. PROGRAMAÇÃO POR METAS. Programação Multicritério No moelo e Programação Linear apresentao nos capítulos anteriores optimiza-se o valor e uma única função objectivo num espaço efinio por um conjunto

Leia mais

Gabarito (Exame )

Gabarito (Exame ) Gabarito (Exame 010.1) 1 A) Alternativa (d) O fluxo do ampo elétrio através de uma superfíie Gaussiana qualquer é = E nda A interseção da superfíie Gaussiana om o plano arregado é uma irunferênia de raio

Leia mais

Indutância / Circuitos RL. Indutância Mútua

Indutância / Circuitos RL. Indutância Mútua Eletriciae e Magnetismo - GC nutância / Circuitos R Oliveira E. asilio Jafet sala 0 crislpo@if.usp.br nutância Mútua Anteriormente consieramos a interação magnética entre ois fios que conuziam correntes

Leia mais

Introdução às Ciências Físicas Módulo 1 Aula 1

Introdução às Ciências Físicas Módulo 1 Aula 1 Prática 1 As ativiaes experimentais escritas a seguir foram elaoraas com a finaliae e esenvolver sua capaciae e propor moelos para escrever fenômenos naturais. Experimento 1 Propagação a luz num meio homogêneo

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao

Leia mais

Controle Estatístico de Qualidade. Capítulo 14 (montgomery)

Controle Estatístico de Qualidade. Capítulo 14 (montgomery) Controle Estatístico e Qualiae Capítulo 4 (montgomery) Amostragem e Aceitação Lote a Lote para Atributos Introução A Amostragem poe ser efinia como a técnica estatística usaa para o cálculo e estimativas

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 308 Macroeconomia II 2º Semestre e 2017 Pro. Fernano Rugitsky Lista e Exercícios 2 [1] Suponha

Leia mais

Matemática 5.º ano Oo CSES_MAT5_F01_ _5P_CImg.indd 1 01/15/13 9:53 AM

Matemática 5.º ano Oo CSES_MAT5_F01_ _5P_CImg.indd 1 01/15/13 9:53 AM Matemática 5.º ano Oo Índice presentação FIH 1 Triângulos Ângulos: amplitude e medição. Pares de ângulos 4 FIH 2 Triângulos lassificação de polígonos 6 FIH 3 Triângulos onstruções 8 FIH 4 Triângulos Ângulos

Leia mais

9 a ficha de exercícios de Mecânica Geométrica

9 a ficha de exercícios de Mecânica Geométrica Resolução Sumária a 9 a ficha e exercícios e Mecânica Geométrica 5 e Maio e. a) Dê um exemplo e uma varieae Riemanniana conteno ois pontos pelos quais não passa qualquer geoésica. b) Dê um exemplo e uma

Leia mais

Lei de Snell e a Aproximação

Lei de Snell e a Aproximação Lei de Snell e a Aproximação raciano-ereira, T. Frota, D.A. Sobral Matemática Universidade Estadual Vale do Acaraú 7 de março de 2009 tarcisio@member.ams.org pré-prints da Matemática em Sobral no. 2009.03

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico 1 MECÂNICA CLÁSSICA AULA N o 5 Aplicações o Lagrangeano Trajetória no Espaço e Fases para o Pênulo Harônico Vaos ver três eeplos, para ostrar a aior faciliae a aplicação o Lagrangeano, quano coparaa ao

Leia mais

MÉTODOS SIMPLIFICADOS PARA A VERIFICAÇÃO DE PUNÇÃO EXCÊNTRICA

MÉTODOS SIMPLIFICADOS PARA A VERIFICAÇÃO DE PUNÇÃO EXCÊNTRICA ISSN 809-5860 ÉTODOS SIPLIFICADOS PARA A VERIFICAÇÃO DE PUNÇÃO EXCÊNTRICA Juliana Soares Lima & Libânio irana Pinheiro Resumo Nas reomenações a NBR 68:978 relativas à unção, não eram revistos os asos em

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

ESTUDOS PRELIMINARES DA APLICAÇÃO DE CONTROLE COORDENADO DE TENSÃO NA ÁREA RIO

ESTUDOS PRELIMINARES DA APLICAÇÃO DE CONTROLE COORDENADO DE TENSÃO NA ÁREA RIO VIII SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA VIII SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING 19 a 23 e Maio e 2002 May 19 th to 23 r 2002

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakoneczny Moraes UNIERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C Prof.ª Elisabete Nakonezny Moraes Aula Amplifiaor Operaional Coneitos Curitiba, 07 e junho e 017.

Leia mais

4Parte OBJETIVO GERAL. Parte I Preparação da atividade laboratorial

4Parte OBJETIVO GERAL. Parte I Preparação da atividade laboratorial Relatórios as ativiaes laboratoriais AL 2.2 VELOCIDADE DE PROPAGAÇÃO DO SOM OBJETIVO GERAL Determinar a velociae e propagação e um sinal sonoro. a realização a ativiae laboratorial proposta irá permitir

Leia mais

da carruagem cujo comprimento, do seu ponto de vista, é L

da carruagem cujo comprimento, do seu ponto de vista, é L ula Prátia Problema O, no interior de um vagão de omboio, emite um sinal dmita que um observador eletromagnétio a partir do ponto médio do ompartimento ssim, este observador nota que o sinal emitido hega

Leia mais

Estudo Dirigido de Matemática 2 o Trimestre

Estudo Dirigido de Matemática 2 o Trimestre Nome: Nº Colégio Nossa Senhora das Dores 1º ano EM Prof. Manuel Data: / /009 Estudo Dirigido de Matemátia o Trimestre Prezado(a) aluno(a), Devido à interrupção das aulas durante o período ompreendido entre

Leia mais

REA DILATAÇÃO DO TEMPO

REA DILATAÇÃO DO TEMPO Bloo III - Postulados e suas Consequênias REA.3.3.. ILATAÇÃO O TEPO Para a relatividade, o tempo é uma grandeza que depende do referenial. Isso signifia que o funionamento dos relógios (nossos instrumentos

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO P1. apacitâncias o início a e o fim karε0a ε0a a a 1 1 1 kε0a b b 1 ε0a kε0a k 1 omo Q U, vem: ε0au kε0au Qa e Qb k 1 Qb k Qa k 1 SOLUÇÃO P. [] b (com kar 1) : apacitores em série carregam-se com

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 Teoria dos Números 09/09/2011

Projecto Delfos: Escola de Matemática Para Jovens 1 Teoria dos Números 09/09/2011 Projecto Delfos: Escola e Matemática Para Jovens 1 Teoria os Números 09/09/2011 Funções aritméticas Este texto e apoio baseia-se no seguno capítulo e Tom M. Apostol, Introuction to Analytic Number Theory.

Leia mais

III Corpos rígidos e sistemas equivalentes de forças

III Corpos rígidos e sistemas equivalentes de forças III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.

Leia mais

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução Sistemas lineares Vamos pensar na seguinte situação-problema: Um terreno e 8000 m² eve ser iviio em ois lotes. O lote maior everá ter 000 m² a mais que o lote menor. Vamos calcular a área que caa lote

Leia mais

Física IV. Sexta lista de exercícios

Física IV. Sexta lista de exercícios 4302212 Física IV Sexta lista de exercícios 1. Considere a superfície plana refletora que consta na Figura 1, sobre a qual incidem dois raios luminosos paralelos 1 e 2, que pertencem a uma mesma onda,

Leia mais

Matemática e suas tecnologias

Matemática e suas tecnologias Matemática 4 0. c a) INORRETO. O móulo e zero é igual a zero. b) INORRETO. O móulo e qualquer número negativo é o oposto o número. c) ORRETO. Os móulos e ois números opostos são iguais. ) INORRETO. O móulo

Leia mais

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i Receptor Ótimo Implementação o receptor ótimo baseaa em Filtro Casao s (t M t) t t M b r(t) s i (t) + w(t) a Selecionar m ˆ m i Maior s M (t M t) t t M a M b M Receptor Ótimo Implementação o receptor ótimo

Leia mais

Método Simplex Resolução Algébrica. Prof. Ricardo Santos

Método Simplex Resolução Algébrica. Prof. Ricardo Santos Método Simple Resolução Algébria Prof. Riardo Santos Método Simple Dada uma solução fatível: Essa solução é ótima? Caso não seja ótima omo determinar uma melhor? Considere uma solução básia fatível: em

Leia mais

QUESTÕES PROPOSTAS SINAIS E ONDAS (pp )

QUESTÕES PROPOSTAS SINAIS E ONDAS (pp ) Física Domínio Onas e eletromagnetismo QUESTÕES PROPOSTAS 4.. SINAIS E ONDAS (pp. 51-56) 4. Uma fonte emite onas sonoras e 00 Hz. A uma istância e 0 m a fonte está instalao um aparelho que regista a chegaa

Leia mais

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES

Leia mais

Capacitor: dispositivo que armazena energia potencial elétrica num circuito. Também chamado condensador.

Capacitor: dispositivo que armazena energia potencial elétrica num circuito. Também chamado condensador. Universiae Feeral o Paraná Setor e Ciências Exatas Departamento e Física Física III Prof. Dr. icaro Luiz iana eferências bibliográficas: H. 7-, 7-3, 7-5 S. 5-, 5-4 T. -, -, -4 Aula 8: Capacitância Garrafa

Leia mais

Aula a) Movimento uniformemente variado. b) v 5 5 m/s e a 5 2 m/s 2 c) v 5 11 m/s. e) DS 5 18 m. 2. a) v t b) t 5 12s c) t 5 15s

Aula a) Movimento uniformemente variado. b) v 5 5 m/s e a 5 2 m/s 2 c) v 5 11 m/s. e) DS 5 18 m. 2. a) v t b) t 5 12s c) t 5 15s ESIO MÉDIO RESPOSTAS DAS TAREFAS 1ª SÉRIE 3 Físia Setor A Aula 13 1. A 2. a) a m 5 25 m/s 2 b) a m 5 22,8 m/s 2 3. a) a m 5 2 m/s 2 b) v 5 2 m/s ) v (m/s) 2 Aula 14 1. a) Movimento uniformemente variado.

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

FÍSICA IV Problemas Complementares 2 O modelo ondulatório da luz: interferência e

FÍSICA IV Problemas Complementares 2 O modelo ondulatório da luz: interferência e FÍSICA IV Problemas Complementares 2 O moelo onulatório a luz: interferência e ifração 21 e Setembro e 2009 Problema 1 Quano uma componente monocromática a luz troca e meio, a sua freqüência permanece

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS Fisia será a elevação da tensão elétria Assim, 500 10 000 omo >, o onjunto roduzirá 200 5000 maior elevação de tensão 23 Um transformador é onstituído por duas bobinas e um núleo de ferro Quando a orrente

Leia mais

Cálculo IV EP1 Aluno

Cálculo IV EP1 Aluno Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

Perceptron de Múltiplas Camadas (MultiLayer Perceptron-MLP) com algoritmo de treinamento por RetroPropagação de Erros (Error BackPropagation)

Perceptron de Múltiplas Camadas (MultiLayer Perceptron-MLP) com algoritmo de treinamento por RetroPropagação de Erros (Error BackPropagation) Perceptron e Múltiplas Camaas (MultiLayer Perceptron-MLP) com algoritmo e treinamento por RetroPropagação e Erros (Error BackPropagation) IF67D Sistemas Inteligentes 1 UTFPR - 2015 Prof. João Alberto Fabro

Leia mais

10º ENTEC Encontro de Tecnologia: 28 de novembro a 3 de dezembro de 2016

10º ENTEC Encontro de Tecnologia: 28 de novembro a 3 de dezembro de 2016 SIMULAÇÃO DE UM PROCESSO FERMENTATIVO EM UM BIORREATOR PERFEITAMENTE MISTURADO Ana Carolina Borges Silva 1 ; José Walir e Sousa Filho 2 1 Universiae Feeral e Uberlânia 2 Universiae e Uberaba carolina.borges87@gmail.com,

Leia mais

Criac~ao de um Dipolo: O Proto-Potencial Vetor (Creation of a dipole: the proto-potential vector) G. F. Leal Ferreira Instituto de Fsica, Universidade

Criac~ao de um Dipolo: O Proto-Potencial Vetor (Creation of a dipole: the proto-potential vector) G. F. Leal Ferreira Instituto de Fsica, Universidade Cria~ao e um Dipolo: O Proto-Potenial Vetor (Creation of a ipole: the proto-potential vetor) G. F. Leal Ferreira Instituto e Fsia, Universiae e S~ao Paulo Caixa Postal 369, 13560-970, S~ao Carlos, SP,

Leia mais

Lógica combinacional modular e multi-níveis

Lógica combinacional modular e multi-níveis Lógia ombinaional moular e multi-níveis Uma possível estruturação e um programa e omputaor é a sua eomposição em móulos/funções. Do ponto e vista global, apenas interessam as entraas e saías os móulos

Leia mais

Aula-7 Teoria da Relatividade

Aula-7 Teoria da Relatividade Aula-7 Teoria da Relatiidade Os Postulados i) Postulado da relatiidade: As leis da físia deem ser eatamente as mesmas se desritas por obseradores em diferentes refereniais ineriais. Não eiste um referenial

Leia mais

Física I Lista 2: resolver até

Física I Lista 2: resolver até Universidade de São Paulo Instituto de Físia de São Carlos Físia I Lista : resolver até 18.3.013 Nome: Matriula: Questão 16: Tensor de Levi-Civita Sejam dados os vetores a, b,, d R 3. A definição do símbolo

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Diferecial Uma equação iferecial é uma epressão que relacioa uma fução escohecia (icógita) com suas erivaas É útil classificar os iferetes tipos e equações para um esevolvimeto sistemático a Teoria

Leia mais

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS PROF. HAROLDO FILHO COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO Algumas as utiliaes são: atribuir um significao geométrico a fatos e natureza numérica, como o comportamento e uma função real

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

Capítulo I Geometria no Plano e no Espaço

Capítulo I Geometria no Plano e no Espaço Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre

Leia mais

RESOLUÇÃO ATIVIDADE ESPECIAL

RESOLUÇÃO ATIVIDADE ESPECIAL RESOLUÇÃO ATIVIDADE ESPECIAL Física Prof. Rawlinson SOLUÇÃO AE. 1 Através a figura, observa-se que a relação entre os períoos as coras A, B e C: TC TB T A = = E a relação entre as frequências: f =. f =

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Valor: Nº: SÉRIE:2ª TURMA: 5,0 UNIDADE: VV JC JP PC DATA: / /2015 Obs.: Esta lista eve ser entregue apenas ao professor no ia a aula

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006 PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MAEMÁICA EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA ESCRIA DE MAEMÁICA º ano e 6 ª FASE 006 A generaliae os alunos que realizaram esta prova e eame são os que iniciaram

Leia mais

Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos

Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos Guia o Professor Móulo IV Ativiae - Fazeno um Plano e Vôo Apresentação: Nesta ativiae será proposto que o aluno faça um plano e vôo observano certas regras. Para isso, será preciso calcular a istância

Leia mais

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40 Universiae Feeral o Espírito Santo Prova e Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :.Observações: IPara fazer a prova é permitio usar somente caneta,

Leia mais

Razões Trigonométricas

Razões Trigonométricas Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 13 de Agosto de 2013 Problema 13 (The New York City Contest - Outono 1983) No triângulo ABC, sin 2 A + sin 2 B = 1. Encontre

Leia mais

Mecânica Analítica REVISÃO

Mecânica Analítica REVISÃO Mecânica Analítica REVISÃO Prof. Nelson Luiz Reyes Marques Vínculos São limitações às possíveis posições e velociaes as partículas e um sistema mecânico, restringino a priori o seu movimento. É importante

Leia mais

Traçado do gráfico de uma função; otimização

Traçado do gráfico de uma função; otimização 15 Traçado do gráfico de uma função; otimização Sumário 15.1 Traçado do gráco de uma função.......... 15. Problemas de otimização............... 15 1 Unidade 15 Traçado do gráfico de uma função 15.1 Traçado

Leia mais

APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA

APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA Aplica-se a trigonometria esférica na resolução e muitos problemas e cartografia, principalmente naqueles em que a forma a Terra é consieraa

Leia mais

3.8 O Teorema da divergência ou Teorema de Gauss

3.8 O Teorema da divergência ou Teorema de Gauss 144 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.8 O Teorema a ivergência ou Teorema e Gauss O Teorema e tokes relaciona uma integral e superfície com uma e linha ao longo o boro a superfície. O Teorema e Gauss

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais