Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos

Tamanho: px
Começar a partir da página:

Download "Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos"

Transcrição

1 Guia o Professor Móulo IV Ativiae - Fazeno um Plano e Vôo Apresentação: Nesta ativiae será proposto que o aluno faça um plano e vôo observano certas regras. Para isso, será preciso calcular a istância entre uas ciaes, ou matematicamente falano, a istância entre ois pontos, conceito funamental para a Geometria Analítica. O aluno everá traçar uma rota e vôo utilizano uma aeronave a escolher entre alguns moelos. Nessa rota, a aeronave passará por algumas ciaes one será ou não abastecia, epeneno e sua autonomia e vôo. O objetivo o "comanante" a aeronave é completar o percurso eterminao com o menor custo, seno que, para isso, será necessário calcular as istâncias entre as ciaes e avaliá-las comparativamente à autonomia e vôo a aeronave escolhia. Objetivos - Interpretar e fazer uso e um moelo baseao no teorema e Pitágoras para eterminar a istância entre ois pontos. Pré-requisitos Para fazer essa ativiae, o aluno everá ter conhecimento o Teorema e Pitágoras, e localizar corretamente pontos no plano cartesiano. Tempo previsto para a ativiae A ativiae everá ser realizaa no períoo e 1h/aula Na sala e aula Motive seus alunos para a próxima ativiae no computaor que everá ser a construção e um plano e vôo. Leve algumas reportagens que falem sobre esses planos, e se possível, comente aos técnicos e alguns tipos conhecios e aeronaves, como, por exemplo, os Boings, ou o Concore, ou aina alguns moelos a Embraer. Os alunos normalmente esconhecem os valores as velociaes e acelerações esenvolvias por aviões e grane e méio porte, bem como também capaciae e carga e e passageiros, ou aina altura e vôo e autonomia. Não será ifícil obter aos essa natureza em sites especializaos sobre aeronáutica. Poe acontecer também que os alunos conheçam alguns softwares que simulam viagens e aviões. Se isso ocorrer, peça para que eles façam uma apresentação esses simulaores para toa a classe. O professor e física poerá ajuar na compreensão os etalhes técnicos e também nos princípios que regem o funcionamento os aviões. 1

2 Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos Plugin e Flash MX No laboratório: Durante a ativiae Na primeira tela serão apresentaas, em um plano cartesiano, cinco ciaes (escolhias ranomicamente) e um percurso e vôo para ser feito a partir elas. O usuário everá escolher um moelo e avião para fazer o trajeto, observano a autonomia, ou seja, quantos quilômetros a nave voa com o combustível e um tanque, além e outras informações necessárias. Para eterminar a istância as ciaes o aluno poerá utilizar a ferramenta e um triângulo retângulo que poe ser encaixao nas coorenaas. Assim ficará estacao o triângulo para que o aluno perceba que a istância poe ser calculaa pela meia a hipotenusa o triângulo. Esse triângulo retângulo poe ter as meias e seus catetos aumentaos e também poe ser rotacionao para que seja possível ao usuário sobrepor, em qualquer caso, a hipotenusa o triângulo ao segmento cuja meia representa a istância entre uas ciaes O usuário igita seu plano e vôo, que consiste na aeronave que escolheu e em quais ciaes pretene abastecer.,, Além isso, faz uma estimativa e seu tempo e viagem o início ao fim, consierano a velociae a aeronave escolhia, as istâncias que percorrerá e os tempos e abastecimento.

3 O aluno everá preencher o plano e vôo com as seguintes características: Ponto e partia Ciae Ciae 3 Ciae 4 Chegaa Ciae Distância (km) *** 1*** (Campo Tempo e vôo(horas e minutos) (Campo Pouso (sim ou não) (Campo SIM Combustível isponível (Litros) *** *** O sistema simulará o vôo e acoro com o plano efinio pelo usuário. Se o plano contiver aos erraos, o avião não completa o percurso, parano no meio o caminho. Caso o usuário não consiga traçar corretamente seu plano e vôo, poerá fazer uso o botão ajua para auxiliá-lo nos cálculos. Se o plano e vôo for traçao corretamente, o usuário poerá passar para a tela seguinte ou repetir o proceimento. Está previsto um teste final comparano o esempenho o usuário com uma escala e esempenhos pré-calculaa pelo sistema, e moo que será possível ao usuário eciir-se por tentar melhorar sua performance voltano à tela anterior e traçano novo plano e vôo. Um exemplo o plano e vôo: Ciae Distância (km) Tempo e vôo(horas e minutos) Pouso (sim ou não) Combustível isponível (Litros) Ponto e (14,9) 400 litros partia Ciae (9,4) Ciae 3 Ciae 4 Chegaa SIM Se escolher a aeronave 1: Autonomia e vôo: 000 km Velociae e cruzeiro: 0 km/h Custo e operação para caa pouso: R$ ,00 Capaciae o tanque e combustível: 400 L Se a nave estiver na coorenaa (14,9), ele aparecerá automaticamente na tabela e também os 400 litros automaticamente. O aluno everá calcular a istância: 707 e colocá-la na seguna coluna. O cálculo a istância é o seguinte: ( x x ) + ( y y )

4 Os feebacks que serão apresentaos para erro no cálculo a istância: Reveja seus cálculos Feeback : Use a ferramenta o triângulo retângulo para fazer o cálculo. Lembre-se: a escala o seu esenho é 1:100. Meir a istância usano o Teorema e Pitágoras no triângulo retângulo, você poerá meir as istâncias entre as ciaes. Veja um exemplo: Encontramos a equação: = = + = 0 = ± + 0 ± 7,07 Como estamos falano em istâncias o valor é apenas positivo, ou seja, 7,07. Too quarainho mee 100km, então a resposta é 707km Feebacks para o erro no tempo e vôo Reveja seus cálculos! Feeback : Lembra-se que o tempo e vôo poe ser eterminao pelo quociente entre a istância e a velociae e vôo. Veja como poemos fazer o cálculo e vôo para uma istância e 707 km e velociae e 0 km/h: Tempo e vôo = istância / velociae e vôo Tempo e vôo = 707 km / 0 km/h Tempo e vôo =,8 horas 0,8 x 60 minutos = 48 minutos 4

5 Feebacks para erro no consumo a aeronave Reveja seus cálculos! Feeback : Você já calculou o consumo a sua aeronave? Se, por exemplo, sua autonomia é e.000km e tem a capaciae para 400 litros, poemos izer que consumo méio é 000km = km / l. A partir aqui, reveja seus cálculos. 400litros Se você já sabe o consumo e sua aeronave sabeno que a autonomia é e.000km e 000km tem a capaciae para 400 litros, então o consumo é = km / l. Para uma 400litros 1.000km viagem e 1000 km foram consumios = 00litros. Verifique quantos litros km / l havia na sua aeronave e calcule novamente. Quano o aluno termina e completar o preenchimento e clica em OK é feito o vôo a aeronave e apresenta o relatório na tela: Distância o percurso: km Combustível utilizao: litros Na tela seguinte, o aluno terá o mesmo objetivo, apenas será retiraa a ferramenta o triângulo retângulo. Assim o aluno fará o cálculo as istâncias por generalização o conceito anterior. Na ativiae anterior falamos a importância e como utilizar os feebacks para a realização e correção e estratégia pelo aluno. Surgino úvia, sugerimos voltar e ler novamente as icas ali apresentaas. Avaliação O professor poerá observar a realização a ativiae pelos alunos, avaliano e iscutino se conseguiram uma viagem que tenha sio mais ou menos econômica. Nesse momento, será importante comparar vários resultaos, obtios pelos alunos, a fim e fornecer parâmetros e iscussão e aprimoramento. Os alunos poerão também prouzir relatórios escritos sobre seus planos e vôos, escreveno as ificulaes surgias e os conceitos importantes que envolvem a ativiae. Além isso, poerão criar situações semelhantes à proporcionaa pela ativiae, que, embora não virtuais, poerão ser trocaas entres eles e resolvias para, assim, formarem um instrumento e avaliação a compreensão os conteúos envolvios.

Roteiro da atividade. fase 1. Gráfico

Roteiro da atividade. fase 1. Gráfico Roteiro da atividade Título da animação: Fazendo um plano de vôo Autor: Carmen Tereza Pagy Felipe dos Reis, Celso de Oliveira Faria e Walter Spinelli Texto: fase 1 Gráfico Olá amigos. Agora você será o

Leia mais

Controle Estatístico de Qualidade. Capítulo 14 (montgomery)

Controle Estatístico de Qualidade. Capítulo 14 (montgomery) Controle Estatístico e Qualiae Capítulo 4 (montgomery) Amostragem e Aceitação Lote a Lote para Atributos Introução A Amostragem poe ser efinia como a técnica estatística usaa para o cálculo e estimativas

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total?

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total? UFJF MÓDULO I DO PISM TRIÊNIO 013-015 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA Questão 1 Um circuito e teste para carros é constituío e uas pistas circulares e raios 10 km e 5 km, que se intersectam

Leia mais

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10.1 INTRODUÇÃO A armaura posicionaa na região comprimia e uma viga poe ser imensionaa a fim e se reuzir a altura e uma viga, caso seja necessário.

Leia mais

Aula 1- Distâncias Astronômicas

Aula 1- Distâncias Astronômicas Aula - Distâncias Astronômicas Área 2, Aula Alexei Machao Müller, Maria e Fátima Oliveira Saraiva & Kepler e Souza Oliveira Filho Ilustração e uma meição e istância a Terra (à ireita) à Lua (à esquera),

Leia mais

CURSO APOIO FÍSICA RESOLUÇÃO 20 /

CURSO APOIO FÍSICA RESOLUÇÃO 20 / FÍSICA CURSO APOIO 0. Um veículo trafega por uma avenia retilínea e o gráfico mostra a variação o móulo e sua velociae, em função o tempo, em três trechos. Os intervalos e tempo ecorrios em caa um os trechos

Leia mais

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s UFRJ Equipe UFRJ Olimpíaa Brasileira e Física Lista Aula 3C Física Jorão 1 É aa a seguinte função horária a velociae escalar e uma partícula em movimento uniformemente variao: v = 15 + t (SI) Determine:

Leia mais

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS PROF. HAROLDO FILHO COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO Algumas as utiliaes são: atribuir um significao geométrico a fatos e natureza numérica, como o comportamento e uma função real

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

DIFERENÇA DE POTENCIAL. d figura 1

DIFERENÇA DE POTENCIAL. d figura 1 DIFERENÇ DE POTENCIL 1. Trabalho realizao por uma força. Consieremos uma força ue atua sobre um objeto em repouso sobre uma superfície horizontal como mostrao na figura 1. kx Esta força esloca o objeto

Leia mais

Caracterização de povoamentos Variáveis dendrométricas da árvore (continuação)

Caracterização de povoamentos Variáveis dendrométricas da árvore (continuação) Caracterização e povoamentos Variáveis enrométricas a árvore (continuação) FORMA Forma Equação a parábola orinária 5 0 5 y = i/ 0 0 0 0 30 y b x -5 com b real -0-5 x = i Forma Família as parábolas generalizaas

Leia mais

Design Pedagógico do módulo

Design Pedagógico do módulo Design Pedagógico do módulo Escolha do tópico O que um aluno entre 14 e 18 anos acharia de interessante neste tópico? O uso do plano cartesiano permite localizar alguns objetos ou formas geométricas no

Leia mais

Modulo 5 Lei de Stevin

Modulo 5 Lei de Stevin Moulo 5 Lei e Stevin Simon Stevin foi um físico e matemático belga que concentrou suas pesquisas nos campos a estática e a hirostática, no final o século 16, e esenvolveu estuos também no campo a geometria

Leia mais

Tempo previsto para a atividade 1hora/aula no laboratório de informática Na sala de aula Converse com seus alunos sobre a importância de se localizar

Tempo previsto para a atividade 1hora/aula no laboratório de informática Na sala de aula Converse com seus alunos sobre a importância de se localizar Guia do Professor Módulo IV Atividade 1 Localizando no Plano Introdução Caro professor, Cumprindo o propósito do RIVED de oferecer suporte ao professor em sala de aula através de recursos computacionais,

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao

Leia mais

Matemática. Aula: 07 e 08/10. Prof. Pedro Souza. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 07 e 08/10. Prof. Pedro Souza. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 07 e 08/10 Prof. Pero Souza UMA PARCERIA Visite o Portal os Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistaeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO

Leia mais

7 ano E.F. Professores Tiago Miranda e Cleber Assis

7 ano E.F. Professores Tiago Miranda e Cleber Assis Móulo e Razões e Proporções A Noção e Razão e Exercícios 7 ano E.F. Professores Tiago Mirana e Cleber Assis Razões e Proporções A Noção e Razão e Exercícios 2 Exercícios e Fixação Exercícios Introutórios

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

A) tecido nervoso substância cinzenta. B) tecido nervoso substância branca. C) hemácias. D) tecido conjuntivo. E) tecido adiposo.

A) tecido nervoso substância cinzenta. B) tecido nervoso substância branca. C) hemácias. D) tecido conjuntivo. E) tecido adiposo. 1. No gráfico abaixo, mostra-se como variou o valor o ólar, em relação ao real, entre o final e 2001 e o início e 2005. Por exemplo, em janeiro e 2002, um ólar valia cerca e R$2,40. Durante esse períoo,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

UMA APLICAÇÃO DA MODELAGEM MATEMÁTICA NA AGRICULTURA¹ AN APPLICATION OF THE MATHEMATICAL MODELING IN AGRICULTURE

UMA APLICAÇÃO DA MODELAGEM MATEMÁTICA NA AGRICULTURA¹ AN APPLICATION OF THE MATHEMATICAL MODELING IN AGRICULTURE Disc. Scientia. Série: Ciências Naturais e Tecnológicas, S. Maria, v. 9, n. 1, p. 33-43, 2008. 33 ISSN 1981-2841 UMA APLICAÇÃO DA MODELAGEM MATEMÁTICA NA AGRICULTURA¹ AN APPLICATION OF THE MATHEMATICAL

Leia mais

Rastreamento e Telemetria de Veículos e Embarcações em Missões Estratégicas.

Rastreamento e Telemetria de Veículos e Embarcações em Missões Estratégicas. Rastreamento e Telemetria e Veículos e Embarcações em Missões Estratégicas. Douglas Soares os Santos, Wagner Chiepa Cunha e Cairo L. Nascimento Jr. Instituto Tecnológico e Aeronáutica - Praça Marechal

Leia mais

Aula 4 Modelos CC e CA para Diodos. Prof. AC.Seabra-PSI/EPUSP

Aula 4 Modelos CC e CA para Diodos. Prof. AC.Seabra-PSI/EPUSP Aula 4 Moelos CC e CA para ioos Prof. AC.Seabra-PS/EPUSP 2013 1 1 PS 2223 ntroução à Eletrônica Programação para a Primeira Prova Prof. AC.Seabra-PS/EPUSP 2013 2 4ª Aula: Moelos CC e CA para ioos Na aula

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA UNIVERIDADE ETADUAL AULITA JÚLIO DE MEUITA FILHO FAULDADE DE ENGENHARIA - DEARTAMENTO DE ENGENHARIA ELÉTRIA ELETROTÉNIA Experiência 01: Meição a potência e correção o fator e potência em circuitos monofásicos

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

AVALIAÇÃO DE RECUPERAÇÃO SEMESTRAL DE FÍSICA 1º/2012. QUESTÃO 1 Valor: 1,0 ponto Nota obtida nesta questão:

AVALIAÇÃO DE RECUPERAÇÃO SEMESTRAL DE FÍSICA 1º/2012. QUESTÃO 1 Valor: 1,0 ponto Nota obtida nesta questão: EDUCAÇÃO DO SERVIÇO SOCIAL DO COMÉRCIO EDUSESC Área Especial 2/3 Lote B Norte Taguatinga DF Proessores: Demetrius Leão (Fís.1) e Diones Charles (Fís. 2) Ano Letivo: 2012 Segmento: Ensino Méio Disciplina:

Leia mais

Aula 02. Assunto: Vetores Hidrostática Dilatação Térmica Força Elétrica

Aula 02. Assunto: Vetores Hidrostática Dilatação Térmica Força Elétrica Aula 0 Assunto: Vetores Hirostática Dilatação Térmica orça Elétrica 1. (UC-96) As figuras a e b, abaixo, inicam, caa uma elas, uas caminhaas sucessivas e 0m e comprimento, realizaas sobre uma superfície

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA 81 1 SOLENÓDE E NDUTÂNCA 1.1 - O SOLENÓDE Campos magnéticos prouzios por simples conutores, ou por uma única espira são, para efeitos práticos, bastante fracos. Uma forma e se prouzir campos magnéticos

Leia mais

Guia do Professor: Construindo relações trigonométricas

Guia do Professor: Construindo relações trigonométricas Guia do Professor: Construindo relações trigonométricas Introdução Caro professor, Na realidade, a trigonometria é uma ciência muito antiga, mas suas aplicações sempre aparecem no nosso cotidiano. O objeto

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Valor: Nº: SÉRIE:2ª TURMA: 5,0 UNIDADE: VV JC JP PC DATA: / /2015 Obs.: Esta lista eve ser entregue apenas ao professor no ia a aula

Leia mais

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres. A UA UL LA Revisão I Introdução Vamos iniciar, nesta aula, a revisão do nosso curso do 2º grau. Ela será feita em forma de exemplos que vão abordar de novo os principais conteúdos. Para aproveitar bem

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

Medição de umidade no solo através de sensores capacitivos

Medição de umidade no solo através de sensores capacitivos Meição e umiae no solo através e sensores capacitivos Anréa Carla Alves Borim* Doutora em Engenharia Elétrica - UFU Assessora e Desenvolvimento Eucacional a Anhanguera Eucacional Professora a Faculae Comunitária

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

AVALIAÇÃO DA QUALIDADE DAS MEDIÇÕES REALIZADAS NO MÓDULO ESTEREOPLOTER DA VERSÃO INTEGRADA DO SOFTWARE LIVRE E-FOTO

AVALIAÇÃO DA QUALIDADE DAS MEDIÇÕES REALIZADAS NO MÓDULO ESTEREOPLOTER DA VERSÃO INTEGRADA DO SOFTWARE LIVRE E-FOTO p. 001-0010 AVALIAÇÃO DA QUALIDADE DAS MEDIÇÕES REALIZADAS NO MÓDULO ESTEREOPLOTER DA VERSÃO INTEGRADA DO SOFTWARE LIVRE E-FOTO NATÁLIA VARGAS LENGRUBER 1 JOÃO GONÇALVES BAHIA 2 LUIZ GUIMARÃES BARBOSA

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universiae e São Paulo Instituto e Física NOTA PROFESSOR 4323202 Física Experimental B Equipe 1)... função... Turma:... 2)... função... Data:... 3)... função... Mesa n o :... EXP 5- Difração e Interferência

Leia mais

EQUILÍBRIO DA ALAVANCA

EQUILÍBRIO DA ALAVANCA EQUILÍBRIO DA ALAVANCA INTRODUÇÃO A Alavanca é uma as máquinas mais simples estuaas na Grécia antiga. Ela consiste e uma barra rígia que gira em torno e um ponto fixo enominao fulcro. A balança e ois braços

Leia mais

FUVEST Prova A 10/janeiro/2012

FUVEST Prova A 10/janeiro/2012 Seu Pé Direito nas Melhores Faculaes FUVEST Prova A 10/janeiro/2012 física 01. A energia que um atleta gasta poe ser eterminaa pelo volume e oxigênio por ele consumio na respiração. Abaixo está apresentao

Leia mais

UTILIZAÇÃO DE ANAGLIFOS NA VISUALUIZAÇÃO DE GRÁFICOS TRIDIMENSIONAIS

UTILIZAÇÃO DE ANAGLIFOS NA VISUALUIZAÇÃO DE GRÁFICOS TRIDIMENSIONAIS UTILIZAÇÃO DE ANAGLIFOS NA VISUALUIZAÇÃO DE GRÁFICOS TRIDIMENSIONAIS Bruno Euaro Maeira INSTITUTO MILITAR DE ENGENHARIA Resumo O presente trabalho exibe um sistema capa e traçar anaglifos e gráficos e

Leia mais

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas Introução ao rocessamento e íntese e imagens ransformações e Visualiação: Matries Homogêneas Júlio Kioshi Hasegawa Fontes: Esperança e Cavalcanti UFRJ; raina e Oliveira 4 U; e Antonio Maria Garcia ommaselli

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos a física Uniae Capítulo 7 Gravitação Universal esoluções os exercícios propostos.0 a) velociae orbital o planeta aumenta à meia que ele se aproxima o ol e iminui à meia que se afasta, e acoro com a seguna

Leia mais

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2.

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2. Interação Gravitacional Vimos que a mola é esticaa quano um corpo é suspenso na sua extremiae livre. A força que estica a mola é e origem eletromagnética e tem móulo igual ao móulo o peso o corpo. O peso

Leia mais

J L. PDF created with pdffactory Pro trial version

J L. PDF created with pdffactory Pro trial version ª Questão) No sistea ostrao na figura, a relação e transissão n L /n, J L 0 kg. e J,5 kg.. O atrito poe ser esprezao e poe-se assuir u acoplaento se peras. esenhe a curva e torque e função o tepo o oto,

Leia mais

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios () Física Movimento Retilíneo Uniforme Resoluções dos Exercícios Professor Dutra Exercícios () 1)Um móvel parte da posição 15 m com velocidade

Leia mais

CIV-2801 FUND. DE COMPUTAÇÃO GRÁFICA APLICADA Primeiro Trabalho Programação em C: Implementação de elementos finitos isoparamétricos

CIV-2801 FUND. DE COMPUTAÇÃO GRÁFICA APLICADA Primeiro Trabalho Programação em C: Implementação de elementos finitos isoparamétricos CIV-8 FUND DE COMPUTAÇÃO GRÁFICA APLICADA 6 Primeiro Trabalho Programação em C: Implementação e elementos finitos isoparamétricos O objetivo este trabalho é implementar funções básicas e uma família e

Leia mais

Sônia Pinto de Carvalho

Sônia Pinto de Carvalho s Funções Hiperbólicas Sônia Pinto e Carvalho Introução Quano fiz o curso e Cálculo I fui apresentaa às funções hiperbólicas através e sua efinição eponencial. Lembro-me que, na época, achei muito engraçao

Leia mais

Física A figura mostra um gráfico da velocidade em função do tempo para um veículo

Física A figura mostra um gráfico da velocidade em função do tempo para um veículo Física 1 Valores e algumas granezas físicas Aceleração a graviae: 10 m/s 2 Densiae a água: 1,0 g/cm 3 k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 sen = 0,5 01. A figura mostra um gráfico

Leia mais

Professor Mauricio Lutz AMOSTRAGEM

Professor Mauricio Lutz AMOSTRAGEM 1 AMOSTRAGEM 1)Conceitos em amostragem Inferência estatística é o processo e obter informação sobre uma população a partir e resultaos observaos na amostra. Amostragem é o processo e retiraa os n elementos

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os funamentos a física Uniae A Capítulo Campo elétrico Resoluções os testes propostos 1 T.5 Resposta: Daos: F e 10 N; q 50 mc 50 10 C A carga q é negativa. ntão a força elétrica F e e o vetor campo elétrico

Leia mais

QUESTÕES CORRIGIDAS PROFESSOR Rodrigo Penna QUESTÕES CORRIGIDAS GRAVITAÇÃO ÍNDICE. Leis de Kepler

QUESTÕES CORRIGIDAS PROFESSOR Rodrigo Penna QUESTÕES CORRIGIDAS GRAVITAÇÃO ÍNDICE. Leis de Kepler QUESÕES CORRIGIDAS PROFESSOR Rorigo Penna QUESÕES CORRIGIDAS GRAVIAÇÃO 1 ÍNDICE LEIS DE KEPLER 1 GRAVIAÇÃO DE NEWON 4 Leis e Kepler 1. (UERJ/000) A figura ilustra o movimento e um planeta em torno o sol.

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais

c a) Atração; 0,2 N. 4. A tabela a seguir mostra a série triboelétrica.

c a) Atração; 0,2 N. 4. A tabela a seguir mostra a série triboelétrica. 1. Duas cargas são colocaas em uma região one há interação elétrica entre elas. Quano separaas por uma istância, a força e interação elétrica entre elas tem móulo igual a F. Triplicano-se a istância entre

Leia mais

EDITORIAL MODULO - WLADIMIR

EDITORIAL MODULO - WLADIMIR 1. Um os granes problemas ambientais ecorrentes o aumento a proução inustrial munial é o aumento a poluição atmosférica. A fumaça, resultante a queima e combustíveis fósseis como carvão ou óleo, carrega

Leia mais

14 O trabalho cansa? Roberto já não subia mais as escadas, só. Conceito de trabalho

14 O trabalho cansa? Roberto já não subia mais as escadas, só. Conceito de trabalho A U A UL LA O trabalho cansa? Roberto já não subia mais as escaas, só usava o elevaor. Afinal ele não comia mais chocolate, não tinha mais energia sobrano para subir centenas e anares. Mas uma coisa aina

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:23. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:23. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvios e Física Básica Jason Alfreo Carlson Gallas, professor titular e física teórica, Doutor em Física pela Universiae Luwig Maximilian e Munique, Alemanha Universiae Feeral a Paraíba (João

Leia mais

Introdução ao Projeto de Aeronaves. Aula 18 Tempo para a Missão e Metodologia para o Gráfico de Carga Útil

Introdução ao Projeto de Aeronaves. Aula 18 Tempo para a Missão e Metodologia para o Gráfico de Carga Útil Introdução ao Projeto de Aeronaves Aula 18 Tempo para a Missão e Metodologia para o Gráfico de Carga Útil Tópicos Abordados Tempo Estimado para a Missão. Traçado do Gráfico de Carga Útil. Dicas para Análise

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA EETROMAGNETSMO 105 1 SOENÓDE E NDUTÂNCA 1.1 - O SOENÓDE Campos magnéticos prouzios por simples conutores ou por uma única espira são bastante fracos para efeitos práticos. Assim, uma forma e se conseguir

Leia mais

Formulação integral da dinâmica de fluidos

Formulação integral da dinâmica de fluidos Formulação integral a inâmica e fluios Paulo R. e Souza Menes Grupo e Reologia Departamento e Engenharia Mecânica Pontifícia Universiae Católica - RJ agosto e 2010 Sumário o teorema o transporte e Reynols

Leia mais

Desempenho e Optimização na Presença de Jitter

Desempenho e Optimização na Presença de Jitter Desempenho e Optimização na Presença e Jitter e ISI capítulo 7 Capítulo 7 Desempenho e Optimização na Presença e Jitter 7.- Introução Neste capítulo iremos estuar o problema a análise e esempenho e optimização

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO MINISTÉRIO D DEFES EXÉRCITO BRSILEIRO DEP DEP COLÉGIO MILITR DO RECIFE ª SÉRIE DO ENSINO MÉDIO 3 DE OUTUBRO DE 00 COLÉGIO MILITR DO RECIFE 0/05 ª SÉRIE DO ENSINO MÉDIO Página / ITEM 0 Um pai tem hoje 5

Leia mais

Alocação Ótima de Banco de Capacitores em Redes de Distribuição Radiais para Minimização das Perdas Elétricas

Alocação Ótima de Banco de Capacitores em Redes de Distribuição Radiais para Minimização das Perdas Elétricas > REVISTA DE INTELIGÊNCIA COMPUTACIONAL APLICADA (ISSN: XXXXXXX), Vol. X, No. Y, pp. 1-10 1 Alocação Ótima e Banco e Capacitores em Rees e Distribuição Raiais para Minimização as Peras Elétricas A. C.

Leia mais

Plano de Aula. 4) Tarefa matemática

Plano de Aula. 4) Tarefa matemática Plano de Aula 1) Identificação Professor responsável: Francieli Daiane Zanquetta Nível de escolaridade/escola: 1º Ano C EM / Escola Estadual Dr. João Ponce de Arruda Tema: Semelhança de Triângulos Duração

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

Parábola Dados uma reta d e um ponto F d, a

Parábola Dados uma reta d e um ponto F d, a 6º ENCNTR DA RM rofa. Elvia Mureb Sallum IME-US Neste texto serão apresentaas várias caracterizações as cônicas. Algumas elas permitirão justificar o funcionamento e iferentes aparatos que as esenham.

Leia mais

Exercícios propostos

Exercícios propostos Os funamentos a Física Volume 3 1 Capítulo 3 Trabalho e potencial elétrico P.44 Daos: 5 1 6 C; $ B 1 4 J Da expressão o trabalho a força elétrica: $ B (V V B ) 1 4 5 1 6 (V V B ) V V B 1 5 1 4 6 Esse resultao

Leia mais

Descobrindo medidas desconhecidas (III)

Descobrindo medidas desconhecidas (III) A UU L AL A Descobrindo medidas desconhecidas (III) Já dissemos que a necessidade de descobrir medidas desconhecidas é uma das atividades mais comuns na área da Mecânica. Por isso, torneiros, fresadores,

Leia mais

Equações Diofantinas Lineares

Equações Diofantinas Lineares Equações Diofantinas Lineares Equações, com uma ou mais incógnitas, e que se procuram soluções inteiras esignam-se habitualmente por Equações iofantinas. Vamos apenas consierar as equações iofantinas lineares,

Leia mais

FÍSICA. Resposta: 80. Justificativa: As equações horárias são: x A = ½ a A t 2 e x B = ½ a B t 2. No encontro x A = x B.

FÍSICA. Resposta: 80. Justificativa: As equações horárias são: x A = ½ a A t 2 e x B = ½ a B t 2. No encontro x A = x B. FÍSICA Daos: Aceleração a graviae: 1 m/s Densiae o mercúrio: 13,6 g/cm 3 Pressão atmosférica: 1,x1 5 N/m Constante eletrostática: k = 1/4 = 9,x1 9 N.m /C 1. Dois veículos partem simultaneamente o repouso

Leia mais

III Corpos rígidos e sistemas equivalentes de forças

III Corpos rígidos e sistemas equivalentes de forças III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

MÓDULO 5 FÍSICA. Algarismos Significativos. Ciências da Natureza, Matemática e suas Tecnologias. 1. Introdução. 2. Algarismos Corretos e Duvidosos

MÓDULO 5 FÍSICA. Algarismos Significativos. Ciências da Natureza, Matemática e suas Tecnologias. 1. Introdução. 2. Algarismos Corretos e Duvidosos Ciências a Natureza, Matemática e suas Tecnologias FÍSICA 1. Introução MÓDULO 5 Algarismos Significativos Na tentativa e explicar os fenômenos observaos na natureza, a Física utiliza moelos e teorias que,

Leia mais

Força Elétrica. 6,0 C, conforme descreve a figura (Obs.: Q 4 é negativo)

Força Elétrica. 6,0 C, conforme descreve a figura (Obs.: Q 4 é negativo) Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.

Leia mais

EFEITO ESTABILIZANTE DE ELO DE CORRENTE CONTÍNUA NA OPERAÇÃO DE SISTEMAS DE TRANSMISSÃO EM CORRENTE ALTERNADA. Waldenir Alexandre da Silva Cruz

EFEITO ESTABILIZANTE DE ELO DE CORRENTE CONTÍNUA NA OPERAÇÃO DE SISTEMAS DE TRANSMISSÃO EM CORRENTE ALTERNADA. Waldenir Alexandre da Silva Cruz EFEIO ESABILIZANE DE ELO DE CORRENE CONÍNUA NA OPERAÇÃO DE SISEMAS DE RANSMISSÃO EM CORRENE ALERNADA Walenir Alexanre a Silva Cruz ESE SUBMEIDA AO CORPO DOCENE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO

Leia mais

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução Sistemas lineares Vamos pensar na seguinte situação-problema: Um terreno e 8000 m² eve ser iviio em ois lotes. O lote maior everá ter 000 m² a mais que o lote menor. Vamos calcular a área que caa lote

Leia mais

Mecânica Analítica REVISÃO

Mecânica Analítica REVISÃO Mecânica Analítica REVISÃO Prof. Nelson Luiz Reyes Marques Vínculos São limitações às possíveis posições e velociaes as partículas e um sistema mecânico, restringino a priori o seu movimento. É importante

Leia mais

Criptografia, assinaturas digitais e senhas segmentadas

Criptografia, assinaturas digitais e senhas segmentadas Criptografia, assinaturas igitais e senhas segmentaas Ariele Giareta Biase Universiae Feeral e Uberlânia - Faculae e Matemática Grauana em Matemática - PROMAT arielegbiase@ yahoo. com. br Eson Agustini

Leia mais

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática 8º ano Ano letivo 2016/2017 Início

Leia mais

5 Medição de distâncias e áreas na planta topográfica

5 Medição de distâncias e áreas na planta topográfica António Pestana Elementos e Topografia v1.0 Junho e 006 5 Meição e istâncias e áreas na planta topográfica 5.1 Meição e istâncias na planta topográfica Como as plantas topográficas são projecções horizontais,

Leia mais

Aprimorando os Conhecimentos de Eletricidade Lista 2 Processos de Eletrização III - Força Elétrica I

Aprimorando os Conhecimentos de Eletricidade Lista 2 Processos de Eletrização III - Força Elétrica I Aprimorano os Conhecimentos e Eletriciae Lista Processos e Eletrização III - Força Elétrica I. (UFPA) Um corpo A, eletricamente positivo, eletriza um corpo B que inicialmente estava eletricamente neutro,

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

3.8 O Teorema da divergência ou Teorema de Gauss

3.8 O Teorema da divergência ou Teorema de Gauss 144 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.8 O Teorema a ivergência ou Teorema e Gauss O Teorema e tokes relaciona uma integral e superfície com uma e linha ao longo o boro a superfície. O Teorema e Gauss

Leia mais

Instalações Térmicas. 3º ano 6º semestre Aula 7

Instalações Térmicas. 3º ano 6º semestre Aula 7 Instalações Térmicas 3º ano 6º semestre Aula 7 Aula 7: Cálculo e queimaores Prática Tópicos Queimaor o tipo injector Queimaor e uas vias Queimaor Turbulento Queimaor e baixa pressão Queimaor compacto 3

Leia mais

Aula 05. Me. Leandro B. Holanda, Capítulo 7 (continuação)

Aula 05. Me. Leandro B. Holanda,   Capítulo 7 (continuação) Aula 05 Capítulo 7 (continuação) Trabalho realizao pela força gravitacional O trabalho realizao pela força peso g (ou força gravitacional) para pequenas variações na alturas sobre um objeto (semelhante

Leia mais

FLEXÃO NORMAL SIMPLES - VIGAS

FLEXÃO NORMAL SIMPLES - VIGAS UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus e Bauru/SP FACULDADE DE ENGENHARIA Departamento e Engenharia Civil Disciplina: 117 - ESTRUTURAS DE CONCRETO I NOTAS DE AULA FLEXÃO NORMAL SIMPLES - VIGAS Prof.

Leia mais

Física Fascículo 07 Eliana S. de Souza Braga

Física Fascículo 07 Eliana S. de Souza Braga Física Fascículo 7 Eliana S e Souza raga Ínice Eletrostática Resumo Teórico 1 Eercícios Gabarito4 Eletrostática Resumo Teórico Força eletrostática lei e oulomb F K Q = Q 1 Vácuo: 1 K K = = 9 1 N m 4 πε

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

Palavras-chave: conhecimento matemático do professor, formação de professores, divisão de números inteiros, número racional.

Palavras-chave: conhecimento matemático do professor, formação de professores, divisão de números inteiros, número racional. A EMERGÊNCIA DO NÚMERO FRACIONÁRIO NO CONTEXTO DA DIVISÃO DE INTEIROS: UM CONTRIBUTO PARA O CONHECIMENTO MATEMÁTICO DE FUTUROS PROFESSORES DOS 1.º E 2.º CICLOS DO ENSINO BÁSICO Graciosa Veloso graciosav@eselx.ipl.pt

Leia mais

AULA 2. Equilíbrio Químico

AULA 2. Equilíbrio Químico AULA 2 Equilíbrio Químico Objetivos Definir reações reversíveis. Definir equilíbrio químico. Escrever as expressões as constantes e equilíbrio. Conhecer os fatores que afetam o equilíbrio químico. Introução

Leia mais

EXP. 4 - MEDIDA DO COMPRIMENTO DE ONDA DA LUZ POR MEIO DE UMA REDE DE DIFRAÇÃO

EXP. 4 - MEDIDA DO COMPRIMENTO DE ONDA DA LUZ POR MEIO DE UMA REDE DE DIFRAÇÃO Capítulo 4 EXP. 4 - MEDIDA DO COMPRIMENTO DE ONDA DA LUZ POR MEIO DE UMA REDE DE DIFRAÇÃO 4.1 OBJETIVOS Meir a constante e ree e ifração utilizano um comprimento e ona conhecio. Meir os comprimentos e

Leia mais

Transmissão em Corrente Contínua

Transmissão em Corrente Contínua Transmissão em Corrente Contínua CONTROLE PARA SISTEMAS DE TRANSMISSÃO EM CC Prof. Júlio Borges e Souza CARACTERÍSTICAS DE UM SISTEMA REAL DE CONTROLE Os controlaores as pontes conversoras são responsáveis

Leia mais

RACIOCÍNIO LÓGICO. Com o Prof. Paulo Henrique (PH)

RACIOCÍNIO LÓGICO. Com o Prof. Paulo Henrique (PH) RACIOCÍNIO LÓGICO Com o Prof. Paulo Henrique (PH) RACIOCÍNIO LÓGICO: (1) Questões Lógicas Sequências, reconhecimento de padrões, progressões aritmética e geométrica. Problemas de raciocínio: deduzir informações

Leia mais

8- Controlador PID. PID = Proporcional + Integral + Derivativo

8- Controlador PID. PID = Proporcional + Integral + Derivativo Controlaor PID 154 8- Controlaor PID PID = Proporcional + Integral + Derivativo É interessante assinalar que mais a metae os controlaores inustriais em uso nos ias atuais utiliza estratégias e controle

Leia mais

ONDULATÓRIA - EXERCÍCIOS E TESTES DE VESTIBULARES

ONDULATÓRIA - EXERCÍCIOS E TESTES DE VESTIBULARES ONDULATÓRIA - EXERCÍCIOS E TESTES DE VESTIBULARES 1. (FELA - 96) Uma ona é estaelecia numa cora, fazeno-se o ponto A oscilar com uma freqüência igual a 1 x 103 Hertz, conforme a figur Consiere as afirmativas:

Leia mais

1.2. (C) RESPOSTA INCORRECTA... (A) Correcto. Há iões magnésio e cloro na água do mar, logo há MgCl

1.2. (C) RESPOSTA INCORRECTA... (A) Correcto. Há iões magnésio e cloro na água do mar, logo há MgCl 1. Leia atentamente as informações seguintes. Mais e % a superfície a Terra está coberta por água, e 9% essa água encontra-se nos oceanos. A água os oceanos é uma solução aquosa extremamente complexa (Tabelas

Leia mais

Respostas Caderno de Exercícios 1

Respostas Caderno de Exercícios 1 Respostas Caerno e Exercícios 1 Uniae 1 Cinemática capítulo 1 Movimento é muança e posição 18. C 19. D 20. E 21. A 22. E 23. A 24. E 26. B 27. C 28. C 1. E Se o passageiro permanece sentao em seu lugar

Leia mais

Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego

Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego Física Elementar Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego Ribeiro Pinto de Castro Marcel Almeida do

Leia mais