Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos."

Transcrição

1 Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos

2 Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08 Equlíbro na eletroquímca 28/08 Equlíbro na eletroquímca 04/09 Aplcações da eletroquímca 11/09 TVC-1 (valor: 100 pontos) 18/09 Métodos elétrcos de análse/potencometra 25/09 Potencometra 02/10 Potencometra 09/10 Coulometra 16/10 TVC-2 (valor: 100 pontos) 23/10 Semana do ICE 30/10 Condutometra 06/11 Voltametra 13/11 Voltametra 20/11 Voltametra 27/11 TVC-3 (valor: 100 pontos) 04/12 Prova Substtutva Nota Fnal = (1 a Prova + 2 a Prova + 3 a Prova)/3

3 Métodos de Calbração Snas obtdos por equpamentos e nstrumentos devem ser calbrados para evtar erros nas meddas. Calbração, de acordo com o INMETRO, é o conjunto de operações que estabelece, sob condções especfcadas, a relação entre os valores ndcados por um nstrumento de medção ou sstemas de medção ou valores representados por uma medda materalzada ou materal de referênca, e os valores correspondentes das grandezas estabelecdas por padrões. Modos de calbração: a) Calbração Pontual determna-se o valor de uma constante K com um únco padrão, a qual expressa a relação entre a medda nstrumental e a concentração do analto de nteresse. Esta hpótese deve ser testada expermentalmente. b) Calbração Multpontual calbração com mas de dos padrões. O método mas empregado consste na calbração multpontual com até 5 níves de concentração, podendo apresentar uma relação lnear (sensbldade constante na faxa de concentração de trabalho) ou não-lnear (sensbldade é função da concentração do analto).

4 Calbração Pontual Determnação de ácdo ascórbco (vtamna C) em medcamento: Branco: oxdação = 0,10 µa Padrão: [AA] = 2 µmol/l; oxdação = 2,39 µa oxdação = K [AA] padrão (2,39-0,10) = K (2) K = 1,145 µa.l/µmol K = 1,145 A.L/mol Amostra: [AA] = x µmol/l; oxdação = 6,11 µa oxdação = K [AA] padrão (6,11-0,10) = 1,145 [AA] [AA] = 5,24 µmol/l

5 Calbração Multpontual Para mutos tpos de análses químcas, a resposta para o procedmento analítco deve ser avalado para quantdades conhecdas de consttuntes (chamados padrões), de forma que a resposta para uma quantdade desconhecda possa ser nterpretada. 1. Curva de calbração externa ou curva analítca 2. Curva de adção de padrão 3. Padrão nterno CURVA DE CALIBRAÇÃO OU CURVA ANALÍTICA Uma curva de calbração mostra a resposta de um método analítco para quantdades conhecdas de consttunte. Soluções contendo concentrações conhecdas de consttunte são chamadas de solução padrão. Soluções contendo todos os reagentes e solventes usados na análse, sem adção do consttunte que se deseja analsar, são chamadas de solução em branco. O branco mede a resposta nstrumental do procedmento analítco para mpurezas ou espéces nterferentes nos reagentes.

6 Branco Os brancos ndcam a nterferênca de outras espéces na amostra e os traços de analto encontrados nos reagentes usados na preservação, preparação e análse. Meddas frequentes de brancos também permtem detectar se analtos provenentes de amostras prevamente analsadas estão contamnando as novas análses, por estarem aderdos aos recpentes ou aos nstrumentos. 1. Branco do método 2. Branco para reagentes 3. Branco de campo Branco de método: é uma amostra que contém todos os consttuntes exceto o analto, e deve ser usada durante todas as etapas do procedmento analítco. Branco para reagente: é semelhante ao branco de método, mas ele não fo submetdo a todos os procedmentos de preparo de amostra. Branco de campo: é semelhante a um branco de método, mas ele fo exposto ao local de amostragem. Obs.: O branco de método é a estmatva mas completa da contrbução do branco para a resposta analítca, sendo que sua resposta deve ser subtraída da resposta de uma amostra real antes de calcularmos a quantdade de analto na amostra.

7 1 ª Etapa: Soluções padrão: Prepara-se soluções de concentrações conhecdas e dferentes do consttunte em análse. Geralmente estas soluções são obtdas por convenente dlução de uma solução padrão estoque. 2 ª Etapa: Meddas de snal analítco: Meddas do snal nstrumental para as soluções padrão e branco (5 níves de concentração no mínmo). 3 ª Etapa: Construção do gráfco do snal obtdo x concentração do analto. Exemplo: Determnação amperométrca de ácdo ascórbco (vtamna C) em medcamentos. [AA], µmol/l corrente de oxdação, µa faxa corrente corrgda, µa méda sem dado CURVA ANALÍTICA Corrente de oxdação, µa ,98 12,61 Q 12,98 12,59 Q calc Q tab (0,94) 0, Concentração de ácdo ascórbco, µmol/l

8 Ajuste da curva analítca: Consste em traçar a melhor reta que se ajuste aos pontos expermentas que possuem algum erro e não descrevem exatamente uma reta. MÉTODO DOS MÍNIMOS QUADRADOS Corrente de oxdação, µa oxdação = a [AA] + b [AA] desvo vertcal oxdação Concentração de ácdo ascórbco, µmol/l Pressupõe que os erros nos valores de y são muto maores que os erros nos valores de x. As ncertezas (desvos-padrão) em todos os valores de y são semelhante. Corrente de oxdação, µa a b n y x n ax y x 2 oxdação = a [AA] + b oxdação = 1.60 [AA] x x 2 [AA] desvo vertcal oxdação Concentração de ácdo ascórbco, µmol/l y

9 Estmatva das ncertezas para a nclnação, nterseção e y [AA] ox [AA].ox [AA].[AA] d = ox [AA] d.d E Desvo padrão y: Desvo padrão a: s s a y 2 d 0,39 n 2 s 2 y D n 0,04 Y = b + a * X D = 586 Parameter Value Error b a Desvo padrão b: s b s 2 y D x 2 0,24 R SD N P < Onde; n é o número de pontos

10 COEFICIENTE DE CORRELAÇÃO O coefcente de correlação ndca o grau de correlação entre as duas varáves, ou quanto a reta de regressão se ajusta aos pontos. Uma correlação de + 1,0 ou uma correlação de - 1,0 ndca um perfeto ajuste. Correlação é a medda da assocação lnear entre duas varáves. r n x y x y n x x n y y 2 r = r = r = 0.0 r = 0.0

11 16 (µa) = (-0.07/0.07) + (1.56/0.01) * C AU (µmol/l) R = sy = 0.1 Corrente, µa Concentração de ácdo úrco, µmol/l 5,72 0,07 1,56C C C AU AU 0,07 1,56C AU AU 3,71mol / L (3,71 0,04) mol / L sensbldade LD LQ nstrumental nstrumental _ analítca 3s a 10s a 1,56 0,01 3x0,07 1,56 10x0,07 1, AL / mol 0,13mol / L 0,45mol / L

12 CURVA DE ADIÇÃO DE PADRÃO Na curva de adção de padrão, quantdades conhecdas de consttuntes são adconadas à amostra desconhecda. Do aumento do snal nstrumental, deduz-se quanto de consttunte estava na amostra orgnal. Este método requer uma resposta lnear para o consttunte. Usamos o método das adções de padrão quando for dfícl ou mpossível fazer uma cópa da matrz da amostra. Em geral, a amostra é contamnada com uma quantdade ou quantdades conhecdas de uma solução padrão contendo o analto. Calbração Pontual - duas porções da amostra são tomadas, uma porção é medda como de costume, mas uma quantdade conhecda da solução padrão é adconada à segunda porção. Assum-se uma relação lnear entre a resposta e a concentração do analto. X I X X = amostra S = padrão S f X f I S X Para um volume ncal V 0 da amostra desconhecda e para o volume adconado V s de padrão com concentração [S], o volume total é V = V 0 + V s e as concentrações são: V V 0 s [ X ] f [ X ] [ S] f [ S] V V

13 Exemplo: Uma amostra de vtamna C apresentou uma corrente de oxdação de 6,11 µa. Então 5,00 ml de uma solução 2 µmol/l de um padrão de vtamna C fo adconados a 95 ml da amostra de vtamna C. Essa amostra reforçada forneceu um snal de 8,15 µa. Encontre a concentração orgnal de vtamna C no medcamento. 2x AA AA AA 0,075 0,7125 AA AA 0,26µmol / L x ,11 8,15

14 Curva de Adção de Padrão São fetas as adções de quantdades conhecdas da solução padrão do analto a váras porções da amostra e uma curva analítca com as múltplas adções é obtda. Procedmento 5,0 ml de amostra gráfco desconhecda para a adção em cada debalão padrão: volumétrco V fnal = 50,00 ml Snal analítco Padrão Adconado Adcona-se 0, 5, 10, 15 e 20 ml de padrão 0,2 mol/l 1.0 Amostra Concentração, mol/l Complete o balão até a marca de aferção Snal analítco Padrão Adconado Amostra Balão [S], mol/l 0,00 0,02 0,04 0,06 0, Volume de padrão, ml

15 Curva de adção de padrão usando concentrações das soluções-padrão: Snal analítco Padrão Adconado Amostra Concentração, mol/l X = concentração do analto na amostra y b ax y 0 b ax b X a b V X x a V total amostra

16 Curva de adção de padrão usando volume das soluções-padrão: s s s analto analto analto s padrão [ P] V K V av padrão s padrão total amostra b K V amostra V total [ X ] onde; a K b [ P] V total V K amostra V total [ X ] a b av amostra [ X ] K[ P] KV [ X ] amostra [ X ] b[ P] b[ P] av amostra Snal analítco Padrão Adconado 1.0 Amostra Volume de padrão, ml

17 Determnação de cobre em cachaça: Área de pco [Cu], ppm área 0 2,52 2 3,59 4 4,66 6 5,73 8 6, área área Concentração de cobre, ppm 2,52 0,535x 0 Cu 4,71ppm Cu 2,52 0,535x Cu Análse pontual: Cu 2,52 4 Cu 4,66 4,66Cu Cu 10,08 2,52 Cu 4,71ppm

18 SENSIBILIDADE ANALÍTICA: É a capacdade de responder de forma confável e mensurável às varações de concentração do analto. Também expressa a capacdade técnca em dferencar dos valores de concentração próxmos, assm a sensbldade do método depende da nclnação da curva. Exemplo: 10,1 g/l e 10,2 g/l snal analítco snal analítco C 1 C 2 C 1 C 2 Concentração sensbldade analítca sensbldade _ da _ a s a calbração Concentração a

19 SELETIVIDADE OU ESPECIFICIDADE: Depende de quanto o método é ndferente à presença na amostra de espéces que poderam nterferr na determnação do analto. A espéce de nteresse deve ter snal analítco sento de nterferêncas que possam levar a confusão na dentfcação ou dar margem a não confabldade ao resultado fnal. LIMITE DE DETECÇÃO (do método e do nstrumento): O lmte de detecção (LD) é a menor concentração que pode ser dstnguda com um certo nível de confança. Toda técnca analítca tem um lmte de detecção. Para os métodos que empregam uma curva analítca, o lmte de detecção é defndo como a concentração analítca que gera uma resposta com um fator de confança k superor ao desvo padrão do branco (amostra com concentração de 1 a 5 vezes maor que o lmte de detecção estmado), s. LD ks a a é a sensbldade da calbração (a) e k é escolhdo como 2 (92,1 %) ou 3 (98 %). Snal<LD Espéce não detectada ao lmte de detecção da concentração x, porém há presença de snal analítco não presente no branco.

20 LIMITE DE QUANTIFICAÇÃO OU DETERMINAÇÃO (do método e do nstrumento): O lmte de quantfcação (LQ) é a menor concentração que pode ser determnada em confabldade de precsão e exatdão acetáves, para aquela condção analítca. Para o lmte de quantfcação consdera-se que não se atngu o lmte da técnca/método ou equpamento. Para os métodos que empregam uma curva analítca, o lmte de quantfcação é defndo como a concentração analítca que gera uma resposta com um fator de confança gual a 10. LQ 10s a Snal<LQ Espéce não quantfcada ao lmte de determnação ou quantfcação da concentração x, porém há presença de snal analítco não presente no branco. O cálculo do desvo padrão do branco pode anda ser feto com base na varação das meddas do branco analítco, da lnha de base ou de um padrão de concentração muto baxa da(s) espéce(s) analsada(s). A escolha depende da técnca e/ou nstrumentação analítca, sendo função do parâmetro que está sendo meddo.

21 RECUPERAÇÃO OU FORTIFICAÇÃO: Consste na adção de uma quantdade conhecda de analto à amostra para testar se a resposta da amostra corresponde ao esperado a partr da curva de calbração. As amostras fortfcadas são analsadas da mesma forma que as desconhecdas. Deve-se adconar pequenos volumes de um padrão concentrado para evtar mudança sgnfcatva no volume de amostra. % recuperação C amostra _ fortfcada C C adconada amostra _ não _ fortfcada x100 Exemplo: Sabe-se que em uma amostra desconhecda exstem 10,0 µg de um analto por ltro. Uma adção ntenconal de 5,0 µg/l fo feta numa porção dêntca da amostra desconhecda. A análse da amostra modfcada forneceu uma concentração de 14,6 µg/l. Determne o percentual de recuperação da substânca ntenconalmente adconada.

22 REPETIBILIDADE OU REPETIVIDADE: Máxma dferença acetável entre duas repetções, vale dzer dos resultados ndependentes, do mesmo ensao, no mesmo laboratóro e sob as mesmas condções. a) Mesma amostra; b) Mesmo analsta; c) Mesmo equpamento; d) Mesmo momento; e) Mesmo ajuste; f) Mesma calbração REPETIBILIDADE INTERMEDIÁRIA: é expressa pela varação entre os resultados obtdos em das dferentes pelo mesmo laboratóro. REPRODUTIVIDADE OU REPRODUTIBILIDADE: A reprodutbldade é estudada entre dferentes laboratóros, em dversas localdades do mundo, utlzando o mesmo conjunto de amostras

23 EXATIDÃO: 1. Testes de calbração: a cada dez análses realzadas um padrão de concentração conhecda e dferentes dos usados para contrur a curva de calbração deve ser analsado; 2. Recuperação da substânca fortfcada; 3. Amostra de controle de qualdade: são meddas do controle de qualdade que ajuda a elmnar vícos ntroduzdos pelo analsta, que sabe a concentração das amostras de verfcação de calbração. Amostras de composção conhecda são fornecdas ao analsta como se fossem desconhecda; 4. Brancos. PRECISÃO: 1. Amostras repetdas (repetbldade); 2. Porções repetdas da mesma amostra (reprodutbldade). PRECISÃO INTERMEDIÁRIA (repetbldade ntermedára)

Eletroquímica 2012/3. Professores: Renato Luiz Fernando.

Eletroquímica 2012/3. Professores: Renato Luiz Fernando. Eletroquímca 01/3 Profeore: Renato Luz Fernando http://www.ufjf.br/nup/ DIA/MÊS ASSUNTO 19/nov Etatítca aplcada à Químca Analítca Parte 6/nov Introdução à Eletroquímca 03/dez Equlíbro na Eletroquímca 10/dez

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

MÉTODOS DE CALIBRAÇÃO

MÉTODOS DE CALIBRAÇÃO MÉTODOS DE CALIBRAÇÃO Sinais obtidos por equipamentos e instrumentos devem ser calibrados para evitar erros nas medidas. Calibração, de acordo com o INMETRO, é o conjunto de operações que estabelece, sob

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Laboratório de Análise Instrumental

Laboratório de Análise Instrumental Laboratório de Análise Instrumental Prof. Renato Camargo Matos Profa. Maria Auxiliadora Costa Matos http://www.ufjf.br/nupis DIA/MÊS ASSUNTO 06/03 Apresentação do curso 13/03 PRÁTICA 1: Determinação de

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Materiais de Referência Certificados em Metrologia de Gases

Materiais de Referência Certificados em Metrologia de Gases Materas de Referênca Certfcados em Metrologa de Gases Florbela A. Das, Gonçalo Baptsta Laboratóro de Gases de Referênca do Laboratóro Central de Metrologa - Insttuto Português da Qualdade, Rua Antóno Gão

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO 1 ÍNDICE INTRODUÇÃO... 4 CAPÍTULO 1... 6 INTRODUÇÃO... 6 Tpos de erros... 8 Erros aleatóros e sstemátcos em análses ttrmétrcas... 10 Manpulando erros sstemátcos... 1 CAPÍTULO... 16 ERROS EM ANÁLISES CLÁSSICAS...

Leia mais

Avaliação do método de análise sem padrão por WDXRF e EDXRF em pó de alumínio utilizado no combustível nuclear tipo MTR

Avaliação do método de análise sem padrão por WDXRF e EDXRF em pó de alumínio utilizado no combustível nuclear tipo MTR Avalação do método de análse sem padrão por WDXRF e EDXRF em pó de alumíno utlzado no combustível nuclear tpo MTR Marcos A. Scapn Insttuto de Pesqusas Energétcas e Nucleares IPEN CNEN/SP Combustível MTR

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

CAPÍTULO 3 MODELO DE CALIBRAÇÃO REGRESSÃO LINEAR VS. REGRESSÃO LINEAR PONDERADA 3.1. FUNDAMENTOS

CAPÍTULO 3 MODELO DE CALIBRAÇÃO REGRESSÃO LINEAR VS. REGRESSÃO LINEAR PONDERADA 3.1. FUNDAMENTOS CAPÍTULO 3 MODELO DE CALIBRAÇÃO REGRESSÃO LINEAR VS. REGRESSÃO LINEAR PONDERADA 3.1. FUNDAMENTOS O êxto de um estudo farmacocnétco depende em grande medda da qualdade do método analítco utlzado. Por sso,

Leia mais

Coeficiente de Partição

Coeficiente de Partição Físco-Químca Expermental Coefcente de Partção 1. Introdução Suponha dos solventes A e B, parcalmente mscíves à temperatura T, formando as fases α (uma solução dluída de B na fase A) e β (uma solução dluída

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

VI congresso Brasileiro de Metrologia APLICAÇÃO DO CÁLCULO DA INCERTEZA COMO CRITÉRIO DE AVALIAÇÃO DA LINEARIDADE

VI congresso Brasileiro de Metrologia APLICAÇÃO DO CÁLCULO DA INCERTEZA COMO CRITÉRIO DE AVALIAÇÃO DA LINEARIDADE VI congresso Braslero de Metrologa APLICAÇÃO DO CÁLCULO DA INCERTEZA COMO CRITÉRIO DE AVALIAÇÃO DA LINEARIDADE Sergo Perera da Costa 1, Igor Renato Berton Olvares 1, Vtor Hugo Polsel Pacces 1. 1 Insttuto

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Portaria Inmetro nº 248 de 17 de julho de 2008

Portaria Inmetro nº 248 de 17 de julho de 2008 INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - Portara Inmetro nº 248 de 17 de julho de 2008 O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL,

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO A. M. M. BESSA 1 ; F. M. R. MESQUITA 1 ; F. R. DO CARMO 1 ; H.B.DE SANT ANA 1 E R.S.DE SANTIAGO-AGUIAR 1 1 Unversdade Federal do

Leia mais

Comparação de Dois Métodos de Análise Química Considerando a Modelagem Matemática da Precisão

Comparação de Dois Métodos de Análise Química Considerando a Modelagem Matemática da Precisão Unversdade Federal de Mnas Geras Insttuto de Cêncas Eatas Departamento de Estatístca Comparação de Dos Métodos de Análse Químca Consderando a Modelagem Matemátca da Precsão Márco Veloso de Castlho Unversdade

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 013 PROTOCOLO CT-Floresta - LPC - FOI/004 05/0/013 Aprovado: Mara Luza Otero D'Almeda / SUMÁRIO 1 INTRODUÇÃO... 1 PÚBLICO ALVO...

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de Unversdade Federal de Vçosa Departamento de Estatístca Dscplna: EST 63 Métodos Estatístcos II Apostla Introdução à Metodologa de Superfíces de Resposta Paulo Roberto Cecon Anderson Rodrgo da Slva Vçosa,

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR PROF.: Joaqum Rangel Codeço Rotero-Relatóro da Experênca N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR 1. COMPONENTES DA EQUIPE: ALUNOS 1 2 NOTA Prof.: Joaqum Rangel Codeço Data: / / : hs 2. OBJETIVOS: 2.1.

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais