1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 a Lista de Exercícios Carga Elétrica-Lei de Gauss"

Transcrição

1 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC e 2 = 47, 0µC pr ue o módulo d forç de trção elétric entre els sej de 5, 7N? P R Figur 2: Eercício 7. Clcule forç com ue tu sobre um crg puntiforme colocd à distânci ρ do o (gur 3). 3. Dus peuens esfers estão positivmente crregds. O vlor totl ds dus crgs é de 5, C. As esfers repelem-se com um forç de 1, 0N, undo estão seprds por um distânci de 2, 0m. Sendo ssim, clcule crg em cd um dels. Trte-s como crgs pontuis. O z ρ 4. Dus crgs s de 1, 0µC e 3, 0µC estão s e seprds por um distânci de 10, 0cm. Onde você deverá loclizr um terceir crg, pr ue nenhum forç tue sobre el? 5. Dus prtículs crregds são mntids s no plno ns posições 1 = 3, 5cm; 1 = 0, 50cm e 2 = 2, 0cm; 2 = 1, 5cm. Els possuem crgs 1 = 3, 0µC e 2 = 4, 0µC, respectivmente. () Determine o módulo e direção d forç elétric n crg 2. (b) Onde deverá ser loclizd um terceir crg 3 = 4, 0µC pr ue resultnte ds forçs ue tum em 2 sej nul? 6. As crgs, 2 e 3 são colocds nos vértices de um triângulo euilátero de ldo, como mostrdo n gur 1. Um crg de mesmo sinl ue s outrs três é colocd no centro do triângulo. Obtenh forç elétric resultnte sobre (módulo e direção). 2 dz Figur 3: Eercício Um linh de crg com um densidde uniforme de 35nC/m encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre forç elétric ue tu num crg de 1, 0µC colocd n origem. 10. Dus peuens esfers condutors com 10, 0g de mss estão suspenss por dos os de sed de 120cm de comprimento e possuem mesm crg elétric, como mostrdo n gur 4. Considerndo ue o ângulo é tão peueno ue tn poss ser proimd por sin e ue este sistem estej em euilíbrio, com = 5, 0cm, clcule o vlor de. 3 Figur 1: Eercício 6. Figur 4: Eercício Um crg é distribuíd uniformemente sobre um o semicirculr de rio R. Clcule forç com ue tu sobre um crg de sinl oposto colocd no centro (ver gur 2). 8. Um o retilíneo muito longo (trte-o como innito) está eletrizdo como um densidde liner de crg λ. 11. A gur 5 mostr um long brr isolnte sem mss, com comprimento, pres por um pino no seu centro e euilibrd com peso W um distânci de su etremidde esuerd. Ns etremiddes esuerd e direit d brr são colocds crgs positivs e 2, respectivmente. A um ltur h imeditmente bio desss crgs está d um crg positiv +. ()

2 2 Determine distânci pr o peso n situção de euilíbrio d brr. (b) ul deverá ser o vlor de h pr ue brr não eerç nenhum forç verticl sobre o suporte undo em euilíbrio? h W 2 Figur 7: Eercício 15. Figur 5: Eercício utro crgs pontuis idêntics ( = 10µC) estão loclizds nos vértices de um retângulo, como mostrdo n gur 6. As dimensões do retângulo são = 60cm e W = 15cm. Clcule mgnitude e direção d forç elétric resultnte eercid n crg situd no vértice esuerdo inferior pels outrs três crgs. W 16. Dus crgs pontuis de módulo 2, C e 8, C, respectivmente, estão 12cm distntes um d outr. () ul é o cmpo elétrico ue cd um produz no lugr d outr? (b) ul é forç ue tu sobre cd um dels? 17. Dus crgs pontuis estão s e seprds por um distânci d, como mostrdo n gur 8. Esboce E () no ponto P, supondo = 0 n crg d esuerd. Considere mbos os sinis de. Esboce E positivo se o cmpo elétrico pontr pr direit e negtivo se pontr pr esuerd. Considere 1 = 1, 0µC; 2 = 3, 0µC e d = 10cm. Figur 6: Eercício 12. Figur 8: Eercício Um linh de crg está uniformemente crregd e encontr-se sobre o eio o, de modo ue seu centro estej n origem de sistem de coordends. Est linh possui 50cm de comprimento e su crg totl vle 3µC. Um crg pontul de vlor 5µC está sobre o eio o, um distânci do centro d linh. () Clcule forç elétric d linh sobre crg pontul em função de. (b) ul direção e sentido dest forç? (c) Mostre ue se for grnde em relção o comprimento d linh, est se comport como um crg pontul. (d) Neste cso, ul o vlor d forç elétric pr = 10m? (e) Compre este resultdo com o vlor eto. 14. Um prtícul α, o núcleo de hélio, tem mss de 6, kg e um crg de 2 e. uis são o módulo e direção do cmpo elétrico ue euilibrrá o seu peso? 15. N gur 7 s crgs estão loclizds nos vértices de um triângulo euilátero. Pr ul vlor de, tnto em sinl como em mgnitude, o cmpo elétrico totl se nul no centro do triângulo? 18. Dus crgs, 1 = 2, 1µC e 2 = 8, 4µC, estão s e distntes 50cm um d outr. Determine o ponto o longo d linh ret ue pss pels crgs no ul o cmpo elétrico é nulo. 19. Clcule o vlor d forç devido um peueno dipolo elétrico com momento de dipolo de vlor 3, Cm sobre um elétron distnte 25nm o longo do eio do dipolo. 20. Um nel, com 2, 5cm de rio, está uniformemente crregdo com um densidde liner de crg de vlor 3, 0nC/m. O nel está no plno com seu centro n origem. Determine o ponto o longo do eio do nel, eio z, no ul o cmpo elétrico produzido pelo nel é máimo. Clcule intensidde deste cmpo elétrico máimo. 21. Um brr isold semi-innit possui um crg constnte por unidde de comprimento de vlor

3 3 λ. Mostre ue o cmpo elétrico no ponto P d gur 9 form um ângulo de 45 o com brr e ue este resultdo é independente d distânci R. 25. Um próton (1, kg) celer prtir do repouso em um cmpo elétrico uniforme de 640N/C. Algum tempo depois, su velocidde lcnç 1, m/s. Clcule celerção do próton, o tempo ue lev pr ele tingir est velocidde, distânci por ele percorrid e su energi cinétic nest velocidde. Figur 9: Eercício Um linh de crg com um densidde uniforme de 35, em nc/m, encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre o cmpo elétrico crido por est distribuição de crgs n origem. 23. Um crg é distribuíd sobre um o semicirculr com 5, 0cm de rio, de modo ue densidde liner de crg é 35 cos ( 2), em nc/m. () Clcule crg elétric totl dest linh de crgs e (b) clcule o cmpo elétrico crido por el no centro (ver gur 10). P R 26. Em um cnl de irrigção, cuj lrgur é w = 3, 22m e profundidde d = 1, 04m, águ ui com um velocidde de 0, 207m/s. Determine o uo de mss trvés ds seguintes superfícies: () um superfície de áre wd, totlmente n águ e perpendiculr o uo; (b) um superfície de áre 3wd/2, d ul wd está n águ e perpendiculr o uo; (c) um superfície de áre wd/2, totlmente n águ, perpendiculr o uo; (d) um superfície de áre wd metde n águ e metde for, perpendiculr o uo; (e) um superfície de áre wd, totlmente n águ, fzendo um ângulo de 34 o com direção do uo. 27. Um cubo com 1, 35m de rest está orientdo com um dos vértice n origem de um sistem crtesino, como mostrdo n gur 12. Nest região eiste um cmpo elétrico uniforme. Clcule o vlor do uo elétrico ue trvess fce direit do cubo, ue é prlel o plno z, se o cmpo elétrico, em newton/coulomb, for ddo por: () 6î; (b) 2ĵ; (c) 3î + 4ˆk. (d) ul é o vlor totl do uo trvés de todo o cubo pr cd um destes cmpos? z Figur 10: Eercício Um elétron (9, kg), com velocidde inicil de 3000km/s, horizontl pr direit, penetr num região onde eiste um cmpo elétrico uniforme ddo por E = 200N/Cĵ. Este cmpo uniforme é gerdo por dus plcs prlels, de comprimento = 0, 100m (gur 11). Clcule () celerção do elétron enunto ele estiver n região do cmpo; (b) o tempo ue demor pr o elétron trvessr est região e (c) o deslocmento verticl do elétron pós trvessr região do cmpo. Figur 12: Eercício Determinou-se, trvés de eperiêncis, ue o cmpo elétrico situdo num cert região d tmosfer terrestre está dirigido verticlmente pr bio. Num ltitude de 300m, o cmpo vle 60N/C e, num ltitude de 200m, ele vle 100N/C. Determine crg totl resultnte contid num cubo de 100m de rest e loclizdo num ltitude entre 200m e 300m. Despreze curvtur d Terr. Figur 11: Eercício Determine o uo líuido trvés do cubo do eercício 27. se o cmpo elétrico for ddo por: () E = 3ĵ e (b) E = 4î + (6 + 3) ĵ. (c) Em cd cso, ul é o vlor d crg elétric contid no interior do

4 4 cubo? 30. Um esfer condutor uniformemente crregd, de 1, 2m de diâmetro, possui um densidde supercil de crgs de 8, 1µC/m 2. () Determine crg sobre esfer. (b) ul é o vlor do uo elétrico totl ue está deindo superfície d esfer? 31. Um innit linh de crgs produz um cmpo de 4, N/C um distânci de 2, 0m. Clcule densidde de crg liner. 32. Considere um tubo de metl cujs predes são ns. O tubo tem um rio R e um crg por unidde de comprimento λ sobre su superfície. Obtenh epressões pr E pr váris distâncis r prtir do eio do tubo, considerndo mbs: () r > R e (b) r < R. Fç um gráco dos seus resultdos pr fi de r = 0 r = 5, 0cm, supondo ue λ = 2, C/m e R = 3, 0cm. Figur 13: Eercício Um esfer isolnte sólid de rio tem um densidde de crg uniforme ρ e crg totl. Um esfer condutor oc, não crregd, cujos rios interno e eterno são b e c, como mostr gur 14, é concêntric ess esfer. () Encontre mgnitude do cmpo elétrico ns regiões r <, < r < b, b < r < c e r > c. (b) Determine crg induzid por unidde de áre ns superfícies intern e etern d esfer oc. 33. Dois cilindros crregdos, longos e concêntricos, têm rios de 3, 0cm e 6, 0cm. A crg, por unidde de comprimento, sobre o cilindro interno é de 5, 0µC/m e sobre o cilindro eterno é de 7, 0µC/m. Clcule o cmpo elétrico em: () r = 4, 0cm e (b) r = 8, 0cm. 34. Crgs são distribuíds uniformemente trvés de um cilindro não condutor innitmente longo de rio R. () Mostre ue E um distânci r do eio do cilindro (r < R) é ddo por E = ρr 2ε o, onde ρ é densidde volumétric de crgs. (b) ue resultdo podemos esperr pr r > R? 35. Um plc metálic de 8, 0cm de ldo possui um crg totl de 6µC. () Usndo proimção de um plc innit, clcule o cmpo elétrico 0, 50mm cim d superfície d plc e próimo do seu centro. (b) estime o vlor do cmpo um distânci de 30m. 36. Um esfer condutor de 10, 0cm de rio possui um crg totl de vlor desconhecido. Se o cmpo elétrico 15cm do centro d esfer é igul 3000N/C e pont rdilmente pr dentro, ul é o vlor d crg totl d esfer? 37. Dus esfers crregds e concêntrics têm rios de 10cm e 15cm. A crg sobre esfer intern é de 4, C e sobre esfer etern é de 2, C. Clcule o cmpo elétrico em () r = 12cm e em (b) r = 20cm. 38. A gur 13 mostr um csc esféric, feit de mteril isolnte, com densidde uniforme de crg ρ. Fç um gráco d vrição de E com r (distânci do ponto considerdo o centro d csc no intervlo de 0 30cm). Suponh ue ρ = 1, 0µC/m 3 ; = 10cm e b = 20cm. Figur 14: Eercício Um esfer condutor sólid com rio de 2, 0cm tem crg de 8, 0µC. Um csc esféric condutor com rio interno de 4, 0cm e rio eterno de 5, 0cm é concêntric com esfer sólid e tem um crg totl de 4, 0µC. Encontre o cmpo elétrico um distânci do centro dess congurção de crg de r = 1, 0cm, r = 3, 0cm, r = 4, 5cm e r = 7, 0cm. 41. Um pedço de isopor de 10, 0g tem um crg líuid de 0, 70µC e utu cim do centro de um folh horizontl grnde de plástico ue tem densidde de crg uniforme sobre su superfície. ul é crg por unidde de áre sobre folh plástic? 42. Um plc udrd de cobre de 50, 0cm de ldo não tem crg líuid lgum e é colocd em um região de cmpo elétrico uniforme de 80kN/C orientdo perpendiculrmente à plc. Encontre densidde de crg de cd fce d plc e crg totl em cd fce. 43. Um csc cilíndric de rio 7, 00cm e comprimento de 240cm tem su crg distribuíd uniformemente sobre su superfície curv. A mgnitude do cmpo elétrico em um ponto rdilmente distnte 19, 0cm do seu eio (medido prtir do centro d csc) é de 36, 0kN/C. Encontre () crg líuid sobre

5 5 csc e (b) o cmpo elétrico em um ponto 4, 00cm do eio, medido rdilmente pr for prtir do eio d csc. 44. Resolv o eercício 39. supondo dois cilindros longos e concêntricos, como mostrdos n gur 15. RESPOSTAS Figur 15: Eercício F = 2, 81N 2. r = 1, 39m 3. 38, 4µC e 11, 6µC 4. 13, 66cm esuerd d crg de 1µC, supondo ue est estej crg estej n origem 5. F = 34, 56N e = 10, 3 o ; 3 = 8, 4cm e 3 = 2, 7cm 6. F = 3 3k/ 2 e F = 0. Direção horizontl pr direit. 7. F = 2K πr. Direção verticl pr cim F = 2Kλ/ρ, n direção rdil. 9. F = 1, 36mN; F = 1, 97mN; F = 2, 39mN; = 55, 4 o 10. ±23, 8µC ( 11. = K 3K W h ); h = 2 W 12. F = 4, 79N; F = 40, 5N; = 83, 2 o 13. F = 0,135 0, , verticl pr bio. Se 2 >> 0, 0625 F 0,135. Em = 10m F 2 = 0, 00135N enunto ue o vlor eto é F = 0, N 14. E = 20, N/C 15. = 1µC 16. E 1 = 0, N/C, E 2 = 0, N/C. F 12 = F 21 = 0, N cm 19. 6, N 20. E é máimo em z = ±R/ 2. Neste cso E m = 2, 61kN/C. 22. E = 242N/C; E = 204N/C; 139, 9 o 23. E = 3, N/C; E = 7, N/C; 63, 4 o 24. 3, m/s 2 ĵ; 33, 3ns; 1, 95cm , 6µs; 11, 7m; 1, J kg/s; 693kg/s; 346kg/s; 346kg/s; 0, 575m 3 /s 27. 0; 3, 645Nm 2 /C; 0; , 54µC 29. 7, 38Nm 2 /C; 7, 38Nm 2 /C; 65, 3pC µC; 4, Nm 2 /C 31. 5µC/m λ pr r < R; 2πε o r pr r > R 33. 2, N/C; 4, N/C 35. 5, N/C; 60N/C 36. 7, 5nC 37. 0, ( 5 N/C; ) 0, N/C 38. E = ρ 3ε o r 3 r pr < r < b 39. E = 4πε o r 2 pr r > c; σ et = 4πc ; N/C; 0; 7, N/C 41. 2, C/m ±708nC/m 2 ; ±177nC nC 44. E = λ 2πε o r pr < r < b; σ et = λ 2πc

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA P2 16 de mio de 2013 Questão 1 Considere dois eletrodos esféricos concêntricos de rios e b, conforme figur. O meio resistivo entre os eletrodos é

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009 P2 Físic III Escol Politécnic - 2009 FGE 2203 - GABARITO DA P2 14 de mio de 2009 Questão 1 Considere um cpcitor cilíndrico de rio interno, rio externo e comprimento L >>, conforme figur. L Sejm +Q e Q

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014 Físic III - 4320301 Escol Politécnic - 2014 GABARITO DA P2 14 de mio de 2014 Questão 1 A região entre dus cscs esférics condutors concêntrics de rios e b com b > é preenchid com um mteril de resistividde

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

LISTA COMPLETA PROVA 01

LISTA COMPLETA PROVA 01 LISTA COMPLETA PROVA 1 CAPÍTULO 3 5E. Duas partículas igualmente carregadas, mantidas a uma distância de 3, x 1 3 m uma da outra, são largadas a partir do repouso. O módulo da aceleração inicial da primeira

Leia mais

Problemas sobre Electrostática

Problemas sobre Electrostática Fculdde de Engenhri Prolems sore Electrostátic ÓPTICA E ELECTOMAGNETISMO MIB Mri Inês Bros de Crvlho Setemro de 7 ELECTOSTÁTICA Fculdde de Engenhri ÓPTICA E ELECTOMAGNETISMO MIB 7/8 LEI DE COULOMB E PINCÍPIO

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítulo 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d fleão simples de vigs suportds diretmente pelo terreno (ue constitui, então, num poio elástico contínuo

Leia mais

Física 3. 1 a lista de exercícios. Prof Carlos Felipe

Física 3. 1 a lista de exercícios. Prof Carlos Felipe Físic 3. 1 list e eercícios. Prof Crlos Felipe 1) Fosse convenção e sinl s crgs elétrics moific, e moo que o elétron tivesse crg positiv e o próton crg negtiv, lei e Coulomb seri escrit mesm form ou e

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

Condução elétrica em metais

Condução elétrica em metais Condução elétric em metis Elétrons livres no metl gás de e - em um poço 3D. Movimento letório dentro do poço. Cmino livre médio: λ. E externo plicdo celerção entre colisões velocidde de rrsto: v d. 3 5

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

8/5/2015. Física Geral III

8/5/2015. Física Geral III 8/5/5 Físic Gerl III Aul Teóric (p. 7 prte /): ) pcitânci ) álculo d cpcitânci pr cpcitores de plcs prlels, cilíndricos e esféricos 3) Associções de cpcitores Prof. Mrcio R. Loos pcitor Um cpcitor é um

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUPO I 1. Os números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3.

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3. 6 Fich de eercícios de Cálculo pr Informátic CÁLCULO INTEGRAL 6- Determine primitiv F d função f que stisfz condição indicd, em cd um dos csos seguintes: ) f() = sin, F (π) = 3. b) f() = 3 + +, F (0) =

Leia mais

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um ffω Ψ Φ 2 ' $ & F sic Escol olitécnic - 2004 FGE 2203 - Gbrito d 2 20 de mio de 2004 % } Est vliοc~o tem 100 minutos de durοc~o. } É proibid consult colegs, livros e pontmentos. } Escrev de form leg vel.

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir Prov de Substitutiv Físic 1 FCM 0501 013 Nome do Aluno Número USP Assinle com um x prov que desej substituir P1 P P3 Vlor ds Questões 1ª. ) 0,5 b) 1,0 c) 0,5 d) 0,5 ª.,5 3ª. ) 1,5 b) 1,5 4ª. ) 1,5 b) 1,5

Leia mais

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

v é o módulo do vetor v, sendo

v é o módulo do vetor v, sendo Geometri nlític e álculo Vetoril Nots de ul Prof. Dr. láudio S. Srtori Operções com Vetores no Espço R 3 : Representção: Determinção dos ângulos,, : rc rc rc Representção dos ângulos no espço R 3 : Representção:

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO FENÔMENOS DE TRANSPORTE EMPUXO Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO É o esforço exercido por um líquido sobre um determind superfície (pln ou curv). E = γ. h C. A E : Empuxo ( N ou kgf ) : Peso

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Cpítulo 1 Crg Elétric e Cmpo Elétrico Ainterçãoeletromgnéticentreprtículscrregdseletricmenteéumdsinterções fundmentis d nturez. Nesse cpítulo iremos estudr lgums proprieddes básics d forç eletromgnétic,

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti http://ctti.wenode.com/ensino/une Universidde do Estdo d Bhi UNEB, Geometri Anlític II, 008.1. Superfícies de Revolução.1 Introdução Podemos oter superfícies não somente por meio de

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010 P3 Questão 1 Físic - 4320301 Escol Politécnic - 2010 GABARTO DA P3 24 de junho de 2010 onsidere um fio infinito percorrido por um corrente estcionári. oplnr com o fio está um espir retngulr de ldos e b

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 GITO Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm =

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004 Prov de F-8 urms do Diurno Segundo semestre de 004 8/0/004 ) No instnte em que luz de um semáforo fic verde, um utomóvel si do repouso com celerção constnte. Neste mesmo instnte ele é ultrpssdo por um

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Cap. 1 - Carga Elétrica e Campo Elétrico

Cap. 1 - Carga Elétrica e Campo Elétrico Universidde Federl do Rio de Jneiro Instituto de Físic Físic III 2014/2 Cp. 1 - Crg Elétric e Cmpo Elétrico Prof. Elvis Sores A interção eletromgnétic entre prtículs crregds eletricmente é um ds interções

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de

Leia mais

Física A Semi-Extensivo V. 3 Exercícios

Física A Semi-Extensivo V. 3 Exercícios Semi-Etensio V. 3 Eercícios ) D ) 94 F = = m. g =. = 5. 9, 8 35, = 4 F = 4 =. = 4.,35 = 35 3) 56. Incorret. Se elocidde é constnte, forç resultnte no liro é zero; logo, s forçs que tum no liro são o peso

Leia mais

Bertolo Apêndice A 1. Vetores

Bertolo Apêndice A 1. Vetores Bertolo Apêndice A 1 Vetores E m Físic chmm se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Resoluções de Física III 1ª Lista POLI-USP (Lista provisória) Erros na lista e sugestões:

Resoluções de Física III 1ª Lista POLI-USP (Lista provisória) Erros na lista e sugestões: Resoluções de Físic III 1ª List POLI-USP (List provisóri) Erros n list e sugestões: estudospoli@gmil.com Crg e Cmpo Elétrico 1. (1) Neste exercício, fluxo é pens vzão de crgs (não fluxo de cmpo vetoril).

Leia mais

C. -20 nc, e o da direita, com +20 nc., no ponto equidistante aos dois anéis? exercida sobre uma carga de 1,0 nc colocada no ponto equidistante?

C. -20 nc, e o da direita, com +20 nc., no ponto equidistante aos dois anéis? exercida sobre uma carga de 1,0 nc colocada no ponto equidistante? Profa. Dra. Ignez Caracelli (DF) 30 de outubro de 2016 LISTA DE EXERCÍCIOS 2: ASSUNTOS: FORÇA DE COULOMB, CAMPO ELÉTRICO, CAMPO ELÉTRICO PRODUZIDO POR CARGA PONTUAL - DISTRIBUIÇÃO DISCRETA DE CARGAS, CAMPO

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park EO Sumário 7 Rquel Crespo Deprtmento Físic, ISTTgus Prk Condutores em equilírio electroestático: Proprieddes de um condutor em equilírio electroestático: Electrões movemse livremente No equilirio tods

Leia mais

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico Física III-A - 2018/2 Lista 1: Carga Elétrica e Campo Elétrico 1. (F) Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma terceira partícula

Leia mais

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico O Potencil Elétrico Fundmentos d Eletrostátic Aul 8 O Potencil Elétrico Prof Alex G Dis Prof Alysson F Ferrri Imgine ue desejmos mover um crg teste de um ponto té um ponto b em um região do espço onde

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

CAPÍTULO 4: OUTRAS LEIS DA RADIAÇÃO

CAPÍTULO 4: OUTRAS LEIS DA RADIAÇÃO CAPÍTULO : OUTRAS LEIS DA RADIAÇÃO. ATENUAÇÃO DE RADIAÇÃO: A LEI DE BEER Como foi visto, rdição pode ser bsorvid, trnsmitid ou refletid por um corpo. Por outro ldo sbemos, pel noss experiênci, ue unto

Leia mais

PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 2 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA.

PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 2 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA. PROVA DE MATEMÁTICA DA FUVEST-7 FASE RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA. Di 9 de jneiro de 7. Um cminhão deve trnsportr, em um únic vigem, dois mteriis dierentes, X e Y, cujos volumes em m

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Geometria. Goiânia, de de Data de Devolução: 24/05/2016 Aluno (a): Série: 9º Ano Turma: 04 Lista Semanal Matemática

Geometria. Goiânia, de de Data de Devolução: 24/05/2016 Aluno (a): Série: 9º Ano Turma: 04 Lista Semanal Matemática Goiâni, de de 0. Dt de Devolução: /0/0 Aluno (: Série: 9º Ano Turm: 0 List Semnl Mtemátic Geometri. Um prédio de m de ltur projet um somr de 0 m de comprimento sore um piso horizontl plno, como mostr figur

Leia mais

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

{ } = { } MATEMÁTICA. QUESTÃO 01 Sabe-se que:

{ } = { } MATEMÁTICA. QUESTÃO 01 Sabe-se que: QUESTÃO Sbe-se ue: MATEMÁTICA = + { },, onde é prte inteir de + + { } =, + + { } =,, com, e + + { } = Determine o vlor de +. Somndo s três euções, membro membro, temos: + [ ] + { } + + [ ] + { } + + [

Leia mais

PROVA COM JUSTIFICATIVAS

PROVA COM JUSTIFICATIVAS FÍSICA 01. Um inseto de mss 1 g, vondo com velocidde de 3 cm/s, tem energi cinétic denotd por E inseto. Sbe-se ue o celerdor de prtículs LHC celerrá, prtir de 2009, prótons té um energi E LHC = 7 10 12

Leia mais