1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 a Lista de Exercícios Carga Elétrica-Lei de Gauss"

Transcrição

1 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC e 2 = 47, 0µC pr ue o módulo d forç de trção elétric entre els sej de 5, 7N? P R Figur 2: Eercício 7. Clcule forç com ue tu sobre um crg puntiforme colocd à distânci ρ do o (gur 3). 3. Dus peuens esfers estão positivmente crregds. O vlor totl ds dus crgs é de 5, C. As esfers repelem-se com um forç de 1, 0N, undo estão seprds por um distânci de 2, 0m. Sendo ssim, clcule crg em cd um dels. Trte-s como crgs pontuis. O z ρ 4. Dus crgs s de 1, 0µC e 3, 0µC estão s e seprds por um distânci de 10, 0cm. Onde você deverá loclizr um terceir crg, pr ue nenhum forç tue sobre el? 5. Dus prtículs crregds são mntids s no plno ns posições 1 = 3, 5cm; 1 = 0, 50cm e 2 = 2, 0cm; 2 = 1, 5cm. Els possuem crgs 1 = 3, 0µC e 2 = 4, 0µC, respectivmente. () Determine o módulo e direção d forç elétric n crg 2. (b) Onde deverá ser loclizd um terceir crg 3 = 4, 0µC pr ue resultnte ds forçs ue tum em 2 sej nul? 6. As crgs, 2 e 3 são colocds nos vértices de um triângulo euilátero de ldo, como mostrdo n gur 1. Um crg de mesmo sinl ue s outrs três é colocd no centro do triângulo. Obtenh forç elétric resultnte sobre (módulo e direção). 2 dz Figur 3: Eercício Um linh de crg com um densidde uniforme de 35nC/m encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre forç elétric ue tu num crg de 1, 0µC colocd n origem. 10. Dus peuens esfers condutors com 10, 0g de mss estão suspenss por dos os de sed de 120cm de comprimento e possuem mesm crg elétric, como mostrdo n gur 4. Considerndo ue o ângulo é tão peueno ue tn poss ser proimd por sin e ue este sistem estej em euilíbrio, com = 5, 0cm, clcule o vlor de. 3 Figur 1: Eercício 6. Figur 4: Eercício Um crg é distribuíd uniformemente sobre um o semicirculr de rio R. Clcule forç com ue tu sobre um crg de sinl oposto colocd no centro (ver gur 2). 8. Um o retilíneo muito longo (trte-o como innito) está eletrizdo como um densidde liner de crg λ. 11. A gur 5 mostr um long brr isolnte sem mss, com comprimento, pres por um pino no seu centro e euilibrd com peso W um distânci de su etremidde esuerd. Ns etremiddes esuerd e direit d brr são colocds crgs positivs e 2, respectivmente. A um ltur h imeditmente bio desss crgs está d um crg positiv +. ()

2 2 Determine distânci pr o peso n situção de euilíbrio d brr. (b) ul deverá ser o vlor de h pr ue brr não eerç nenhum forç verticl sobre o suporte undo em euilíbrio? h W 2 Figur 7: Eercício 15. Figur 5: Eercício utro crgs pontuis idêntics ( = 10µC) estão loclizds nos vértices de um retângulo, como mostrdo n gur 6. As dimensões do retângulo são = 60cm e W = 15cm. Clcule mgnitude e direção d forç elétric resultnte eercid n crg situd no vértice esuerdo inferior pels outrs três crgs. W 16. Dus crgs pontuis de módulo 2, C e 8, C, respectivmente, estão 12cm distntes um d outr. () ul é o cmpo elétrico ue cd um produz no lugr d outr? (b) ul é forç ue tu sobre cd um dels? 17. Dus crgs pontuis estão s e seprds por um distânci d, como mostrdo n gur 8. Esboce E () no ponto P, supondo = 0 n crg d esuerd. Considere mbos os sinis de. Esboce E positivo se o cmpo elétrico pontr pr direit e negtivo se pontr pr esuerd. Considere 1 = 1, 0µC; 2 = 3, 0µC e d = 10cm. Figur 6: Eercício 12. Figur 8: Eercício Um linh de crg está uniformemente crregd e encontr-se sobre o eio o, de modo ue seu centro estej n origem de sistem de coordends. Est linh possui 50cm de comprimento e su crg totl vle 3µC. Um crg pontul de vlor 5µC está sobre o eio o, um distânci do centro d linh. () Clcule forç elétric d linh sobre crg pontul em função de. (b) ul direção e sentido dest forç? (c) Mostre ue se for grnde em relção o comprimento d linh, est se comport como um crg pontul. (d) Neste cso, ul o vlor d forç elétric pr = 10m? (e) Compre este resultdo com o vlor eto. 14. Um prtícul α, o núcleo de hélio, tem mss de 6, kg e um crg de 2 e. uis são o módulo e direção do cmpo elétrico ue euilibrrá o seu peso? 15. N gur 7 s crgs estão loclizds nos vértices de um triângulo euilátero. Pr ul vlor de, tnto em sinl como em mgnitude, o cmpo elétrico totl se nul no centro do triângulo? 18. Dus crgs, 1 = 2, 1µC e 2 = 8, 4µC, estão s e distntes 50cm um d outr. Determine o ponto o longo d linh ret ue pss pels crgs no ul o cmpo elétrico é nulo. 19. Clcule o vlor d forç devido um peueno dipolo elétrico com momento de dipolo de vlor 3, Cm sobre um elétron distnte 25nm o longo do eio do dipolo. 20. Um nel, com 2, 5cm de rio, está uniformemente crregdo com um densidde liner de crg de vlor 3, 0nC/m. O nel está no plno com seu centro n origem. Determine o ponto o longo do eio do nel, eio z, no ul o cmpo elétrico produzido pelo nel é máimo. Clcule intensidde deste cmpo elétrico máimo. 21. Um brr isold semi-innit possui um crg constnte por unidde de comprimento de vlor

3 3 λ. Mostre ue o cmpo elétrico no ponto P d gur 9 form um ângulo de 45 o com brr e ue este resultdo é independente d distânci R. 25. Um próton (1, kg) celer prtir do repouso em um cmpo elétrico uniforme de 640N/C. Algum tempo depois, su velocidde lcnç 1, m/s. Clcule celerção do próton, o tempo ue lev pr ele tingir est velocidde, distânci por ele percorrid e su energi cinétic nest velocidde. Figur 9: Eercício Um linh de crg com um densidde uniforme de 35, em nc/m, encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre o cmpo elétrico crido por est distribuição de crgs n origem. 23. Um crg é distribuíd sobre um o semicirculr com 5, 0cm de rio, de modo ue densidde liner de crg é 35 cos ( 2), em nc/m. () Clcule crg elétric totl dest linh de crgs e (b) clcule o cmpo elétrico crido por el no centro (ver gur 10). P R 26. Em um cnl de irrigção, cuj lrgur é w = 3, 22m e profundidde d = 1, 04m, águ ui com um velocidde de 0, 207m/s. Determine o uo de mss trvés ds seguintes superfícies: () um superfície de áre wd, totlmente n águ e perpendiculr o uo; (b) um superfície de áre 3wd/2, d ul wd está n águ e perpendiculr o uo; (c) um superfície de áre wd/2, totlmente n águ, perpendiculr o uo; (d) um superfície de áre wd metde n águ e metde for, perpendiculr o uo; (e) um superfície de áre wd, totlmente n águ, fzendo um ângulo de 34 o com direção do uo. 27. Um cubo com 1, 35m de rest está orientdo com um dos vértice n origem de um sistem crtesino, como mostrdo n gur 12. Nest região eiste um cmpo elétrico uniforme. Clcule o vlor do uo elétrico ue trvess fce direit do cubo, ue é prlel o plno z, se o cmpo elétrico, em newton/coulomb, for ddo por: () 6î; (b) 2ĵ; (c) 3î + 4ˆk. (d) ul é o vlor totl do uo trvés de todo o cubo pr cd um destes cmpos? z Figur 10: Eercício Um elétron (9, kg), com velocidde inicil de 3000km/s, horizontl pr direit, penetr num região onde eiste um cmpo elétrico uniforme ddo por E = 200N/Cĵ. Este cmpo uniforme é gerdo por dus plcs prlels, de comprimento = 0, 100m (gur 11). Clcule () celerção do elétron enunto ele estiver n região do cmpo; (b) o tempo ue demor pr o elétron trvessr est região e (c) o deslocmento verticl do elétron pós trvessr região do cmpo. Figur 12: Eercício Determinou-se, trvés de eperiêncis, ue o cmpo elétrico situdo num cert região d tmosfer terrestre está dirigido verticlmente pr bio. Num ltitude de 300m, o cmpo vle 60N/C e, num ltitude de 200m, ele vle 100N/C. Determine crg totl resultnte contid num cubo de 100m de rest e loclizdo num ltitude entre 200m e 300m. Despreze curvtur d Terr. Figur 11: Eercício Determine o uo líuido trvés do cubo do eercício 27. se o cmpo elétrico for ddo por: () E = 3ĵ e (b) E = 4î + (6 + 3) ĵ. (c) Em cd cso, ul é o vlor d crg elétric contid no interior do

4 4 cubo? 30. Um esfer condutor uniformemente crregd, de 1, 2m de diâmetro, possui um densidde supercil de crgs de 8, 1µC/m 2. () Determine crg sobre esfer. (b) ul é o vlor do uo elétrico totl ue está deindo superfície d esfer? 31. Um innit linh de crgs produz um cmpo de 4, N/C um distânci de 2, 0m. Clcule densidde de crg liner. 32. Considere um tubo de metl cujs predes são ns. O tubo tem um rio R e um crg por unidde de comprimento λ sobre su superfície. Obtenh epressões pr E pr váris distâncis r prtir do eio do tubo, considerndo mbs: () r > R e (b) r < R. Fç um gráco dos seus resultdos pr fi de r = 0 r = 5, 0cm, supondo ue λ = 2, C/m e R = 3, 0cm. Figur 13: Eercício Um esfer isolnte sólid de rio tem um densidde de crg uniforme ρ e crg totl. Um esfer condutor oc, não crregd, cujos rios interno e eterno são b e c, como mostr gur 14, é concêntric ess esfer. () Encontre mgnitude do cmpo elétrico ns regiões r <, < r < b, b < r < c e r > c. (b) Determine crg induzid por unidde de áre ns superfícies intern e etern d esfer oc. 33. Dois cilindros crregdos, longos e concêntricos, têm rios de 3, 0cm e 6, 0cm. A crg, por unidde de comprimento, sobre o cilindro interno é de 5, 0µC/m e sobre o cilindro eterno é de 7, 0µC/m. Clcule o cmpo elétrico em: () r = 4, 0cm e (b) r = 8, 0cm. 34. Crgs são distribuíds uniformemente trvés de um cilindro não condutor innitmente longo de rio R. () Mostre ue E um distânci r do eio do cilindro (r < R) é ddo por E = ρr 2ε o, onde ρ é densidde volumétric de crgs. (b) ue resultdo podemos esperr pr r > R? 35. Um plc metálic de 8, 0cm de ldo possui um crg totl de 6µC. () Usndo proimção de um plc innit, clcule o cmpo elétrico 0, 50mm cim d superfície d plc e próimo do seu centro. (b) estime o vlor do cmpo um distânci de 30m. 36. Um esfer condutor de 10, 0cm de rio possui um crg totl de vlor desconhecido. Se o cmpo elétrico 15cm do centro d esfer é igul 3000N/C e pont rdilmente pr dentro, ul é o vlor d crg totl d esfer? 37. Dus esfers crregds e concêntrics têm rios de 10cm e 15cm. A crg sobre esfer intern é de 4, C e sobre esfer etern é de 2, C. Clcule o cmpo elétrico em () r = 12cm e em (b) r = 20cm. 38. A gur 13 mostr um csc esféric, feit de mteril isolnte, com densidde uniforme de crg ρ. Fç um gráco d vrição de E com r (distânci do ponto considerdo o centro d csc no intervlo de 0 30cm). Suponh ue ρ = 1, 0µC/m 3 ; = 10cm e b = 20cm. Figur 14: Eercício Um esfer condutor sólid com rio de 2, 0cm tem crg de 8, 0µC. Um csc esféric condutor com rio interno de 4, 0cm e rio eterno de 5, 0cm é concêntric com esfer sólid e tem um crg totl de 4, 0µC. Encontre o cmpo elétrico um distânci do centro dess congurção de crg de r = 1, 0cm, r = 3, 0cm, r = 4, 5cm e r = 7, 0cm. 41. Um pedço de isopor de 10, 0g tem um crg líuid de 0, 70µC e utu cim do centro de um folh horizontl grnde de plástico ue tem densidde de crg uniforme sobre su superfície. ul é crg por unidde de áre sobre folh plástic? 42. Um plc udrd de cobre de 50, 0cm de ldo não tem crg líuid lgum e é colocd em um região de cmpo elétrico uniforme de 80kN/C orientdo perpendiculrmente à plc. Encontre densidde de crg de cd fce d plc e crg totl em cd fce. 43. Um csc cilíndric de rio 7, 00cm e comprimento de 240cm tem su crg distribuíd uniformemente sobre su superfície curv. A mgnitude do cmpo elétrico em um ponto rdilmente distnte 19, 0cm do seu eio (medido prtir do centro d csc) é de 36, 0kN/C. Encontre () crg líuid sobre

5 5 csc e (b) o cmpo elétrico em um ponto 4, 00cm do eio, medido rdilmente pr for prtir do eio d csc. 44. Resolv o eercício 39. supondo dois cilindros longos e concêntricos, como mostrdos n gur 15. RESPOSTAS Figur 15: Eercício F = 2, 81N 2. r = 1, 39m 3. 38, 4µC e 11, 6µC 4. 13, 66cm esuerd d crg de 1µC, supondo ue est estej crg estej n origem 5. F = 34, 56N e = 10, 3 o ; 3 = 8, 4cm e 3 = 2, 7cm 6. F = 3 3k/ 2 e F = 0. Direção horizontl pr direit. 7. F = 2K πr. Direção verticl pr cim F = 2Kλ/ρ, n direção rdil. 9. F = 1, 36mN; F = 1, 97mN; F = 2, 39mN; = 55, 4 o 10. ±23, 8µC ( 11. = K 3K W h ); h = 2 W 12. F = 4, 79N; F = 40, 5N; = 83, 2 o 13. F = 0,135 0, , verticl pr bio. Se 2 >> 0, 0625 F 0,135. Em = 10m F 2 = 0, 00135N enunto ue o vlor eto é F = 0, N 14. E = 20, N/C 15. = 1µC 16. E 1 = 0, N/C, E 2 = 0, N/C. F 12 = F 21 = 0, N cm 19. 6, N 20. E é máimo em z = ±R/ 2. Neste cso E m = 2, 61kN/C. 22. E = 242N/C; E = 204N/C; 139, 9 o 23. E = 3, N/C; E = 7, N/C; 63, 4 o 24. 3, m/s 2 ĵ; 33, 3ns; 1, 95cm , 6µs; 11, 7m; 1, J kg/s; 693kg/s; 346kg/s; 346kg/s; 0, 575m 3 /s 27. 0; 3, 645Nm 2 /C; 0; , 54µC 29. 7, 38Nm 2 /C; 7, 38Nm 2 /C; 65, 3pC µC; 4, Nm 2 /C 31. 5µC/m λ pr r < R; 2πε o r pr r > R 33. 2, N/C; 4, N/C 35. 5, N/C; 60N/C 36. 7, 5nC 37. 0, ( 5 N/C; ) 0, N/C 38. E = ρ 3ε o r 3 r pr < r < b 39. E = 4πε o r 2 pr r > c; σ et = 4πc ; N/C; 0; 7, N/C 41. 2, C/m ±708nC/m 2 ; ±177nC nC 44. E = λ 2πε o r pr < r < b; σ et = λ 2πc

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Problemas sobre Electrostática

Problemas sobre Electrostática Fculdde de Engenhri Prolems sore Electrostátic ÓPTICA E ELECTOMAGNETISMO MIB Mri Inês Bros de Crvlho Setemro de 7 ELECTOSTÁTICA Fculdde de Engenhri ÓPTICA E ELECTOMAGNETISMO MIB 7/8 LEI DE COULOMB E PINCÍPIO

Leia mais

LISTA COMPLETA PROVA 01

LISTA COMPLETA PROVA 01 LISTA COMPLETA PROVA 1 CAPÍTULO 3 5E. Duas partículas igualmente carregadas, mantidas a uma distância de 3, x 1 3 m uma da outra, são largadas a partir do repouso. O módulo da aceleração inicial da primeira

Leia mais

Física 3. 1 a lista de exercícios. Prof Carlos Felipe

Física 3. 1 a lista de exercícios. Prof Carlos Felipe Físic 3. 1 list e eercícios. Prof Crlos Felipe 1) Fosse convenção e sinl s crgs elétrics moific, e moo que o elétron tivesse crg positiv e o próton crg negtiv, lei e Coulomb seri escrit mesm form ou e

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir Prov de Substitutiv Físic 1 FCM 0501 013 Nome do Aluno Número USP Assinle com um x prov que desej substituir P1 P P3 Vlor ds Questões 1ª. ) 0,5 b) 1,0 c) 0,5 d) 0,5 ª.,5 3ª. ) 1,5 b) 1,5 4ª. ) 1,5 b) 1,5

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Cap. 1 - Carga Elétrica e Campo Elétrico

Cap. 1 - Carga Elétrica e Campo Elétrico Universidde Federl do Rio de Jneiro Instituto de Físic Físic III 2014/2 Cp. 1 - Crg Elétric e Cmpo Elétrico Prof. Elvis Sores A interção eletromgnétic entre prtículs crregds eletricmente é um ds interções

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park EO Sumário 7 Rquel Crespo Deprtmento Físic, ISTTgus Prk Condutores em equilírio electroestático: Proprieddes de um condutor em equilírio electroestático: Electrões movemse livremente No equilirio tods

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

PROVA COM JUSTIFICATIVAS

PROVA COM JUSTIFICATIVAS FÍSICA 01. Um inseto de mss 1 g, vondo com velocidde de 3 cm/s, tem energi cinétic denotd por E inseto. Sbe-se ue o celerdor de prtículs LHC celerrá, prtir de 2009, prótons té um energi E LHC = 7 10 12

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho on Mecânic Vetoril pr Engenheiros: Estátic 010The McGrw-Hill Compnies, Inc. All rights reserved. Prof.: Anstácio Pinto Gonçlves Filho on Mecânic Vetoril pr Engenheiros: Estátic Centro de Grvidde de um

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

-Q - Q + Q L L. P 3 x x 3. x 2

-Q - Q + Q L L. P 3 x x 3. x 2 1 ist de Eercícios de Eletricidde Básic 1 Três crgs puntiformes estão fis sore o eio dos, conforme figur io A crg positiv Q encontr-se n origem e s dus crgs negtivs Q estão situds em = e em = - Um outr

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível

Leia mais

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidde ederl Rurl do Semi-Árido ENÔMENOS DE TRANSPORTE MECÂNICA DOS LUIDOS ESTÁTICA DOS LUIDOS UERSA Universidde ederl Rurl do Semi-Árido Prof. Roberto Vieir Pordeus Nots de ul enômenos de Trnsorte

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Coordenadas cartesianas Triedro direto

Coordenadas cartesianas Triedro direto Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3 Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido. Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

CES - Lafaiete Engenharia Elétrica

CES - Lafaiete Engenharia Elétrica CES - Lfiete Engenhri Elétric Revisão: Acelerção etc - Prof.: Aloísio Elói 01) (MACK-SP) Um pssgeiro de um ônibus, que se move pr direit em MRU, observ chuv trvés d jnel. Não há ventos e s gots de chuv

Leia mais

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o FÍSICA 16) Um pedr é solt de um penhsco e lev t 1 segundos pr chegr no solo. Se t 2 é o tempo necessário pr pedr percorrer primeir metde do percurso, então podemos firmr que rzão entre t 1 e t 2 vle: A)

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes: Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal urso de lingugem mtemátic Professor Rento Tião 1. s dimensões de um prlelepípedo reto-retângulo são m, 4m e 1m. lcule: ) Su áre totl. b) Seu volume. c) Su digonl.. s dimensões x, y, z de um prlelepípedo

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Física I - Avaliação Normal 2009/ de Janeiro de 2010

Física I - Avaliação Normal 2009/ de Janeiro de 2010 Físic I - Avlição Norml 2009/2010-26 de Jneiro de 2010 Número Nome N 1. prte deste exme seleccione, pr cd questão, respost que entender como correct, indicndo letr correspondentengrelhixo. Cdquestãocorrectmente

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura)

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura) QUESTÕES DE ROVS E TESTES (Flexão ur) (1) Estudo Dirigido 04-02 r cd um ds vigs esquemtizds bixo, com s respectivs seções trnsversis mostrds o ldo, pede-se: ) Trçr o digrm de forçs cortntes, ssinlndo os

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez Universidde do Algrve Deprtmento de Físic Exercícios de Electromgnetismo Compildos por Robertus Potting, Pulo Ser de Sá e Orlndo Cmrgo Rodríguez Fro, 12 de Setembro de 2005 1 Cálculo Vectoril Elementr

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128 Aul 4 Moimento em dus e três dimensões Físic Gerl I F -18 F18 o Semestre de 1 1 Moimento em D e 3D Cinemátic em D e 3D Eemplos de moimentos D e 3D Acelerção constnte - celerção d gridde Moimento circulr

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIÍIA UNIVSIDAD ATÓLIA D GOIÁS DPATAMNTO D MATMÁTIA ÍSIA Professores: dson Vaz e enato Medeiros XÍIOS NOTA D AULA I Goiânia - X Í I O S. O esuema abaio mostra três cargas puntiformes fias, no vácuo.

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

Capítulo V. Forças Distribuídas: Centróides e Baricentros

Capítulo V. Forças Distribuídas: Centróides e Baricentros Cpítulo V Forçs Distriuíds: Centróides e Bricentros 5 Determine posição do centróide d superfície pln d figur Oserve que figur pode ser considerd como compost por um qudrdo do qul foi sutrído um qurto

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km FÍSICA 1 O Sistem GPS (Globl Positioning System) permite loclizr um receptor especil, em qulquer lugr d Terr, por meio de sinis emitidos por stélites. Num situção prticulr, dois stélites, A e B, estão

Leia mais

d(p,f 1) + d(p,f 2) = 2a

d(p,f 1) + d(p,f 2) = 2a 1 3. Estudo d Elipse 3..1 Definição Consideremos no plno dois pontos F 1 e F, tis que d(f 1, F ) = c. Sej, > c. Chm-se elipse o conjunto de pontos P, do plno, tis que: d(p,f 1) + d(p,f ) = P F 1 O F 3..

Leia mais