1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss"

Transcrição

1 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC e 2 = 47, 0µC pr ue o módulo d forç de trção elétric entre els sej de 5, 7N? P R Figur 2: Eercício 7. Clcule forç com ue tu sobre um crg puntiforme colocd à distânci ρ do fio (figur 3). 3. Dus peuens esfers estão positivmente crregds. O vlor totl ds dus crgs é de 5, C. As esfers repelem-se com um forç de 1, 0N, undo estão seprds por um distânci de 2, 0m. Sendo ssim, clcule crg em cd um dels. Trte-s como crgs pontuis. O z ρ 4. Dus crgs fis de 1, 0µC e 3, 0µC estão fis e seprds por um distânci de 10, 0cm. Onde você deverá loclizr um terceir crg, pr ue nenhum forç tue sobre el? 5. Dus prtículs crregds são mntids fis no plno ns posições 1 = 3, 5cm; 1 = 0, 50cm e 2 = 2, 0cm; 2 = 1, 5cm. Els possuem crgs 1 = 3, 0µC e 2 = 4, 0µC, respectivmente. () Determine o módulo e direção d forç elétric n crg 2. (b) Onde deverá ser loclizd um terceir crg 3 = 4, 0µC pr ue resultnte ds forçs ue tum em 2 sej nul? 6. As crgs, 2 e 3 são colocds nos vértices de um triângulo euilátero de ldo, como mostrdo n figur 1. Um crg de mesmo sinl ue s outrs três é colocd no centro do triângulo. Obtenh forç elétric resultnte sobre (módulo e direção). 2 dz Figur 3: Eercício Um linh de crg com um densidde uniforme de 35nC/m encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre forç elétric ue tu num crg de 1, 0µC colocd n origem. 10. Dus peuens esfers condutors com 10, 0g de mss estão suspenss por dos fios de sed de 120cm de comprimento e possuem mesm crg elétric, como mostrdo n figur 4. Considerndo ue o ângulo é tão peueno ue tn poss ser proimd por sin e ue este sistem estej em euilíbrio, com = 5, 0cm, clcule o vlor de. 3 Figur 1: Eercício 6. Figur 4: Eercício Um crg é distribuíd uniformemente sobre um fio semicirculr de rio R. Clcule forç com ue tu sobre um crg de sinl oposto colocd no centro (ver figur 2). 8. Um fio retilíneo muito longo (trte-o como infinito) está eletrizdo como um densidde liner de crg λ. 11. A figur 5 mostr um long brr isolnte sem mss, com comprimento, pres por um pino no seu centro e euilibrd com peso um distânci de su etremidde esuerd. Ns etremiddes esuerd e direit d brr são colocds crgs positivs e 2, respectivmente. A um ltur h imeditmente bio desss crgs está fid um crg positiv +. ()

2 2 Determine distânci pr o peso n situção de euilíbrio d brr. (b) ul deverá ser o vlor de h pr ue brr não eerç nenhum forç verticl sobre o suporte undo em euilíbrio? h 2 Figur 7: Eercício 15. Figur 5: Eercício utro crgs pontuis idêntics ( = 10µC) estão loclizds nos vértices de um retângulo, como mostrdo n figur 6. As dimensões do retângulo são = 60cm e = 15cm. Clcule mgnitude e direção d forç elétric resultnte eercid n crg situd no vértice esuerdo inferior pels outrs três crgs. 16. Dus crgs pontuis de módulo 2, C e 8, C, respectivmente, estão 12cm distntes um d outr. () ul é o cmpo elétrico ue cd um produz no lugr d outr? (b) ul é forç ue tu sobre cd um dels? 17. Dus crgs pontuis estão fis e seprds por um distânci d, como mostrdo n figur 8. Esboce E () no ponto P, supondo = 0 n crg d esuerd. Considere mbos os sinis de. Esboce E positivo se o cmpo elétrico pontr pr direit e negtivo se pontr pr esuerd. Considere 1 = 1, 0µC; 2 = 3, 0µC e d = 10cm. Figur 6: Eercício 12. Figur 8: Eercício Um linh de crg está uniformemente crregd e encontr-se sobre o eio o, de modo ue seu centro estej n origem de sistem de coordends. Est linh possui 50cm de comprimento e su crg totl vle 3µC. Um crg pontul de vlor 5µC está sobre o eio o, um distânci do centro d linh. () Clcule forç elétric d linh sobre crg pontul em função de. (b) ul direção e sentido dest forç? (c) Mostre ue se for grnde em relção o comprimento d linh, est se comport como um crg pontul. (d) Neste cso, ul o vlor d forç elétric pr = 10m? (e) Compre este resultdo com o vlor eto. 14. Um prtícul α, o núcleo de hélio, tem mss de 6, kg e um crg de 2 e. uis são o módulo e direção do cmpo elétrico ue euilibrrá o seu peso? 15. N figur 7 s crgs estão loclizds nos vértices de um triângulo euilátero. Pr ul vlor de, tnto em sinl como em mgnitude, o cmpo elétrico totl se nul no centro do triângulo? 18. Dus crgs, 1 = 2, 1µC e 2 = 8, 4µC, estão fis e distntes 50cm um d outr. Determine o ponto o longo d linh ret ue pss pels crgs no ul o cmpo elétrico é nulo. 19. Clcule o vlor d forç devido um peueno dipolo elétrico com momento de dipolo de vlor 3, Cm sobre um elétron distnte 25nm o longo do eio do dipolo. 20. Um nel, com 2, 5cm de rio, está uniformemente crregdo com um densidde liner de crg de vlor 3, 0nC/m. O nel está no plno com seu centro n origem. Determine o ponto o longo do eio do nel, eio z, no ul o cmpo elétrico produzido pelo nel é máimo. Clcule intensidde deste cmpo elétrico máimo. 21. Um brr isold semi-infinit possui um crg constnte por unidde de comprimento de vlor λ. Mostre ue o cmpo elétrico no ponto P d figur 9 form

3 3 um ângulo de 45 o com brr e ue este resultdo é independente d distânci R. Figur 9: Eercício Um linh de crg com um densidde uniforme de 35, em nc/m, encontr-se o longo d linh = 15cm, entre os pontos com corrdends = 0 e = 40, 0cm. Encontre o cmpo elétrico crido por est distribuição de crgs n origem. 23. Um crg é distribuíd sobre um fio semicirculr com 5, 0cm de rio, de modo ue densidde liner de crg é 35 cos ( 2), em nc/m. () Clcule crg elétric totl dest linh de crgs e (b) clcule o cmpo elétrico crido por el no centro (ver figur 10). P R 25. Um próton (1, kg) celer prtir do repouso em um cmpo elétrico uniforme de 640N/C. Algum tempo depois, su velocidde lcnç 1, m/s. Clcule celerção do próton, o tempo ue lev pr ele tingir est velocidde, distânci por ele percorrid e su energi cinétic nest velocidde. 26. Em um cnl de irrigção, cuj lrgur é w = 3, 22m e profundidde d = 1, 04m, águ flui com um velocidde de 0, 207m/s. Determine o fluo de mss trvés ds seguintes superfícies: () um superfície de áre wd, totlmente n águ e perpendiculr o fluo; (b) um superfície de áre 3wd/2, d ul wd está n águ e perpendiculr o fluo; (c) um superfície de áre wd/2, totlmente n águ, perpendiculr o fluo; (d) um superfície de áre wd metde n águ e metde for, perpendiculr o fluo; (e) um superfície de áre wd, totlmente n águ, fzendo um ângulo de 34 o com direção do fluo. 27. Um cubo com 1, 35m de rest está orientdo com um dos vértice n origem de um sistem crtesino, como mostrdo n figur 12. Nest região eiste um cmpo elétrico uniforme. Clcule o vlor do fluo elétrico ue trvess fce direit do cubo, ue é prlel o plno z, se o cmpo elétrico, em newton/coulomb, for ddo por: () 6î; (b) 2ĵ; (c) 3î + 4ˆk. (d) ul é o vlor totl do fluo trvés de todo o cubo pr cd um destes cmpos? z Figur 10: Eercício Um elétron (9, kg), com velocidde inicil de 3000km/s, horizontl pr direit, penetr num região onde eiste um cmpo elétrico uniforme ddo por E = 200N/Cĵ. Este cmpo uniforme é gerdo por dus plcs prlels, de comprimento = 0, 100m (figur 11). Clcule () celerção do elétron enunto ele estiver n região do cmpo; (b) o tempo ue demor pr o elétron trvessr est região e (c) o deslocmento verticl do elétron pós trvessr região do cmpo. Figur 11: Eercício 24. Figur 12: Eercício Determinou-se, trvés de eperiêncis, ue o cmpo elétrico situdo num cert região d tmosfer terrestre está dirigido verticlmente pr bio. Num ltitude de 300m, o cmpo vle 60N/C e, num ltitude de 200m, ele vle 100N/C. Determine crg totl resultnte contid num cubo de 100m de rest e loclizdo num ltitude entre 200m e 300m. Despreze curvtur d Terr. 29. Determine o fluo líuido trvés do cubo do eercício 27. se o cmpo elétrico for ddo por: () E = 3ĵ e (b) E = 4î + (6 + 3) ĵ. (c) Em cd cso, ul é o vlor d crg elétric contid no interior do

4 4 cubo? 30. Um esfer condutor uniformemente crregd, de 1, 2m de diâmetro, possui um densidde superficil de crgs de 8, 1µC/m 2. () Determine crg sobre esfer. (b) ul é o vlor do fluo elétrico totl ue está deindo superfície d esfer? 31. Um infinit linh de crgs produz um cmpo de 4, N/C um distânci de 2, 0m. Clcule densidde de crg liner. 32. Considere um tubo de metl cujs predes são fins. O tubo tem um rio R e um crg por unidde de comprimento λ sobre su superfície. Obtenh epressões pr E pr váris distâncis r prtir do eio do tubo, considerndo mbs: () r > R e (b) r < R. Fç um gráfico dos seus resultdos pr fi de r = 0 r = 5, 0cm, supondo ue λ = 2, C/m e R = 3, 0cm. Figur 13: Eercício Um esfer isolnte sólid de rio tem um densidde de crg uniforme ρ e crg totl. Um esfer condutor oc, não crregd, cujos rios interno e eterno são b e c, como mostr figur 14, é concêntric ess esfer. () Encontre mgnitude do cmpo elétrico ns regiões r <, < r < b, b < r < c e r > c. (b) Determine crg induzid por unidde de áre ns superfícies intern e etern d esfer oc. 33. Dois cilindros crregdos, longos e concêntricos, têm rios de 3, 0cm e 6, 0cm. A crg, por unidde de comprimento, sobre o cilindro interno é de 5, 0µC/m e sobre o cilindro eterno é de 7, 0µC/m. Clcule o cmpo elétrico em: () r = 4, 0cm e (b) r = 8, 0cm. 34. Crgs são distribuíds uniformemente trvés de um cilindro não condutor infinitmente longo de rio R. () Mostre ue E um distânci r do eio do cilindro (r < R) é ddo por E = ρr 2ε o, onde ρ é densidde volumétric de crgs. (b) ue resultdo podemos esperr pr r > R? 35. Um plc metálic de 8, 0cm de ldo possui um crg totl de 6µC. () Usndo proimção de um plc infinit, clcule o cmpo elétrico 0, 50mm cim d superfície d plc e próimo do seu centro. (b) estime o vlor do cmpo um distânci de 30m. 36. Um esfer condutor de 10, 0cm de rio possui um crg totl de vlor desconhecido. Se o cmpo elétrico 15cm do centro d esfer é igul 3000N/C e pont rdilmente pr dentro, ul é o vlor d crg totl d esfer? 37. Dus esfers crregds e concêntrics têm rios de 10cm e 15cm. A crg sobre esfer intern é de 4, C e sobre esfer etern é de 2, C. Clcule o cmpo elétrico em () r = 12cm e em (b) r = 20cm. 38. A figur 13 mostr um csc esféric, feit de mteril isolnte, com densidde uniforme de crg ρ. Fç um gráfico d vrição de E com r (distânci do ponto considerdo o centro d csc no intervlo de 0 30cm). Suponh ue ρ = 1, 0µC/m 3 ; = 10cm e b = 20cm. Figur 14: Eercício Um esfer condutor sólid com rio de 2, 0cm tem crg de 8, 0µC. Um csc esféric condutor com rio interno de 4, 0cm e rio eterno de 5, 0cm é concêntric com esfer sólid e tem um crg totl de 4, 0µC. Encontre o cmpo elétrico um distânci do centro dess configurção de crg de r = 1, 0cm, r = 3, 0cm, r = 4, 5cm e r = 7, 0cm. 41. Um pedço de isopor de 10, 0g tem um crg líuid de 0, 70µC e flutu cim do centro de um folh horizontl grnde de plástico ue tem densidde de crg uniforme sobre su superfície. ul é crg por unidde de áre sobre folh plástic? 42. Um plc udrd de cobre de 50, 0cm de ldo não tem crg líuid lgum e é colocd em um região de cmpo elétrico uniforme de 80kN/C orientdo perpendiculrmente à plc. Encontre densidde de crg de cd fce d plc e crg totl em cd fce. 43. Um csc cilíndric de rio 7, 00cm e comprimento de 240cm tem su crg distribuíd uniformemente sobre su superfície curv. A mgnitude do cmpo elétrico em um ponto rdilmente distnte 19, 0cm do seu eio (medido prtir do centro d csc) é de 36, 0kN/C. Encontre () crg líuid sobre csc e (b) o cmpo elétrico em um ponto 4, 00cm do eio,

5 5 medido rdilmente pr for prtir do eio d csc. 44. Resolv o eercício 39. supondo dois cilindros longos e concêntricos, como mostrdos n figur 15. O cilindro interno, de rio, é isolnte, mciço e possui densidde de crg por unidde de comprimento constnte igul λ. O cilindro oco concêntrico, de rios interno b e eterno c, é condutor e está descrregdo. Considere situção de euilíbrio eletrostástico. RESPOSTAS** Figur 15: Eercício F = 2, 81N 2. r = 1, 39m 3. 38, 4µC e 11, 6µC 4. 13, 66cm esuerd d crg de 1µC, supondo ue est estej crg estej n origem 5. F = 34, 56N e = 10, 3 o ; 3 = 8, 4cm e 3 = 2, 7cm 6. F = 3 3k/ 2 e F = 0. Direção horizontl pr direit. 7. F = 2K πr. Direção verticl pr cim F = 2Kλ/ρ, n direção rdil. 9. F = 1, 36mN; F = 1, 97mN; F = 2, 39mN; = 55, 4 o 10. ± 23, 8 nc 3K ( 11. = K h ); h = F = 4, 79N; F = 40, 5N; = 83, 2 o 13. F = 0,135 0, , verticl pr bio. Se 2 >> 0, 0625 F 0,135. Em = 10m F 2 = 0, 00135N enunto ue o vlor eto é F = 0, N 14. E = 20, N/C 15. = 1µC 16. E 1 = 0, N/C, E 2 = 0, N/C. F 12 = F 21 = 0, N cm 19. 6, N 20. E é máimo em z = ±R/ 2. Neste cso E m = 2, 61kN/C. 22. E = 242N/C; E = 204N/C; 139, 9 o 23. 3, 5 nc; E = 4, N/C; E = 8, N/C; 63, 4 o 24. 3, m/s 2 ĵ; 33, 3ns; 1, 95cm , 6µs; 11, 7m; 1, J kg/s; 693kg/s; 346kg/s; 346kg/s; 0, 575m 3 /s 27. 0; 3, 645Nm 2 /C; 0; , 54µC 29. 7, 38Nm 2 /C; 7, 38Nm 2 /C; 65, 3pC µC; 4, Nm 2 /C 31. 5µC/m λ pr r < R; 2πε o r pr r > R 33. 2, N/C; 4, N/C 35. 5, N/C; 60N/C 36. 7, 5nC 37. 0, N/C; 0, N/C 38. E = 0 pr r < ; E = ρ E = 3ε o ( ρ 3ε o r 2 ( b 3 3) pr r > b r 3 r 2 ) pr < r < b; 39. E = 4πε or 2 pr r > c; σ et = 4πc ; N/C; 0; 7, N/C 41. 2, C/m ±708nC/m 2 ; ±177nC nc 44. E = λ 2πε o r pr < r < b; σ int = λ 2πb ; σ et = λ 2πc **Cso sej percebido lgum euívoco ns resposts, por fvor, me vise.

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

Problemas sobre Electrostática

Problemas sobre Electrostática Fculdde de Engenhri Prolems sore Electrostátic ÓPTICA E ELECTOMAGNETISMO MIB Mri Inês Bros de Crvlho Setemro de 7 ELECTOSTÁTICA Fculdde de Engenhri ÓPTICA E ELECTOMAGNETISMO MIB 7/8 LEI DE COULOMB E PINCÍPIO

Leia mais

Física 3. 1 a lista de exercícios. Prof Carlos Felipe

Física 3. 1 a lista de exercícios. Prof Carlos Felipe Físic 3. 1 list e eercícios. Prof Crlos Felipe 1) Fosse convenção e sinl s crgs elétrics moific, e moo que o elétron tivesse crg positiv e o próton crg negtiv, lei e Coulomb seri escrit mesm form ou e

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir Prov de Substitutiv Físic 1 FCM 0501 013 Nome do Aluno Número USP Assinle com um x prov que desej substituir P1 P P3 Vlor ds Questões 1ª. ) 0,5 b) 1,0 c) 0,5 d) 0,5 ª.,5 3ª. ) 1,5 b) 1,5 4ª. ) 1,5 b) 1,5

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Cap. 1 - Carga Elétrica e Campo Elétrico

Cap. 1 - Carga Elétrica e Campo Elétrico Universidde Federl do Rio de Jneiro Instituto de Físic Físic III 2014/2 Cp. 1 - Crg Elétric e Cmpo Elétrico Prof. Elvis Sores A interção eletromgnétic entre prtículs crregds eletricmente é um ds interções

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park

EO- Sumário 7. Raquel Crespo Departamento Física, IST-Tagus Park EO Sumário 7 Rquel Crespo Deprtmento Físic, ISTTgus Prk Condutores em equilírio electroestático: Proprieddes de um condutor em equilírio electroestático: Electrões movemse livremente No equilirio tods

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

-Q - Q + Q L L. P 3 x x 3. x 2

-Q - Q + Q L L. P 3 x x 3. x 2 1 ist de Eercícios de Eletricidde Básic 1 Três crgs puntiformes estão fis sore o eio dos, conforme figur io A crg positiv Q encontr-se n origem e s dus crgs negtivs Q estão situds em = e em = - Um outr

Leia mais

PROVA COM JUSTIFICATIVAS

PROVA COM JUSTIFICATIVAS FÍSICA 01. Um inseto de mss 1 g, vondo com velocidde de 3 cm/s, tem energi cinétic denotd por E inseto. Sbe-se ue o celerdor de prtículs LHC celerrá, prtir de 2009, prótons té um energi E LHC = 7 10 12

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3 Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de

Leia mais

Coordenadas cartesianas Triedro direto

Coordenadas cartesianas Triedro direto Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal urso de lingugem mtemátic Professor Rento Tião 1. s dimensões de um prlelepípedo reto-retângulo são m, 4m e 1m. lcule: ) Su áre totl. b) Seu volume. c) Su digonl.. s dimensões x, y, z de um prlelepípedo

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez Universidde do Algrve Deprtmento de Físic Exercícios de Electromgnetismo Compildos por Robertus Potting, Pulo Ser de Sá e Orlndo Cmrgo Rodríguez Fro, 12 de Setembro de 2005 1 Cálculo Vectoril Elementr

Leia mais

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido. Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

CES - Lafaiete Engenharia Elétrica

CES - Lafaiete Engenharia Elétrica CES - Lfiete Engenhri Elétric Revisão: Acelerção etc - Prof.: Aloísio Elói 01) (MACK-SP) Um pssgeiro de um ônibus, que se move pr direit em MRU, observ chuv trvés d jnel. Não há ventos e s gots de chuv

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o FÍSICA 16) Um pedr é solt de um penhsco e lev t 1 segundos pr chegr no solo. Se t 2 é o tempo necessário pr pedr percorrer primeir metde do percurso, então podemos firmr que rzão entre t 1 e t 2 vle: A)

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura)

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura) QUESTÕES DE ROVS E TESTES (Flexão ur) (1) Estudo Dirigido 04-02 r cd um ds vigs esquemtizds bixo, com s respectivs seções trnsversis mostrds o ldo, pede-se: ) Trçr o digrm de forçs cortntes, ssinlndo os

Leia mais

Física I - Avaliação Normal 2009/ de Janeiro de 2010

Física I - Avaliação Normal 2009/ de Janeiro de 2010 Físic I - Avlição Norml 2009/2010-26 de Jneiro de 2010 Número Nome N 1. prte deste exme seleccione, pr cd questão, respost que entender como correct, indicndo letr correspondentengrelhixo. Cdquestãocorrectmente

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

Capítulo V. Forças Distribuídas: Centróides e Baricentros

Capítulo V. Forças Distribuídas: Centróides e Baricentros Cpítulo V Forçs Distriuíds: Centróides e Bricentros 5 Determine posição do centróide d superfície pln d figur Oserve que figur pode ser considerd como compost por um qudrdo do qul foi sutrído um qurto

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

d(p,f 1) + d(p,f 2) = 2a

d(p,f 1) + d(p,f 2) = 2a 1 3. Estudo d Elipse 3..1 Definição Consideremos no plno dois pontos F 1 e F, tis que d(f 1, F ) = c. Sej, > c. Chm-se elipse o conjunto de pontos P, do plno, tis que: d(p,f 1) + d(p,f ) = P F 1 O F 3..

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128 Aul 4 Moimento em dus e três dimensões Físic Gerl I F -18 F18 o Semestre de 1 1 Moimento em D e 3D Cinemátic em D e 3D Eemplos de moimentos D e 3D Acelerção constnte - celerção d gridde Moimento circulr

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIÍIA UNIVSIDAD ATÓLIA D GOIÁS DPATAMNTO D MATMÁTIA ÍSIA Professores: dson Vaz e enato Medeiros XÍIOS NOTA D AULA I Goiânia - X Í I O S. O esuema abaio mostra três cargas puntiformes fias, no vácuo.

Leia mais

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km FÍSICA 1 O Sistem GPS (Globl Positioning System) permite loclizr um receptor especil, em qulquer lugr d Terr, por meio de sinis emitidos por stélites. Num situção prticulr, dois stélites, A e B, estão

Leia mais

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítuo 5 Vigs sobre bse eástic Este cpítuo vi presentr s bses pr o estudo estático e eástico d fexão simpes de vigs suportds diretmente peo terreno (ue constitui, então, num poio eástico contínuo pr ests

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

Aula 3: A Lei de Gauss

Aula 3: A Lei de Gauss Aula 3: A Lei de Gauss Curso de Física Geral F-38 1º semestre, 13 F38 113 1 Fluxo de um campo vetorial Definição: = v ( r ) nˆ da v ( da ds A nˆ dv ds = ; dv= Ads = A = Av dt dt tˆ nˆ v A v v v // v da=

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3 Universidde Federl de Algos Centro de Tecnologi Curso de Engenri Civil Disciplin: Mecânic dos Sólidos 1 Código: ECIV018 Professor: Edurdo Nobre Lges Forçs Distribuíds: Centro de Grvidde, Centro de Mss

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Física Fascículo 02 Eliana S. de Souza Braga

Física Fascículo 02 Eliana S. de Souza Braga ísic scículo 0 Elin S. de Souz r Índice Dinâmic Resumo eórico...1 Exercícios... Gbrito...4 Dinâmic Resumo eórico s 3 leis de ewton: 1. lei ou princípio d Inérci: res = 0 = 0 v = 0 v é constnte. lei ou

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

m 2 m 1 V o d) 7 m/s 2 e) 8 m/s 2 m 1

m 2 m 1 V o d) 7 m/s 2 e) 8 m/s 2 m 1 Prof Questão 1 Um homem em um lnch deve sir do ponto A o ponto B, que se encontr n mrgem opost do rio. A distânci BC é igul = 30 m. A lrgur do rio AC é igul b = 40 m. Com que velocidde mínim u, reltiv

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

CTM Primeira Lista de Exercícios

CTM Primeira Lista de Exercícios CTM Primeir List de Exercícios. Cite crcterístics típics de cd um ds 5 clsses de mteriis presentds no curso. Metis: resistentes, dúcteis, bons condutores térmicos/elétricos Cerâmics: resistentes, frágeis,

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletrotécnic Módulo III Prte I Motores CC Prof. 2 3 Máquin CC Crcterístics Básics Muito versáteis (bos crcterístics conjugdo X velocidde) Elevdos conjugdos de prtid Aplicções em sistems de lto desempenho

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Primeira Prova 2. semestre de /10/2013 TURMA PROF.

Primeira Prova 2. semestre de /10/2013 TURMA PROF. D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores

Leia mais