Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico

Tamanho: px
Começar a partir da página:

Download "Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico"

Transcrição

1 O Potencil Elétrico Fundmentos d Eletrostátic Aul 8 O Potencil Elétrico Prof Alex G Dis Prof Alysson F Ferrri Imgine ue desejmos mover um crg teste de um ponto té um ponto b em um região do espço onde existe um cmpo elétrico E (r) A forç elétric sobre crg é, em cd ponto, dd por F (r) = E (r), e pr efetivmente mover prtícul, deve-se exercer sobre el um forç suciente pelo menos pr compensr uel exercid pelo cmpo elétrico, ou sej, F plic (r) = E (r) O trblho mínimo ue precismos exercer sobre prtícul, pr movê-l, é ddo por um integrl de cminho, W b = ˆ b F plic d l = ˆ b E d l (Este é o trblho mínimo pois sempre podemos exercer um forç mior sobre prtícul, ue chegrá em b com mior energi cinétic; como você deve estr imginndo, estmos cminhndo em direção o conceito de energi potencil, e por isso não ueremos incrementr energi cinétic d prtícul) W b é justmente energi potencil ssocid à forç eletrostátic Podemos gor provr o importnte fto de ue est forç é conservtiv Pr tnto, clculmos o trblho feito sobre prtícul pr levá-l de pr b pelo cminho γ, e depois trzê-l de volt de b pr pelo cminho γ 2, como n gur NH28 - Fundmentos d Eletrostátic - 29t NH28 - Fundmentos d Eletrostátic - 29t

2 Temos: W b + W b = ˆ b (γ ) ˆ b (γ 2 ) usndo o teorem de Stokes, W b mostrr ue o cmpo elétrico é irrotcionl + W b A expressão mis gerl pr o cmpo elétrico é, E (r) = ˆ E d l E d l = E d l, γ=γ γ 2 ˆ = ( E) d, S onde S é um superfície tendo γ como bord Clculndo explicitmente E, vmos r r r r 3d, onde d pode ssumir diferentes forms, conforme o tipo de distribuição de crg ue estmos considerndo, 8 >< d = >: P i iδ 3 `r r i d3 V ρ `r d 3 V σ `r d λ `r dl (distribuição de crgs pontuis) (distribuição contínu de crgs) (distribuição de crgs num superfície) (distribuição de crgs num linh) Clculndo E, supondo ue podemos trocr ordem entre integrção e derivção, E (r) = ˆ r r r r 3! d Lembre do ue você demonstrou n List : (fv) = f V V f «r r Portnto: r r 3 = r r 3 `r r `r r r r 3 Agor: `r r = e r r r r 3 = 3 r r! r r r r 3 = E = 5 Dí, concluímos ue Isto nos permite concluir, já ue os cminhos γ e γ 2 são rbitrários, ue γ pr uluer curv fechd γ E d l =, Isto signic ue integrl de linh de E independe do cminho, o ue é o mesmo ue dizer ue F é um forç conservtiv (lembre-se ue F e E diferem pens pel multiplicção pel crg de teste ) Se F é conservtiv, então pode-se denir um função energi potencil U tl ue F = U D mesm form, pode-se encontrr um cmpo esclr ϕ (r) tl ue E = ϕ Isto tmbém segue do Teorem de Helmholtz ue foi citdo n ul 4 Segundo este teorem, E = E (r) = ϕ (r) NH28 - Fundmentos d Eletrostátic - 29t 2 NH28 - Fundmentos d Eletrostátic - 29t 3

3 Não é difícil escrever explicitmente um fórmul pr função ϕ, prtindo de ˆ b ˆ b E d l = ϕ d l = ϕ (r b ) ϕ (r ), ue podemos reescrever, mudndo convenientemente os nomes ds vriáveis, como ϕ (r) = E d l + ϕ ` Um vez cdo um ponto referencil, eução cim dene um função ue só depende de r O ue grnte isso é justmente o fto d integrl de E não depender de cminho Note ue, por construção, o ponto referencil é tl ue ϕ ` = Dest form, obtemos, ϕ (r) = E d l usndo d l = drˆr + rdθ ˆθ + r sin θdφ ˆφ, ϕ (r) = E `r d l = = = ˆr r 2 dr r 2 " r # drˆr + rdθ ˆθ + r sin θdφ ˆφ Somos livres pr escolher o ponto de referênci, ms o potencil ssume um form mis simples se escolhemos no innito, di ϕ (r) = r Se crg não estiver n origem, ms sim n posição r, rref = rref, e onde integrção é feit sobre uluer cminho ligndo r ϕ (r) = r r, (potencil eletrostático de um crg pontul) Por exemplo, pr o cmpo de um crg pontul loclizd n origem, E (r) = ˆr r 2, e, como você já fez n list, é fácil vericr ue E (r) = ϕ (r) = r r r r 3 NH28 - Fundmentos d Eletrostátic - 29t 4 NH28 - Fundmentos d Eletrostátic - 29t 5

4 Uniddes (sistem MKS) F, unidde de forç: Newton N E = F Newton, unidde de cmpo elétrico: = `N Coulomb C dϕ E d l, unidde de potencil: Newton metro = Joule C = volt (V ) Coulomb Observe ue se o ponto de referênci fosse escolhido de mneir diferente, de modo ue ϕ (r) = ϕ (r) ϕ `, com ϕ ` = constnte, ind ssim terímos ϕ (r b ) ϕ (r ) = ϕ (r b ) ϕ (r ) ϕ (r) = ˆ r r d No cso de um distribuição supercil e liner de crg, bst considerr distribuição proprid, ou ϕ (r) = ˆ ϕ (r) = ˆ r r σ `r d, r r λ `r dl A dição de um constnte o potencil é irrelevnte tmbém pr determinção de E prtir de ϕ, ϕ = ϕ Outr observção ser feit é ue, do princípio d superposição, o cmpo produzido por um coleção de crgs, 2,, loclizds nos pontos r, r 2, é ddo por E = E (r) + E 2 (r) +, e o mesmo princípio vle pr o potencil, ϕ (r) = E `r d l = ϕ (r) + ϕ 2 (r) + Pr um conjunto de crgs pontuis i, loclizds nos pontos r i, ϕ (r) = X i r r i, generlizndo pr um distribuição uluer de crg d, i Em noss presentção, determinmos ϕ (r) trvés de um integrl de cminho de E (r) A plen utilidde de ϕ (r) contudo está no cminho contrário: em determinds condições, podemos clculr mis simplesmente ϕ (r), sem conhecer E (r), e então determinr E (r) prtir de ϕ (r) Lembremos lei de Guss em su form diferencil, Como E (r) = ϕ (r), E (r) = ρ (r) ε E (r) = ( ϕ (r)) = 2 ϕ (r) = ρ (r) ε Obtemos ssim um eução diferencil ue relcion o potencil diretmente com distribuição de crgs presentes no problem Este tipo de eução é conhecid por Eução de Poisson: NH28 - Fundmentos d Eletrostátic - 29t 6 NH28 - Fundmentos d Eletrostátic - 29t 7

5 Eução de Poisson Problem 2 ϕ (r) = ρ (r) ε Um cso prticulr, muito importnte, é undo ρ (r) = num dd região do espço; í, o potencil ϕ obedece à eução de Lplce Eução de Lplce Problem: Determinr o potencil eletrostático dentro e for de um esfer mciç de rio R com densidde de crg ρ (r) = r α, com r R, um constnte diferente de zero e α Vmos presentr dus resoluções pr este mesmo problem 2 ϕ (r) = Ds nosss conclusões nteriores, r r = r r r r 3, 2 r r = 4πδ3 `r r, podemos escrever solução d eução de Poisson como já ue 2 ˆ ϕ (r) = ˆ r r ρ `r d 3 V, «r r ρ (r) d3 V = ˆ 2 = = ρ (r) ε «ρ r d 3 V r r ˆ h 4πδ 3 r r i ρ r d 3 V Logo: Primeir solução: Pr proveitr simetri esféric d distribuição de crgs, vmos colocr origem do referencil no centro geométrico d esfer, e orientr o eixo dos z de tl form ue r = zẑ Por outro ldo, r = r ˆr Lembrmos expressão explícit de ˆr : ˆr = sin θ cos φ ˆx + sin θ sin φ ŷ + cos θ ẑ r r = r 2 + (r ) 2 2r r = z 2 + (r ) 2 2zr cos θ NH28 - Fundmentos d Eletrostátic - 29t 8 NH28 - Fundmentos d Eletrostátic - 29t 9

6 Queremos clculr ϕ (r) = ˆ = ρ ˆ 2π ρ `r r r d3 V ˆ π ˆ R `r α z 2 + (r ) 2 2zr cos θ = ρ ˆ π ˆ R `r 2+α sin θ (2π) dr z dθ 2 + (r ) 2 2zr cos θ r 2 sin θ dr dθ dφ «e ϕ (r) = 2ε Ponto dentro d esfer = ε z ˆ R r 2+α 2 z dr "`r 3+α#R 3 + α = R 3+α ε 3 + α z Começmos fzendo integrl em θ : ˆ π sin θ dθ z = 2 + (r ) 2 2zr cos θ» π zr z 2 + (r ) 2 2zr cos θ = «zr z 2 + (r ) 2 + 2zr z 2 + (r ) 2 2zr = zr «(z + r ) 2 (z r ) 2 = zr z + r z r Note ue z e r são sempre positivos, ms o resultdo de z r é diferente se z < r (ponto r dentro d esfer) ou se z > r (ponto r for d esfer) Ponto for d esfer z > r For d esfer, sempre vle ue z > r e portnto Temos ssim, zr `z + r z r = 2 z, z r = z r Neste cso, z < R, ms como r vi de R, precismos seprr o cso em ue r < z e em ue r > z:»ˆ z ϕ (r) = 2ε r 2+α z + r z r zr dr ˆ R + z = ρ»ˆ z r 2+α 2ε ˆ R # r 2+α z + r z r zr dr zr z + r z + r dr # r 2+α zr z + r r + z dr + z = ρ " ˆ 2 z r ˆ # 2+α R dr + r 2+α 2 2ε z z r dr = ρ " z 3+α!# ε z 3 + α + R2+α 2 + α z2+α 2 + α = ρ " R 2+α ε 2 + α z 2+α # (2 + α) (3 + α) Note ue escolhemos inicilmente o referencil tl ue ϕ (r) é n verdde só NH28 - Fundmentos d Eletrostátic - 29t NH28 - Fundmentos d Eletrostátic - 29t

7 função de z Est escolh judou o cálculo, ms é clro ue o resultdo vle pr uluer ponto r for do eixo dos z, bstndo substituir z por r, distânci do ponto considerdo té origem Podemos escrever, portnto: Potencil elétrico 8 < ϕ (r) = h : ε (2+α) R 3+α ε 3+α r R 2+α r2+α (3+α) (for d esfer) i (dentro d esfer) temos 2 (r) = A (α + 3) (α + 2) r α = r α, ε A = ε (α + 3) (α + 2) Pr determinr B, vmos exigir ue (r) sej nito n origem, neste cso, B = Finlmente, () = C e portnto, (r) = ε (α + 3) (α + 2) rα+2 + () Segund solução Vmos resolver eução de Poisson 2 ϕ (r) = ρ (r) ε pr encontrr o potencil ϕ (r) Primeiro, note ue, pel simetri d distribuição de crg, ϕ só pode depender de r, ou sej, ϕ (r) = ϕ (r) Escrevendo explicitmente o Lplcino em coordends esférics, Temos dus regiões considerr: Dentro d Esfer (r < R) Neste cso, temos Vmos tentr o nstz: 2 ϕ (r) = «r 2 ϕ r 2 r r 2 ϕ (r) = ε r α (r) = Ar α+2 + B r + C, For d Esfer (r > R) Neste cso, temos Vmos tentr o nstz: 2 ϕ (r) = ϕ f (r) = B r + C, Como é usul, vmos colocr o zero do potencil no innito, ou sej, Logo, lim ϕ f f (r) = C = C = ϕ f (r) = B r Pr determinr B, temos ue justr s dus soluções no ponto de interfce r = R Vmos exigir continuidde de ϕ no ponto r = R, ou sej, (R) = ε (α + 3) (α + 2) Rα+2 + () = ϕ f (R) = B R B = ε (α + 3) (α + 2) Rα+3 + R () NH28 - Fundmentos d Eletrostátic - 29t 2 NH28 - Fundmentos d Eletrostátic - 29t 3

8 Temos um eução envolvendo B e () Pr determiná-los, precismos de outr eução independente, e vmos encontrá-l derivndo ϕ pr encontrr o cmpo elétrico e exigir continuidde de E Lembre-se, em coordends esférics, ϕ (r) = ϕ r ˆr + ϕ ˆθ r θ + ϕ r sin θ φ ˆφ Logo: E d (r) = (r) E d (r) = ε (α + 3) rα+ˆr E f (r) = ϕ f (r) E f (r) = B r 2 ˆr E d (Rˆr) = E f (Rˆr) ε (α + 3) Rα+3 = B Fic ssim determindo B ; substituindo n eução nterior, () = B R + ε (α + 3) (α + 2) Rα+2 = = ε (α + 3) Rα+2 + ε (α + 3) (α + 2) Rα+2 ε (α + 2) Rα+2 Potencil elétrico (r) = ε (α + 3) (α + 2) rα+2 + ε (α + 2) Rα+2» = R α+2 ε (α + 2) ϕ f (r) = (α + 3) rα+2 ε (α + 3) Rα+3 r Aplicndo o grdiente sobre os potenciis cim obtidos, encontrmos os correspondentes cmpos eletrostáticos, ue são os mesmos ue obtivemos n ul 7, usndo lei de Guss Cmpo Elétrico E d (r) = E f (r) = ε (α + 3) rα+ˆr ε (α + 3) Rα+3 ˆr r 2 Determinmos tods s constntes, cndo ssim perfeitmente determinds s soluções NH28 - Fundmentos d Eletrostátic - 29t 4 NH28 - Fundmentos d Eletrostátic - 29t 5

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Formulário Equações de Maxwell:

Formulário Equações de Maxwell: 3 Prov Eletromgnetismo I Diurno Formulário Equções de Mxwell: D ρ, E B B 0, H J + D Condições de contorno: D σ l, E 0 B 0, H K l ˆn Equção d continuidde: ρ + J 0 Meios lineres e meios condutores: D ɛ E,

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Fundamentos da Eletrostática Aula 12 Mais sobre a equação de Laplace

Fundamentos da Eletrostática Aula 12 Mais sobre a equação de Laplace Seprção de Vriáveis Fundmentos d Eletrostátic Aul 12 Mis sobre equção de Lplce Prof Alex G Dis Prof Alysson F Ferrri Dependendo d congurção do sistem que se desej trtr, pode ser extremmente difícil obter

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos.

Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos. LISTA DE EXECÍCIOS 5 - TEOIA DAS DISTIBUIÇÕES E ANÁLISE DE OUIE MAP 57-4 PO: PEDO T P LOPES WWWIMEUSPB/ PPLOPES/DISTIBUICOES Os eercícios seguir form seleciondos do livro do Duistermt e Kolk denotdo por

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019 Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Potencial, Trabalho e Energia Potencial Eletrostática

Potencial, Trabalho e Energia Potencial Eletrostática Cpítulo 4 Potencil, Trblho e Energi Potencil Eletrostátic Existe um conexão entre o potencil elétrico e energi potencil, como veremos, ms não devemos esquecer que são dus quntiddes essencilmente distints.

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Integrais Duplas em Regiões Limitadas

Integrais Duplas em Regiões Limitadas Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt =

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt = Instituto Superior écnico Deprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CDI-II Integris em Vrieddes. Comprimento. Áre 1 Integrl de Linh de um Cmpo Esclr. Comprimento Sejm A e B dois

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014 Físic III - 4320301 Escol Politécnic - 2014 GABARITO DA P2 14 de mio de 2014 Questão 1 A região entre dus cscs esférics condutors concêntrics de rios e b com b > é preenchid com um mteril de resistividde

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA P2 16 de mio de 2013 Questão 1 Considere dois eletrodos esféricos concêntricos de rios e b, conforme figur. O meio resistivo entre os eletrodos é

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Atividade Prática como Componente Curricular

Atividade Prática como Componente Curricular Universidde Tecnológic Federl do Prná Gerênci de Ensino e Pesquis Deprtmento Acdêmico de Mtemátic Atividde Prátic como Componente Curriculr - Propost - Nome: Mtrícul: Turm: Justique su respost, explicitndo

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Equações diofantinas lineares a duas e três variáveis

Equações diofantinas lineares a duas e três variáveis Equções diofntins lineres dus e três vriáveis Eudes Antonio Cost Fbino F. T. dos Sntos Introdução O objetivo deste rtigo é presentr teori básic envolvid ns equções diofntins lineres dus e três incógnits

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 11) 1.1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt =

CDI-II. Resumo das Aulas Teóricas (Semana 11) 1.1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt = Instituto Superior écnico Deprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CDI-II Resumo ds Auls eórics (Semn 11) 1 Integris em Vrieddes 1.1 Integrl de Linh de um Cmpo Esclr. Comprimento

Leia mais

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis.

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

b a f(x) dx a f(x)dx = 0 f(x)dx a f(x)dx = - b f(x)dx b f(x)dx = c f(x)dx + b f(x)dx ou - f(x)dx ou - f(x)dx f (x) y f (x) 1 DEFINIÇÃO DE INTEGRAL

b a f(x) dx a f(x)dx = 0 f(x)dx a f(x)dx = - b f(x)dx b f(x)dx = c f(x)dx + b f(x)dx ou - f(x)dx ou - f(x)dx f (x) y f (x) 1 DEFINIÇÃO DE INTEGRAL DEFINIÇÃO DE INTEGRAL Dentro do conceito do cálculo, temos que integrl foi crid pr delimitr áre A loclizd sob um curv f() em um plno crtesino. A f () b A notção mtemátic d integrl cim é: A = b f() d 2

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

Mudança de variável na integral dupla

Mudança de variável na integral dupla UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 GITO Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm =

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada UNIVERSIDADE FEDERAL DO AMAPÁ Tópicos Especiis de Mtemátic Aplicd Márleson Rôndiner dos Sntos Ferreir mrleson p@yhoo.com.br Unifp-AP 23/junho/2010 Universidde Federl do Ampá 1 INTEGRAIS DE LINHA E SUPERFÍIE

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

Eletromagnetismo I. Aula 8

Eletromagnetismo I. Aula 8 Eletromgnetismo I Prof. Dr. R.M.O Glvão - Semestre 14 Prepro: Diego Oliveir Aul 8 Revisão Série de Fourier f Suponhmos que tenhmos um função f( periódic, de período, como mostrdo n gur. O objetivo d série

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

y m =, ou seja, x = Não existe m que satisfaça a inclinação.

y m =, ou seja, x = Não existe m que satisfaça a inclinação. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mzzei e Mrin Duro Acdêmicos: Mrcos Vinícius e Diego

Leia mais

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009 P2 Físic III Escol Politécnic - 2009 FGE 2203 - GABARITO DA P2 14 de mio de 2009 Questão 1 Considere um cpcitor cilíndrico de rio interno, rio externo e comprimento L >>, conforme figur. L Sejm +Q e Q

Leia mais

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens Fundamentos da Eletrostática Aula 3 Descontinuidades no Campo Elétrico & Método das Imagens Prof. Alex G. Dias Prof. Alysson F. Ferrari Descontinuidades no campo elétrico Uma observação a ser feita uando

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais