Professor conteudista: Renato Zanini

Tamanho: px
Começar a partir da página:

Download "Professor conteudista: Renato Zanini"

Transcrição

1 Matemática Básica

2 Professor conteudista: Renato Zanini

3 Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES RESOLVENDO EQUAÇÕES RESOLVENDO INEQUAÇÕES...13 REGRA DE TRÊS SIMPLES: RELAÇÃO DIRETA E INVERSA ENTRE GRANDEZAS PORCENTAGEM: CONCEITOS FUNDAMENTAIS...19 Unidade II 7 FUNÇÕES MATEMÁTICAS E SUAS REPRESENTAÇÕES... 8 FUNÇÃO DO 1º GRAU... 9 FUNÇÃO DO º GRAU SISTEMA DE EQUAÇÕES (PONTO DE INTERSEÇÃO)...3

4

5 MATEMÁTICA BÁSICA Unidade I APRESENTAÇÃO Caro aluno, 1 0 Sua visitação por conteúdos matemáticos já estudados no Ensino Fundamental e Médio contemplará o objetivo geral da disciplina Matemática Básica que, por sua vez, deseja capacitá-lo na operação com formulações e modelos matemáticos, no desenvolvimento do raciocínio lógico, espírito de investigação e habilidade em solucionar problemas, além de fazê-lo se familiarizar com símbolos, métodos e técnicas matemáticas que ajudem a estimular, organizar o pensamento e, portanto, oferecer ferramentas necessárias para futuras aplicações da matemática nas diferentes áreas profissionais. O material apresentado a seguir está dividido em duas partes. Primeiramente, estudaremos os conjuntos numéricos, suas operações e a resolução de equações e inequações, além de algumas aplicações utilizando regra de três simples e números percentuais. Em seguida, na segunda parte, abordaremos o conceito de Função e suas representações. Os conteúdos estão apresentados de forma didática e por meio de exemplos. Sugere-se, como complemento de estudo, a utilização de outras bibliografias. Observação: durante as aulas (estudos e provas), se for necessário, utilize apenas uma simples calculadora para facilitar os cálculos. 1

6 Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES Representações Os números que utilizamos diariamente em nossa vida são organizados por meio de conjuntos. Veja: conjunto dos números naturais: N = {0; 1; ; 3; 4;...}; conjunto dos números inteiros (Z): o conjunto dos números inteiros é formado por todos os elementos do conjunto dos números naturais (números inteiros positivos) e também por todos os números inteiros negativos: Z = {...; 4; 3; ; 1; 0; 1; ; 3; 4;...}; conjunto dos números racionais (Q): um número racional é representado por meio de uma fração. Por exemplo: 1 3 ; ; 3 ; ; ; 1 ; 1 ; 1 ; 3 ;. 9 1 Toda fração pode ser representada de outra maneira se dividirmos o seu numerador pelo seu denominador. Observe os exemplos abaixo: 1 = 1: = 0, 3 = 3: 4 = 0, = 3: = 1, = : 1= 1 8 = 8: 1 = = 1: 3 = 0, (dízima periódica) 7 = 7: 9 = 0, (dízima periódica) 9

7 MATEMÁTICA BÁSICA Portanto, podemos dizer que o conjunto dos números racionais (Q) é formado pelo conjunto dos números inteiros (que podem ser representados na forma de fração) e também por números não inteiros que, necessariamente, são representados por meio de frações e de números decimais; conjunto dos números irracionais (Ir): o conjunto dos números irracionais é formado por números que não se podem expressar como quocientes de dois números inteiros, ou seja, não se podem expressar por meio de fração. Por exemplo: se a raiz quadrada de um número natural não for inteira, é irracional. Logo, são irracionais, 3,, 7, 8, e outros. Tais números são representados por dízimas infinitas e não periódicas. Veja: 1 = 1, = 1, =, ; conjuntos dos números reais (R): reunindo o conjunto dos números irracionais (Ir) e o conjunto dos números racionais (Q), obtemos o conjunto dos números reais (R). A representação dos números reais na reta numérica: Reais Observação: vale lembrar que, entre dois números reais inteiros, existem infinitos outros números reais. Operações relembrando através de exemplos Multiplicação e Divisão em primeiro lugar: +. 7 = + 3 = 37 1 : 3 = = 3

8 Unidade I Distributiva: 3. (4 + 6) = = = 30. ( 6) =. +. ( 6) = 0 30 = 0 Os sinais: 7 4 = = = 3 ( 7). ( 4) = +8 ( 7). (+4) = 8 7. ( 4) = 8 ( 7) : ( 4) = +1,7 ( 7) : (+4) = 1,7 7 : ( 4) = 1,7 Potências: =. = 0. =. (.) =.0 = 00 ( ) = ( ). ( ) = 0 = (. ) = 0 3 =.. = 1 ( ) 3 = ( ). ( ). ( ) = / = 9 = 3 Frações e representações decimais: 7 + = = 7: 3 =, , = + = = : 4 = 1,

9 MATEMÁTICA BÁSICA (Obs.: a fração ½ é equivalente à fração /4) = = = 8: 1 = 0, , : = 6 3 = 6 = 1 (Obs.: multiplica-se a primeira fração pela inversa da segunda) As raízes: 8. = 16 = 4 8 : = 4 = 8 +,83 + 1,41 4,4 (Obs.: 8 + ) 8,83 1,41 1,4 (Obs.: 8 6) ( 8) = =. 3. 1,73 3,46 Subconjuntos de R Interpretando a simbologia: A = {x R x > 3} Quais são os elementos do conjunto A? Resp.: elementos x pertencentes ao conjunto dos números reais, tal que x são elementos reais maiores que 3. B? B = {x R x } Quais são os elementos do conjunto Resp.: elementos x pertencentes ao conjunto dos números reais, tal que x são elementos reais menores ou iguais a.

10 Unidade I C = {x R 8 < x < 3} Quais são os elementos do conjunto C? Resp.: elementos x pertencentes ao conjunto dos números reais, tal que x são elementos reais maiores que 8 (pois -8 < x) e menores que 3 (pois x < 3), ou seja, elementos reais que estão entre os números 8 e 3. EXPRESSÕES LITERAIS E SUAS OPERAÇÕES Utilizamos as letras para representar ou traduzir, em linguagem matemática, as operações estudadas em aritmética. Tais representações são ferramentas muito úteis na resolução de problemas. Para relembrar: valor numérico de expressões literais: Considere: y = x + x Qual o valor de y quando x =? Resp.: y = () +.() = = 8 1 Considere: p = m3 4m + 3m + Qual o valor de p quando m = 3? Resp.: p = (3) 3 4.(3) + 3.(3) + = 7 4.(9) = = operações com expressões literais: x. x = x 0 x + x = x (b + 3c a) + (3a 4b c) = b + 3c a + 3a 4b c = b + c + a (6x + 1y) = 6x 1y 6

11 MATEMÁTICA BÁSICA ( x + 3y) = + x 3y (9x + 1y) (6x + 1y) = 9x + 1y 6x 1y = 3x + 3y (3c). ( 4c) = 1c.(3x + 4y) = 6x + 8y 3c. (4c c ) = 1c 6c 3 (x + 3y).(x 3y) = x 6xy + 1xy 9y = x + 9xy 9y (1x 3 ) : (3x) = 4x produtos notáveis: (a + b) = (a + b).(a + b) = a + ab + ab + b = a + ab + b (a b) = (a b).(a b) = a ab ab + b = a ab + b (a + b).(a b) = a ab + ab b = a b 3 RESOLVENDO EQUAÇÕES As equações são igualdades envolvendo expressões literais. Por meio da resolução de uma equação, pode-se encontrar um valor desconhecido. Veja: 1 Exemplo 1: y + 6 = (Vamos encontrar y ) y = 6 y = 4 0 y = y = 4 7

12 Unidade I Exemplo : x + 3 = x + 6 (Vamos encontrar x ) x = x x = x + 3 x x = x x + 3 3x = x = x = Exemplo 3: m + 3 = 4m + 6 (Vamos encontrar m ) m = 4m m = 4m + 3 m 4m = 4m 4m + 3 6m = m = m = = = 0, 6 8

13 MATEMÁTICA BÁSICA Exemplo 4: 14 = p + 3 (Vamos encontrar p ) 14 3 = p = p 11 = p,=p Exemplo :.(3t + ) = 4.(t 3) (Vamos encontrar t ) 6t + = 4t 1 6t + = 4t 1 6t = 4t 6t 4t = 4t 4t t = t = 1 t = 11 Exemplo 6: 4n + = 0 (Vamos encontrar n ) 4n + = 0 9

14 Unidade I 4n = 4 4 n = 4 n = = =, 4 Exemplo 7 (Equação do º grau): x 6x = (Vamos encontrar x ) x 6x + = + x 6x + = 0 a = 1 b = 6 c = + = b 4.a.c = ( 6) 4.(1).() = 36 0 = 16 b x = + a ( ) + ( ) x = ( ) ( ) x " = = + 4 = = 6 = 4 = = 1 Exemplo 8 (Equação do º grau): 1 x 9 = 0 (Vamos encontrar x ) a = 1 b = 0 c = 9

15 MATEMÁTICA BÁSICA = b 4.a.c = (0) 4.(1).( 9) = = 36 b x = + a 0 36 ( x = ) + ( 1) 0 36 ( x " = ) ( 1) = = = 3 = 0 6 = 6 = 3 Exemplo 9 (Equação do º grau): x + x = 0 (Vamos encontrar x ) a = b = 1 c = 0 = b 4.a.c = (1) 4.().(0) = 1 0 = 1 b x = + a ( x = ) + ( ) 1 1 = = = ( x " = ) ( ) 1 1 = 1 1 = =

16 Unidade I As equações são ferramentas auxiliares na resolução de vários problemas envolvendo a matemática e o cotidiano. Por exemplo: a) A soma de nossas idades atualmente é 4. Calcule-as, sabendo que sou 7 anos mais velho do que você. Resolução: Seja: x...minha idade atual e x 7...sua idade atual. x + (x 7) = 4 x + x 7 = 4 x 7 = 4 x = x = x = x = 6 1 Portanto, a minha idade atual é 6 anos e a sua idade atual é 6 7 = 19 anos. b) A relação entre o preço de venda e a quantidade vendida de um produto é dada pela equação: Q = 0 4p. Determinar a quantidade de produtos vendidos para p = R$ 1,00. Resolução: 0 Q = 0 4p 1

17 MATEMÁTICA BÁSICA Q = 0 4.(1) Q = 0 60 = 40 unidades do produto. c) A relação entre o preço de venda e a quantidade vendida de um produto é dada pela equação: Q = 0 4p. Determinar o preço p correspondente a 0 unidades de produtos vendidos. Q = 0 4p 0 = 0 4p 0 0 = 0 0 4p 0 = 4p 0 = 4p 4 4 R$ 1,0 = p. 4 RESOLVENDO INEQUAÇÕES 1 As inequações são desigualdades envolvendo expressões literais. Por meio da resolução de uma inequação, podem-se encontrar infinitos valores que satisfazem a uma determinada condição matemática. Os símbolos utilizados nas desigualdades são: > (maior), < (menor), (maior ou igual), (menor ou igual). Exemplo 1: y + 6 > 0 y > 6 y > 4 13

18 Unidade I y > 4 y > ou seja {y R y > } Solução desta inequação: elementos y pertencentes ao conjunto dos números reais, tal que y são elementos reais maiores que. Exemplo : x + 3 < x + 6 x < x x < x + 3 x x < x x + 3 3x < x < 3 3 x < 1 ou seja {x R x < 1} Solução desta inequação: elementos x pertencentes ao conjunto dos números reais, tal que x são elementos reais menores que 1. 1 Exemplo 3: m + 3 4m + 6 (Vamos encontrar m ) m m m 4m + 3 m 4m 4m 4m

19 MATEMÁTICA BÁSICA 6m +3 Atenção: é necessário tornar 6m um termo positivo. Por isso, neste caso, dividem-se os dois membros da inequação por 6. 6m > Então, troca-se o sinal por m 3 6 m 1 = 0, m 0, ou seja {m R m 0,} Solução desta inequação: elementos m pertencentes ao conjunto dos números reais, tal que m são elementos reais menores ou iguais a 0,. Exemplo 4: 14 p p p 11 p, p ou p, Atenção: os sinais ou são invertidos sempre que os membros são trocados. 1 {p R p,} 1

20 Unidade I Solução desta inequação: elementos p pertencentes ao conjunto dos números reais, tal que p são elementos reais maiores ou iguais a,. Exemplo : 4n + > 0 4n + > 0 4n > 4 n > 4 4 n > = =, n > n >, ou seja {n R n >,} Solução desta inequação: elementos n pertencentes ao conjunto dos números reais, tal que n são elementos reais maiores que,. Dica importante: Vale observar que, por exemplo, a equação 14 = p + 3 pode ser escrita, também, como p + 3 = 14. Afinal, trata-se de uma igualdade. 1 Já nas desigualdades: Exemplo: a inequação 14 > p + 3 não pode ser escrita como p + 3 > 14, mas sim como p + 3 < 14. Pois, por exemplo, se 1 <, então > 1. 16

21 MATEMÁTICA BÁSICA As inequações, assim como as equações, também são ferramentas auxiliares na resolução de vários problemas envolvendo a matemática e o cotidiano. Por exemplo: a relação entre o preço de venda e a quantidade vendida de um produto é dada pela equação: Q = 90 p. Determinar os valores de p para os quais a quantidade vendida seja de, no mínimo, 40 unidades: Resolução: Q p p p 0 p 0 p 1 Resposta: para que a quantidade de produtos vendidos seja de, no mínimo, 40 unidades, os preços devem ser menores ou iguais a R$,00. 0 REGRA DE TRÊS SIMPLES: RELAÇÃO DIRETA E INVERSA ENTRE GRANDEZAS Exemplo 1 (situação de proporcionalidade direta) Uma empresa acredita que, diminuindo R$ 1,00 no preço de determinado produto, as vendas aumentam cerca de 0 unidades. Suponha que a relação entre o preço do produto e a quantidade vendida seja diretamente proporcional. Neste caso, 17

22 Unidade I uma redução de R$ 18,00 no preço do produto acarretará um aumento na quantidade vendida de: Resolução: R$ 1,00 de redução no preço do produto 0 unidades no aumento de vendas R$ 18,00 de redução no preço do produto? Espera-se que, neste caso, ao aumentarmos a redução no preço do produto, aumentem-se, também, as vendas do mesmo. Trata-se, portanto, de grandezas diretamente proporcionais. Veja: R$ 1,00 0 R$ 18,00 x 1. x = x = x = = 1 30 unidades no aumento de vendas 0 Resposta: quando aumentamos a redução do preço do produto de R$ 1,00 para R$ 18,00, obtemos um aumento nas vendas de 0 unidades para 30 unidades. Exemplo (situação de proporcionalidade inversa) Com 4 pedreiros trabalhando, um muro é construído em 1 dias. Em quantos dias 6 pedreiros construiriam o mesmo muro trabalhando no mesmo ritmo? 18

23 MATEMÁTICA BÁSICA Resolução: 4 pedreiros trabalhando 1 dias de construção 6 pedreiros trabalhando??? Espera-se que, neste caso, ao aumentarmos o número de trabalhadores, o tempo de serviço diminua x Atenção: para tanto, devemos manter uma razão e inverter a outra. Veja: 4 x x = x = x = = dias de serviço 6 Resposta: quando aumentamos o número de trabalhadores de 4 para 6, obtemos uma diminuição no tempo de trabalho de 1 para dias. 6 PORCENTAGEM: CONCEITOS FUNDAMENTAIS Exemplos: a) 1% de

24 Unidade I 0, = 600 b) Salário de R$.300,00 acrescido de 6% de aumento , = = R$.438,00 ou ,06 = R$.438,00 c) Preço de um produto, no valor de R$ 4,00, com desconto de % = 4 4, = R$ 490,0 ou 4. 0,90 = R$ 490,0 d) O salário de um empregado, em janeiro de 0, era de R$.00,00. Se o índice de aumento de salário, deste mesmo mês, em relação a dezembro de 009 foi de 13%, qual o salário real desse empregado em dezembro de 009? 1 x = salário do empregado 1,13. x = x = = R$. 1, , 0 e) A comissão recebida mensalmente por um vendedor é igual a % de seu salário-base. Em determinado mês, foram acrescidos R$ 10,00 à comissão do vendedor. Assim, o valor total da comissão passou a ser igual a % de seu salário-base. Determine, a partir dessas informações, o valor do salário-base do vendedor: 0

25 MATEMÁTICA BÁSICA x = salário-base do vendedor 0,. x + 10 = 0,. x ou seja, R$ 10,00 corresponde a 1% do salário do vendedor. Então, podemos utilizar uma regra de três simples para resolver o problema: 10 1% x 0% 1. x = x = x = = R$ 800,

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2012/2013 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM 1 1. REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM Uma poderosa e simples ferramenta para resolução de problemas é a regra de três. A regra de três relaciona

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

IN={0, 1, 2, 3, 4, 5,...}

IN={0, 1, 2, 3, 4, 5,...} ALUNO(A) AULA 001 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 001 - DE MATEMÁTICA Conjunto dos números naturais (IN) IN={0, 1, 2, 3, 4, 5,...} CONJUNTOS NUMÉRICOS Um subconjunto

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO DE MATEMÁTICA - 5.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números

Leia mais

O uso de letras na linguagem matemática

O uso de letras na linguagem matemática O uso de letras na linguagem matemática Vimos que a linguagem matemática utiliza letras para representar propriedades, como por exemplo a propriedade distributiva: a(b + c) = ab + ac De fato as letras

Leia mais

CONJUNTOS EXERCÍCIOS DE CONCURSOS

CONJUNTOS EXERCÍCIOS DE CONCURSOS CONJUNTOS EXERCÍCIOS DE CONCURSOS E0626 (IBEG Merendeira Prefeitura de Uruaçu GO). Sendo os conjuntos A = {2, 4, 6, 8, 10, 12}; B = {1, 3, 5, 7, 9, 11}; C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. I A

Leia mais

MATEMÁTICA 6º ANO A/B. Números e cálculo. Geometria

MATEMÁTICA 6º ANO A/B. Números e cálculo. Geometria 1. COMPETÊNCIAS ESSENCIAIS MATEMÁTICA 6º ANO A/B COMPETÊNCIAS GERAIS Cger1. Mobilizar saberes culturais, científicos e tecnológicos para compreender a realidade e para abordar situações e problemas do

Leia mais

» Potenciação e Radiciação

» Potenciação e Radiciação -* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO Professores: Zélia e Edcarlos . Um ciclista percorreu 4,5 km de manhã. À tarde ele percorreu duas vezes e meia essa distância. Quantos quilômetros ele percorreu

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa PLANO DE ENSINO 2016 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

Relação de Conteúdos para Seleção 2016

Relação de Conteúdos para Seleção 2016 Candidatos ao 6º ano do Ensino Fundamental Substantivos Adjetivos Encontros vocálicos Encontros consonantais Dígrafos Artigo Verbos ( Tempos verbais) As 4 operações Situações- problemas (Raciocínio lógico

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

Planificação Anual (por unidades)

Planificação Anual (por unidades) Planificação Anual (por unidades) Total de tempos letivos planificados: 10 Disciplina: MATEMÁTICA 5º ANO Ano letivo: 01/015 Período Unidade didática Nº DE TEMPOS PREVISTOS Total - Apresentação. - Atividades

Leia mais

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo)

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Objeto de avaliação Itens/Parâmetros Instrumentos Ponderação Conteúdos da Testes

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa I Etapa Competências Habilidades Conteúdos Revisão (breve) de conteúdos trabalhados anteriormente Construir significados

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

PLANIFICAÇÃO-2016/2017

PLANIFICAÇÃO-2016/2017 PLANIFICAÇÃO-2016/2017 ENSINO BÁSICO - PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA - 1ºPERÍODO 8º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS UNIDADE 1 Conjunto dos números reais -Dízimas finitas e infinitas

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

Conteúdo Programático. Cursos Técnicos Subsequentes

Conteúdo Programático. Cursos Técnicos Subsequentes Conteúdo Programático Cursos Técnicos Subsequentes Especificações das Provas Disciplinas da prova objetiva Nº questões Pesos Total de pontos Língua Portuguesa 15 2 30 Matemática 15 2 30 Total 30-60 Prova

Leia mais

Matriz de Referência da área de Matemática Ensino Médio

Matriz de Referência da área de Matemática Ensino Médio Matriz de Referência da área de Matemática Ensino Médio C1 Utilizar o conhecimento sobre números e suas representações em situações relacionadas a operações matemáticas, grandezas e unidades de medidas.

Leia mais

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS ESCOLA E.B. /3 DE PEDROUÇOS DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS GRUPO DISCIPLINAR DE MATEMÁTICA º CICLO PLANIFICAÇÃO DE MATEMÁTICA 6º ANO Ano

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

Roteiro de Recuperação 1

Roteiro de Recuperação 1 Roteiro de Recuperação 1 Nome: Nº 8º Ano Data: / /2016 Professores Marcello, Yuri e Décio 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio Pentágono pressupõe uma

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

COLÉGIO INTEGRADO JAÓ

COLÉGIO INTEGRADO JAÓ COLÉGIO INTEGRADO JAÓ Professor Tales Mazzoccante ORIENTAÇÕES PARA PROVA BIMESTRAL MATEMÁTICA 7º ANO Data: 07 / 10 / 2016 Aluno(a): 7º Ano Turma: Algumas orientações: Neste terceiro bimestre, daremos ênfase

Leia mais

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número:

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número: AULA 9 RAZÃO E PROPORÇÃO 1. Determine a razão do primeiro para o segundo número: Para montar a razão, basta fazer o numerador sobre o denominador. Para esse exercício, temos: a) 1 para 9 = 9 1 b) para

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8º ANO PLANIFICAÇÃO GLOBAL Planificação 8º ano 2014/2015 Página 1 AGRUPAMENTO DE ESCOLAS DR.

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO Domínios e subdomínios Metas/Objetivos Objetivos gerais 2º Ciclo Matemática 5º Ano Conteúdos Programáticos Critérios de Avaliação Instrumentos de Avaliação NÚMEROS E OPERAÇÕES/ ÁLGEBRA: -Números naturais

Leia mais

Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental

Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental Candidatos ao 6º ano do Ensino Fundamental Interpretação de texto Substantivos Adjetivos Encontros vocálicos Encontros consonantais Dígrafos Artigo Verbos As 4 operações Situações- problemas (Raciocínio

Leia mais

MATEMÁTICA Plano anual 2008/2009 7º Ano 1º PERÍODO. Nº de Segmentos Conhecer melhor os números 12 Proporcionalidade directa

MATEMÁTICA Plano anual 2008/2009 7º Ano 1º PERÍODO. Nº de Segmentos Conhecer melhor os números 12 Proporcionalidade directa MATEMÁTICA Plano anual 2008/2009 7º Ano 1º PERÍODO Temas Segmentos Conhecer melhor os números 12 Proporcionalidade directa Semelhança de figuras Números racionais 10 14 8 Apresentação/Revisões/Testes/Correcções

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais

Seqüências Numéricas

Seqüências Numéricas Seqüências Numéricas É uma seqüência composta por números que estão dispostos em uma determinada ordem pré-estabelecida. Alguns exemplos de seqüências numéricas: (,, 6, 8, 0,,... ) (0,,, 3,, 5,...) (,,

Leia mais

Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO /2015

Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO /2015 ESCOLA EB 23 LUÍS DE CAMÕES Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO - 2014/2015 Domínio: Números e operações Subdomínio 1. Relacionar números racionais

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

Matemática Financeira: Porcentagem. Prof.: Joni Fusinato 1

Matemática Financeira: Porcentagem. Prof.: Joni Fusinato  1 Matemática Financeira: Porcentagem Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com 1 Porcentagem É uma operação das mais antigas em termos de cálculos comerciais e financeiros. A expressão

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais