I Documento nº. 4 I 4. TEORIA DAS FILAS DE ESPERA. 4.1 FILA DE ESPERA COM VilRIAS ESTAÇÕES. 4.2 FILA DE ESPERA COM VilRIAS ESTAÇÕES E NUMERO LIMITADO

Tamanho: px
Começar a partir da página:

Download "I Documento nº. 4 I 4. TEORIA DAS FILAS DE ESPERA. 4.1 FILA DE ESPERA COM VilRIAS ESTAÇÕES. 4.2 FILA DE ESPERA COM VilRIAS ESTAÇÕES E NUMERO LIMITADO"

Transcrição

1 N O R 11 A, S,A. R,L, Sciedade de Estuds para Desevlvimet de Empresas A HVESTGAÇÃO OPERACONAL NA EMPRESA Dcumet º. 4 1 N D C E Capítul ESTUDO ELEMENTAR DE ALGUNS MODELOS E TJ;1CliiCAS UTLZADAS NA NVESTGAÇÃO OPERACONAL (ctiuaçã) Pág. 4. TEORA DAS FLAS DE ESPERA FLA DE ESPERA COM VilRAS ESTAÇÕES FLA DE ESPERA COM VilRAS ESTAÇÕES E NUMERO LMTADO DE CLENTES

2 Capítul ESTUDO ELE1ffiNTAR DE ALGUNS MODELOS E TCNCAS UTLZADAS NA NVESTGAÇÃO OPERACONAL (ctiuaçã) 4. TEORA DAS FLAS DE ESPERA A teria das filas de espera agrega c,jut de mdels tc;mátics estcástics cstruíds para estud ds feómes de espera que surgem crretemete a vida qutidiaa. Ns 11guichets11 das gares, ds bacs e ds crreis, s relógis de pt de um serviç, tráfeg, efim, em umersas situações, deparams cm um feóme que se pde caracterizar d md seguite: Certas uidades chegam de uma maeira aleatória a um lcal de lhes é prestad determiad serviç. Nesse lcal há uma u várias estações. de as uidades sã servidas segud a sua rdem de chegada e durate um períd de temp aleatóri. Se, mmet de chegada a lcal de certa uidade, tdas as estaçes estã cupadas, ela terá de igressar um fila de esj:>era u bich l:_, a;guardad mmet de ser servida. N quadr abaix idicad apresetam-se diverss feómes de espera, especificad-se para cada cas, as uidades, a atureza d serviç e as estações: r-: u l_ d a d e _ s ṟ_e_ z_a d s_e_r_ v_l_- ç _ E _s_ t _ aç_õ_ e _s Clietes! Veda de um artig Vededres Chamadas telefóicas 11 Cversaçã Circuits telefóics Aviões Aterragem Pistas Barcs Descarga Cais Máquias para reparar Reparaçã Mecâics Miutas Dactilgrafia Dactilógrafs Mesages Decifraçã Decifradres Ecmedas j Prduçã Oficias

3 O prblema ecómic g_ue se põe a prpósit ds feómes de espera c_g_ siste a ptimizaçã de certa fuçã bjectiv g_ue geralmete ada ass ciada as custs evlvids feóme e à eficiêcia d serviç. Essa ptimizaçã traduz-se, pr exempl, a mdificaçã d úmer de estações, a alteraçã d temp médi de serviç em uma u mais estações, a partiçã de uma fila u a reuiã de várias, etc Façams as hipóteses seguites: -2-1ª) A chegada de uma uidade é idepedete da de utra (id pedêcia das chegadas). 2ª) Nuca chegam duas uidades u mais a mesm temp. 3ª) A taxa média das chegadas ã varia temp. Nestas cdições desigad pr p (t) a prbabilidade de g_ue _g_ chegadas se prduzam durate um iterval de temp igual a 1, pde demstrar- -se g_ue 1) p (t) =. - ), t (}t)! de A represeta a taxa média de chegadas referida à uidade de temp esclhida. Rechece-se g_ue 1) cm valr esperad é a fuçã de freg_uêcias da distribuiçã E () = Á. t 6 2 ; de Piss e varlacla = t A prbabilidade d iterval g_ue separa duas chegadas csecutivas ser superir a um cert valr G é igual à prbabilidade de ã se bservar ehuma chegada iterval e e, prtat, e, igual a e -AG Se desigarms pr F(e) a fuçã de distribuiçã da lei de e, tem-se 2) F(e) = 1-e} e e a fuçã de freg_uêcias é 3) f(g) =./... 6"9 (lei expecial).

4 -3- O valr esperad e a variâcia sã E(G) = 1/ (temp médi etre as chegadas) e c= l/ 2 Qualquer das fuções de desidade l) e 3) caracteriza uma fila cm chegadas de Piss prque é pssível deduzir uma da utra. A duraçã d serviç pde ser cstate, variável mas determiada u aida aleatória, Quad é aleatória, a sua lei de prbabilidade apr seta-se frequetes vezes sb a frma expecial. Desigad pr s uma variável aleatória que represeta temp que a estaçã leva a cmpletar serviç, uma uidade, etã a fuçã de desidade de s é 4) g(s) A taxa média de serviç para uma estaçã particular é /u. E é clar que 11. é temp médi de serviç. Vams ver seguidamete cm s elemets estudads aterirmete pdem ser cmbiads para frecerem ifrmaçã referete a sistema de espera (filas + estações). Seja S úmer de estações; úmer de uidades a fila de espera; j úmer de uidades que estã a ser servidas as estações (j?s); úmer ttal de uidades sistema ( = V+j); P (t) a prbabilidade de que haja uidades sistema is tate - t, V umer de estações icupadas -, v, j, valres esperads de v, ( s, j e (l ; t f temp médi de espera a fila ates d serviç 4.1 FLA DE ESPERA COM v,mias ESTAÇÕES Neste cas, cm j < S, ã há fila de espera e tda a uidade que

5 -chega é imediatamete servida (v), A ctrári, se js, pde frmar-se uma fila de espera e. V. Supd ue as prbabilidades sã idepedetes d temp (regime permaete), faça-se i ;;.c A uatidade Y;s, cha- mada itesidade d tráfic pr estaçã, terá de ser tal ue \/S < l 9. quer dizer /<S, seã a fila trar-se-ia ifiita ( úmer médi de chegadas seria superir a das saídas), p (t) a) Prbabilidade P de um úmer de uidades sistema l <S 2) p p t S! s -s s de 3) p l y s -; 4! 2 S! ( 1- f!/s) + l + -- l + +.,+ S-1! Em particular, cas de uma estaçã úica, s1, tem-se 4) p l -V 5) p (l -ij) r. Pdem também utilizar-se, para cálcul de P as f6rmulas de. recrrec1a 6) p 7) p _L_ p -1 l 3 «: S p s -1 -E s. b) Númer médi de uidades sistema De 00 - L. p vem

6 -5- s) r 2 = \v+ 2 2! \) +!_ + " S / S+l i (S+l) ST + S! (S-V ) s J/ + Em particular, para S=l, vem 9),; l- r c) Númer médi de uidades a fila de espera Calculad valr esperad da variável aleatória V=-s, vem ([) v=l =S+l (-S) P u lo) ) = SS!, 1S+l T p (l- V/s) 2 Em particular, cm S=l, tem-se d) Húmer médi r, de estações icupadas Para S=l, vem Jl_. 11) (1 =L (s-) P = s-lf. = 12) r =

7 -6- As médias \) e f estã ligadas pela relaçã - 13) = -,. + s - = \) +{ e) Prbabilidade de espera r Desigad pr P a prbabilidade de espera, é clar que P é a prbabili ide dü qur; S. Etã 9 c p = L. =S p que dá 14) s ij)., S! (l- 1V/S) p Tem-se f) Temp médi de espera t f! a fila e daqui vem ) 15) t f = = A. l /s) 2 p C- (l- "" Para S=l, vem 16) t Ui - \!. r = f = k l- "V 4.2 FLA DE ESPERA COM VÁRAS ESTAÇÕES E NtT!ERO LMTADO DE UNDADES Supd S <: m, de m desiga úme:zr de uidades cjut d fe6me, este pde ser caracterizad d md seguite: se l 2 S, há S- estações icupadas, se S< " m há S uidades que estã a ser servidas e -S a fila de espera, a) Prbabilidade P de um úmer de uidades sistema

8 -7- Prva-se g_ue l) p = c J m l p -=;. -2- s 2) p =! S! 8 - S c t p s m = l m cm m \ L_ = p = l Pdem também utilizar-se fórmulas de recrrêcia. Escreved 3) a = P /P, vem a = l 4) a = m-+l \/ a -l 5) a = m-+l ;,,_) s a -l Da relaçã m \-- p = l - p L_ =l resulta 6) p = l D,- - l+l a =l N cas de uma estaçã úica, as fórmulas a utilizar sã: 7) p m! = (m-)! r p

9 -8- cm 8) p l m! ti ) (m-)! e l1l L P :: l u aida a fórmula de recrrêcia 9) P (m-+l) f P -l b) Núers médis de uidades a fila, de estações icupadas e de uidades sistema Os úmers - e sã dads pelas fórmulas m lo) > (-S) p S+l ll) tl s \--- / (s-) p 12) s- + r N cas de uma estaçã úica (Sl), tem-se 13) (l-p ) 14) r p 15) - l m - ( l-p )

10 -9- c) Prbabilidade de espera e temp médi de espera a fila Obtêm-se as fórmulas m \ 16) p = L =S p 17) e, cas de uma estaçã úica (S=l), 18) p = 1 - p 19) tf 1 m 1+ V = r 1-P \li i \ Vejams uma aplicaçã umérica de algus ds resultads que acabáms de estabelecer, Exempl i As chegadas a uma cabie telefóica bedecem a uma lei de Piss, cm um temp médi de 10 miuts etre uma chegada e a seguite, A duraçã de uma cversaçã distribui-se expecialmete cm a média de 3 miuts, a) Qual é a prbabilidade de uma pessa que chega à cabie ter de esperar? b) A cmpahia ds telefes istalará uma seguda cabie quad uma chegada teha de esperar pel mes três miuts pel telefe, Qual deverá ser acréscim de chegadas para justificar a istalaçã de uma seguda cabie? Neste prblema, tem-se }, =!J-= l P = 0,1 0,33 chegadas pr miut cversações pr miut 0,1-0,33-3

11 -10- Etã a) p = t! p = 1- V.1; + 1- / ( 1- ;-\) = \j) i = 0,3 b) tf = 1 \j/ 1 A = 1- \ji f - "! A. u = 3 J, ;f r\ ) 0,33 (0,33-.\ dde! = 0,16 chegadas pr miut,. O flux de chegadas de,lx60= 6 pr hra deve aumetar para O,l6x60 = 9,6,; 10 pr hra pira q_ue c. cp::mhia!:!ote uc1a vu cabie, Existem utrs mdels matemátics para estud de filas de espera múltiplas cm priridades de serviç, cm distribuições das chegadas e ds serviçs diferetes da lei de Piss, etc Em muits cass que surgem a prática ã é pssível ajustar fuções de distribuiçã i1s distribuições empíricas das chegadas e ds serviçs e é ecessári recrrer as mtds de Mte-Carl para reslver esses prblemas.

IARC. - Anexo 7 - Regras de Faturação v Anexo à oferta de Infraestruturas Aptas ao Alojamento de Redes de Comunicações Eletrónicas

IARC. - Anexo 7 - Regras de Faturação v Anexo à oferta de Infraestruturas Aptas ao Alojamento de Redes de Comunicações Eletrónicas IARC - Aex 7 - Aex à ferta de Ifraestruturas Aptas a Aljamet de Redes de Cmuicações Eletróicas Regras de Faturaçã v1.4.1 Ídice 1. Itrduçã 3 2. Regras de Faturaçã 3 2.1 Pedids de Ifrmaçã 3 2.2 Pedid de

Leia mais

Os textos foram adaptados das referências citadas, não havendo comprometimento com ineditismo.

Os textos foram adaptados das referências citadas, não havendo comprometimento com ineditismo. Uiversidade Federal d Ri Grade d Sul Istitut de Física FIS01043 - Métds Cmputaciais para iceciatura Semestre 00/ - Turma B Prf. Eliae Âgela Veit Alu: Albert Ricard Präss FÍSICA QUÂNTICA: O POÇO POTENCIA

Leia mais

Balanços entálpicos com reacção

Balanços entálpicos com reacção - Etalpia de eacçã - Variaçã de eergia resultate d rearraj das ligações etre s átms das mléculas durate decrrer duma reacçã química Eergia Eptecial + Eciética + Eitera (U) U Uº + Ulq + Uci Sem reacçã Ulq

Leia mais

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100.

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100. Questã 1: Em uma festa de aniversári, deseja-se frmar 10 casais para a valsa. A aniversariante cnvidu 10 garts e 9 gartas. a) Quants casais diferentes pderã ser frmads? b) Sabend-se que 4 das meninas sã

Leia mais

PTC 2549 SISTEMAS TELEFÔNICOS

PTC 2549 SISTEMAS TELEFÔNICOS PTC 9 SISTMS TLFÔICOS GBRITO D PRIMIR LIST D RCÍCIOS /3/ Questão ) s ecessidades de comuicação etre duas localidades e B são de. e 3. chamadas por dia, para os setidos B e B respectivamete, com uma duração

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Questão 1. Questão 2. Questão 3. Questão 4. alternativa B. alternativa E. alternativa E

Questão 1. Questão 2. Questão 3. Questão 4. alternativa B. alternativa E. alternativa E Questã Se P é 0% de Q, Q é 0% de R, e S é 50% de R, etã P S é igual a a) 50. b) 5. c). d) 5. e) 4. D alterativa Tems P 0, Q, Q 0, R e S 0,5 R. Lg P 0, Q 0, 0, R. S 0,5 R 0,5 R 5 Questã Seja f:r R uma fuçã

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FCULDDE DE CIÊCIS E TECOLOGI Redes de Telecomuicações (6/7) Egª de Sistemas e Iformática Trabalho º4 (ª aula) Título: Modelação de tráfego utilizado o modelo de Poisso Fudametos teóricos (cotiuação) 7.

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

c) que os diversos impostos têm regras e características

c) que os diversos impostos têm regras e características Cm fiaciar parte de seu capital de gir a cust zer Luiz Rbert S. Cadita e Eduard Dias P. Silva --- _ mmet em que s empresáris tiveram a facilidade de efetivar estes reclhimets pr itermédi ds bacs. Pderiam

Leia mais

rede social zona Rede Social Zona Norte

rede social zona Rede Social Zona Norte maual de idetidade visual Equat s meis de cmuicaçã se tram mais cmplexs, cmprtamet das empresas me scial, s siais visuais e prduts seguem camih de uma simplificaçã atural. A ecessidade de rápida percepçã

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO FIS 124 - FÍSICA GERAL E EXPERIMENTAL IV / LABORATÓRIO PROF.: Jsé Ferad Turma: Teórica/ Prática T: P: 13 Data:

Leia mais

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Estatística para Ecoomia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Primavera 008/009 Variável Aleatória: Defiição: uma variável aleatória é uma fução que atribui a cada elemeto

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

MÉTODOS DE CONTAGEM. Joaquim H. Vianna Neto. Relatório Técnico RTE-02/2013. Relatório Técnico Série Ensino

MÉTODOS DE CONTAGEM. Joaquim H. Vianna Neto. Relatório Técnico RTE-02/2013. Relatório Técnico Série Ensino UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE IÊNIAS EXATAS DEPARTAMENTO DE ESTATÍSTIA MÉTODOS DE ONTAGEM Jaquim H Viaa N Relatóri Técic RTE-02/2013 Relatóri Técic Série Esi Métds de ctagem br/jaquim

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática Probabilidades e Estatística Primeiro exame/segudo teste 2 o semestre 29/21 Duração: 18/9 miutos Grupo I Justifique coveietemete todas as respostas. 17/6/21 9: horas 1. Com base

Leia mais

Regressão Linear Simples uma revisão

Regressão Linear Simples uma revisão Regressã Lear mples uma revsã A regressã lear é útl quad a varável de teresse (depedete se relaca e é afetada pr uma u mas varáves (depedetes. Cmecems pel mdel que da frma mas smples pssível pde represetar

Leia mais

Questão 2. Questão 3

Questão 2. Questão 3 NOTAÇÕES N : cjut ds úmers aturais R : cjut ds úmers reais R + : cjut ds úmers reais ã egativs i : uidade imagiária; i = arg z : argumet d úmer cmple z [a, b] = { R : a b} A\ B = { : Ae B} A C : cmplemetar

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

FREEIMAGES.COM/JKLMNHOP QUÍMICA A

FREEIMAGES.COM/JKLMNHOP QUÍMICA A FREEIMAGES.COM/JKLMNHOP QUÍMICA A química A aula Cveciu-se iteracialmete utilizar cm símbl a iicial, maiúscula, d me d elemet químic em latim, seguida u ã pr uma seguda letra, miúscula, também pertecete

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

A INVESTIGAÇÃO OPERACIONAL NA EMPRESA. Documento n.8. Capítulo II

A INVESTIGAÇÃO OPERACIONAL NA EMPRESA. Documento n.8. Capítulo II N O R M A, S.A.R.L. Sciedade de Estuds para Desenvlviment de Empresas A NVESTGAÇÃO OPERACONAL NA EMPRESA Dcument n.8 1 N D C E Capítul ESTUDO ELEMENTAR DE ALGUNS MODELOS E TÉCNCAS UTLZADAS UA NVESTGAÇÃO

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em Escla Secundária cm 3º cicl D. Dinis 1º An de Matemática A Tema II Intrduçã a Cálcul Diferencial II TPC nº 8 entregar em 17-0-01 1. Jã é cleccinadr de chávenas de café. Recebeu cm prenda um cnjunt de 10

Leia mais

ANÁLISE COMPARATIVA DA VIABILIDADE ECONÔMICA DE PLANTIOS DE Pinus taeda E Eucalyptus dunnii NA REGIÃO CENTRO- SUL DO PARANÁ

ANÁLISE COMPARATIVA DA VIABILIDADE ECONÔMICA DE PLANTIOS DE Pinus taeda E Eucalyptus dunnii NA REGIÃO CENTRO- SUL DO PARANÁ ANÁLISE COMPARATIVA DA VIABILIDADE ECONÔMICA DE PLANTIOS DE Pius taeda E Eucalyptus duii NA REGIÃO CENTRO- SUL DO PARANÁ Viicius Vitale 1, Gabriel de Magalhães Mirada 2 1 Eg. Flrestal, Mestrad em Eg. Flrestal,

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Critérios de correção e orientações de resposta p-fólio

Critérios de correção e orientações de resposta p-fólio Miistério da Ciêcia, Tecologia e Esio Superior U.C. 037 Elemetos de Probabilidade e Estatística de Juho de 0 Critérios de correção e orietações de resposta p-fólio Neste relatório apresetam-se os critérios

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

DURAÇÃO 1:30. (o teste consta de 3 páginas com questões, um formulário e uma tabela - 5 folhas no total)

DURAÇÃO 1:30. (o teste consta de 3 páginas com questões, um formulário e uma tabela - 5 folhas no total) DURAÇÃO 1:30 (o teste costa de 3 págias com questões, um formulário e uma tabela - 5 folhas o total) Leia atetamete o euciado ates de respoder a cada questão. as questões de escolha múltipla seleccioe

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

6. Método do Lugar das Raízes

6. Método do Lugar das Raízes 6. Métd d Lugar das Raízes 6 6. Métd d Lugar das Raízes 6. Itrduçã O Métd d Lugar das Raízes (M.L.R.) é uma técica gráfica que permite visualizar de que frma s pls de um sistema em malha fechada variam

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 8//207 :00 o Teste B 0 valores. Um teste

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

ESPECIFICAÇÃO DO TEMPO DE SOBREVIVÊNCIA

ESPECIFICAÇÃO DO TEMPO DE SOBREVIVÊNCIA ESPECIFICAÇÃO DO TEMPO DE SOBREVIVÊNCIA O temp de sbrevivência é uma variável aleatória T, cntínua e psitiva. Os valres que T pde assumir têm alguma distribuiçã de prbabilidade que pde ser especificada

Leia mais

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos MÉTODO DOS MOMETOS - MOM Prof. Erivelto Geraldo epomuceo PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉTRICA UIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CETRO FEDERAL DE EDUCAÇÃO TECOLÓGICA

Leia mais

Problemas Sobre Correlacionamento

Problemas Sobre Correlacionamento Capítulo 2 Problemas Sobre Correlacioameto Se caiu, levate e ade como se uca tivesse caído, cosiderado que, a cada vez que você se esforça e se levata de uma queda, suas peras se fortalecem. 2.1. Problemas

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO CAÍTULO FILAS ARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING ROBABILÍSTICO Nesse capítulo mostraremos a ovidade desse trabalho que é a obteção das equações de balaço de um sistema de filas paralelas

Leia mais

Propriedades: Notação: X ~ U(α, β). PRINCIPAIS MODELOS CONTÍNUOS

Propriedades: Notação: X ~ U(α, β). PRINCIPAIS MODELOS CONTÍNUOS 0 CONTÍNUOS PRINCIPAIS MODELOS Notação: ~ U(α β). Propriedades: Eemplo A dureza de uma peça de aço pode ser pesada como sedo uma variável aleatória uiforme o itervalo (5070) uidades. Qual a probabilidade

Leia mais

Estimação de Parâmetros. 1. Introdução

Estimação de Parâmetros. 1. Introdução Estimação de Parâmetros. Itrodução O objetivo da Estatística é a realização de iferêcia acerca de uma população, baseadas as iformações amostrais. Como as populações são caracterizados por medidas uméricas

Leia mais

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS Rafael Afoso Barbosa Bolsista do programa PETMAT - Faculdade de Matemática - Uiversidade Federal de Uberlâdia Atoio Carlos Nogueira Professor Doutor da Faculdade

Leia mais

Caderno de Exercício 2

Caderno de Exercício 2 1 Cadero de Exercício Estimação Potual e Itervalos de Cofiaça 1. Exercícios Aulas 1. Exercício 8.6 do livro Statistics for Ecoomics ad Busiess. O úmero de adares vedidos em cada dia por uma empresa imobiliária

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 0 Estimação de parâmetros populacioais 9.. Itrodução Aqui estudaremos o problema de avaliar certas características dos elemetos da população (parâmetros), com base em operações com os dados de uma

Leia mais

Cursinho Triu. Aula 2 - Cinemática. 1 o semestre de Pedro Simoni Pasquini

Cursinho Triu. Aula 2 - Cinemática. 1 o semestre de Pedro Simoni Pasquini Cursinh Triu 1 semestre de 014 Aula - Cinemática Pedr Simni Pasquini pasquini@i.unicamp.br 1 Aceleraçã Será que a psiçã d bjet temp e a velcidade sã sucientes para descrever um prblema? A verdade é que

Leia mais

PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016. Versão 21 de janeiro Programa Nacional Código Base (Adaptado) 1

PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016. Versão 21 de janeiro Programa Nacional Código Base (Adaptado) 1 PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016 Versã 21 de janeir. 2016 Prgrama Nacinal Códig Base (Adaptad) 1 Índice Intrduçã... 3 1. Estrutura Técnica d Prgrama... 3 a) Temp

Leia mais

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA Média ) Tabela de frequêcias simples Cálculo da média: Tabela a Distribuição da idade de fucioários hipertesos Frequêcia Frequêcia (aos) 7 4 5 6 4 4 44 45 46 5 (aos)

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 e 16 Itrodução à probabilidade evetos

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

Disciplina: TRANSPORTES. Sessão Prática 4 (Tipo A): Amostragem

Disciplina: TRANSPORTES. Sessão Prática 4 (Tipo A): Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRANSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4 (Tipo A): Amostragem 008 / 009 Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes

Leia mais

Exame Final Nacional de Matemática Aplicada às Ciências Sociais Época especial

Exame Final Nacional de Matemática Aplicada às Ciências Sociais Época especial Exame Fial Nacioal de Matemática Aplicada às Ciêcias Sociais 016 - Época especial Proposta de resolução 1. Aplicado o primeiro método para o apurameto do vecedor, temos: N o. de votos 615 300 435 150 Total

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departameto de Egeharia Química Escola de Egeharia de Lorea EEL Referêcias Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFial 0,4 P 0,4

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

Teste de Avaliação de MATEMÁTICA 12º ano

Teste de Avaliação de MATEMÁTICA 12º ano Turma: e º teste 06 de Fevereiro Nº Nome GRUO I Teste de Avaliação de MATEMÁTICA º ao º eríodo de 0/ duração 90 mi. rof. Josué Baptista Classificação: O rofessor: As sete questões deste grupo são de escolha

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ao Turma B - C.C.H. de Ciêcias e Tecologias - Teste de Avaliação de Matemática A V1 Duração: 90 mi 09 Março 2010 Prof.: GRUPO I Os cico ites deste grupo são de escolha

Leia mais

Sinopse das entrevistas realizadas aos agentes sociais ligados à velhice (Dirigentes, técnicos e auxiliares de acção directa)

Sinopse das entrevistas realizadas aos agentes sociais ligados à velhice (Dirigentes, técnicos e auxiliares de acção directa) Sinpse das entrevistas realizadas as agentes sciais ligads à velhice (Dirigentes, técnics e auxiliares de acçã directa) Dimensã 1 Experiência e trabalh n lar Temp de experiência «Há 4 ans.» (P. 1) 4 ans.

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I UNIVERSIAE E SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I Profa. Lívia Chaguri E-mail: lchaguri@usp.br 1- Redução de Tamaho - Fudametos/Caracterização graulométrica - Equipametos:

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Unidade IX Estimação

Unidade IX Estimação Uidade IX Estimação 6/09/07 Itervalos de cofiaça ii. Para a difereça etre médias de duas populações (μ μ ) caso : Variâcias cohecidas Pressupostos: 6/09/07 x - x x - x ; N é - x x ) ( x x x x E ) ( x x

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

MEDIDA DO ÍNDICE DE REFRAÇÃO DE UM PRISMA COM UM ESPECTRÔMETRO (RELATÓRIO / EXPERIÊNCIA

MEDIDA DO ÍNDICE DE REFRAÇÃO DE UM PRISMA COM UM ESPECTRÔMETRO (RELATÓRIO / EXPERIÊNCIA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO FIS 4 - FÍSICA GERAL E EXPERIMENTAL IV / LABORATÓRIO PROF.: Jsé Ferad Tura: Teórica/ Prática T: P: 3 Data: 8/08/00

Leia mais