estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo A é não vzio. ( III ) A - B = A, somente qundo B é vzio. Qunts são verddeirs? A. 0 B. C. D. 3 ASSUNTO: CONJUNTOS - erificndo firmtiv I: A = {,, 3,, 5 } B = {, 3, } A B = {, 3, } Logo: A ( A B ) = {,, 3,, 5 } = A ( ) - erificndo firmtiv II: A = {,, 3, } A = B = ou B = Logo: A B = {,, 3, } = A Logo: A B = = A ( F ) - erificndo firmtiv III: A = {,, 3,, 5 } A = {,, 3,, 5 } B = { 6, 7, } ou B = Logo: A - B = {,, 3,, 5 } = A Logo: A - B = {,, 3,, 5 } = A ( F ) Respost corret: B 0. Sej A um mtriz digonl não nul de ordem 33. É correto firmr: A. A é ntissimétric. B. A é simétric. C. Com certez, A é invertível. D. Cso A ten invers, est não é um mtriz digonl. ASSUNTO: MATRIZ - Sej um mtriz digonl de ordem 3, então ess mtriz é do tipo: 0 0 A 0 0 0 0 c 0
Um mtriz é simétric, se, e somente se, A = A. A LEIA: Trnspost d mtriz A. Oserve que s mtrizes são iguis, logo mtriz A é simétric. OBS.: Cro luno, o itme C não poderi ser o verddeiro, vej: deta =.. 0 deta = 0, portnto se o determinnte for igul zero, ess mtriz não dmite invers. Respost corret: B 03. O produto ds rizes d equção 3 0 é: A. -3 B. 3 C. -6 D. ASSUNTO: EQUAÇÃO DO º GRAU / EQUAÇÃO IRRACIONAL t t A A 0 0 0 0 0 0 0 0 0 0 c 0 0 c 0 0 A 0 0 ; 0, 0 e c 0 0 0 c 3 0 3 * estiulr Comentdo - UA/0. Conecimentos Específicos t *Cm: + = 3 3 3 0 6 N.C. erificndo s rízes: p/ p/ 6 3 6. 6 3 F 6 6 *Usndo o rtifício, otemos: 6 6 0 C. A 6.. 6 Respost corret: C 0
0. Simplificndo epressão log otemos: u u log u u log A. log u u B. log u u C. log u u D. log u u ASSUNTO: PROPRIEDADES DOS LOGARITMOS E RACIONALIZAÇÃO estiulr Comentdo - UA/0. Conecimentos Específicos log u u log u u log u u u u u u u u u u log.. log log u u u u Respost corret: B.. log u u Proprieddes Utilizds log log log c c log.c log log c n log n. log c * p n p n 05. Considere função ƒ : [ - : 3 ] cujo gráfico é presentdo n figur io. Se,,, 3 são os zeros de f, então o vlor d som ƒ (-) +ƒ ( ) +ƒ () +ƒ ( ) +ƒ () +ƒ ( ) +ƒ (3) é: 3 A. 0 B. C. D. 3 5-3 03
estiulr Comentdo - UA/0. Conecimentos Específicos ASSUNTO: FUNÇÃO - Se,, e são rízes ( zeros ) de ƒ, então: 3 ƒ ( ) = ƒ ( ) = ƒ ( ) = ƒ ( ) = 0 3 Todo no plno crtesino é relciondo com um, vej: f() f()= Portnto, oservndo o gráfico d questão 5, podemos grntir que: ƒ ( - ) = ; ƒ ( ) = ; ƒ ( ) =/; ƒ ( 3 ) = / Logo: ƒ ( -) + ƒ ( ) + ƒ ( ) + ƒ ( ) + ƒ ( ) + ƒ ( ) + ƒ ( 3) = 3 + 0 + + 0 + / + 0 + / = + / + / = 6 + + = Respost corret: C 06. Sejm, números reis positivos e distintos. O número pertence o intervlo: A. (-, 0] B. (0, C. (, ] D. (, +) ASSUNTO: MATEMÁTICA BÁSICA - Pel desiguldde ds médis, temos que: ( médi ritmétic > médi qulquer ). I - Considere:, temos: 3 3 9 3,6 3 6 6 II - Considere: 3 3 9 6 5, temos:,0 3 Como e > 0 e > 0, tem-se que, logo o intervlos é (, +) Respost corret: D z 07. Ddo o sistem de equções lineres z 0. Su solução represent: z A. Três plnos que se intersectm em um ponto. B. O ponto de tngênci entre dus esfers e um plno C. Três rets coplnres. D. Três plnos prlelos entre si. 0
estiulr Comentdo - UA/0. Conecimentos Específicos ASSUNTO: SISTEMA LINEAR - D = - = + - + - - = 5 - Usndo Crmer, verific-se que D 0, isto signific que o Sistem possui solução únic, logo, os três plnos se intersectm em um único ponto Respost corret: A 0. N figur io, rzão / é: A. cotg. cotg B. tg. tg C. - tg. tg D. cotg / cotg ASSUNTO: TRIGONOMETRIA Q z B R A D k C Adotndo k e z como medids, temos: º PASSO ABC BCD tg tg k k tg. k k. tg ENTÃO : tg. k k.tg. tg k. k.tg. tg k. k.tg. tg k. k. tg tg tg 05
º PASSO BQR Logo: k. tg tg. tg. tg tg Respost corret: A n 09. A figur seguir represent o gráfico de ƒ ( ) = ( +) onde n *. Qul o coeficiente do termo médio do desenvolvimento dess potênci? A. 3 B. 6 C. 3 D. 6 BPR z z tg tg k z tg. z. tg k. tg z. tg BCD tg k. tg tg cot g.cot g f() ASSUNTO: FUNÇÃO DO º GRAU / BINÔMIO DE NEWTON estiulr Comentdo - UA/0. Conecimentos Específicos ENTÃO : tg..tg.tg.tg -7-6 -5 - -3-0 9 7 6 5 3 0-0 tg tg 9-3 - Oservndo o gráfico cim, podemos grntir que -3 é um riz, ou sej, ƒ ( -3 )=0. Se o gráfico é um práol e tod o eio ds scisss em um ponto, então função é do 06
tipo ƒ ( )=( + ), ou sej, n =. º PASSO º PASSO n ƒ ( )=( + ) ƒ ( -3 )=( -3+ ) ƒ ( )=( +3 ) Logo função ƒ é definid por: ( -3+ ) = 0 ƒ ( )= +6+9-3+ = 0 = 3 Portnto o termo médio é igul 6. Respost corret: B 0. Um pirâmide regulr de ltur e cuj se é um qudrdo de ldo L, foi secciond prlelmente à se n ltur /. Depois foi feito um entle tmém em form de pirâmide de se qudrngulr. A pirâmide retird tin como se áre correspondente à secção e como vértice o centro do qudrdo d se d pirâmide inicil. O volume do sólido resultnte é: A. L B. L C. L D. L 6 3 ASSUNTO: GEOMETRIA ESPACIAL estiulr Comentdo - UA/0. Conecimentos Específicos - Pel relção de sólidos semelntes temos: L L L (pirâmide) L... 3 k (AB AB.A A) 3 L L 3. (L L. ) L L L. 6 A(menor) AB(mior) A(menor). L A menor L L A(menor) 7L 7L. 6 (Re sultnte) (Tronco) (Pirâmide) (Resultnte) (Resultnte) 7L L 6L L 07