Matemática Fascículo 03 Álvaro Zimmermann Aranha
|
|
|
- Sabrina Balsemão Lombardi
- 9 Há anos
- Visualizações:
Transcrição
1 Mtemátic Fscículo 03 Álvro Zimmerm Arh
2 Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5
3 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic (P.A.) Defiição Um seqüêci uméric ( ; ; 3 ;...; ; ; + ;...) será deomid P.A. se um termo qulquer ( ), prtir do segudo ( ) for obtido pel som do termo imeditmete terior ( ) com um vlor costte (r) deomido rzão d P.A.; ou sej, um P.A.: = +r pr IN/ Exemplo: (,3,5,7,9,...) Coseqüêcis: seqüêci dos úmeros ímpres positivos é um P.A. de rzão r = e primeiro termo =. A difereç etre dois termos cosecutivos é costte e igul à rzão d P.A., ou sej: 4 3 = 3 = =r. Um termo qulquer, prtir do segudo, é médi ritmétic dos termos que lhe são eqüidisttes, ou sej: 3 ; ; p p Fórmul do Termo Gerl d P.A. ( ) Num P.A. de rzão r e primeiro termo, podemos obter um termo qulquer trvés d seguite relção: = + ( ).r pr IN/ Exemplo: pr ecotrrmos o 0º termo fzemos = 0, logo: 0 = + 9.r Coseqüêci:. Pr obtermos um termo qulquer, prtir de um termo de ordem p ( p ) devemos fzer: = p + ( p).r Exemplo: 0 = 7 +3rou 0 = 4 + 6r, etc...
4 Som dos Termos de um P.A. A som dos primeiros termos de um P.A. pode ser obtid pel seguite relção: ( ) S ode é o primeiro termo, é o último termo, é o.o de termos somdos e S é o vlor d som dos termos. Progressão Geométric (P.G.) Defiição Um seqüêci uméric ( ; ; 3 ;...; ; ; + ;...) será deomid P.G. se um termo qulquer ( ), prtir do segudo ( ) for obtido pel multiplicção do termo imeditmete terior ( ) por um costte uméric (q) deomid rzão d P.G.; ou sej, um P.G.: =. q pr IN/ Exemplo: (, 6, 8, 54, 6) é um P.G. ode q=3 Coseqüêcis:. O quociete etre dois termos cosecutivos é costte e é igul à rzão (q) d P.G., ou id: 3 q (pr q 0). Um termo qulquer, prtir do segudo ( ) é médi geométric dos termos que lhe são eqüidisttes, ou: 3 4 p p ( ) ou ( ) Fórmul do Termo Gerl d P.G. ( ) Num P.G. de primeiro termo e rzão q, um termo qulquer pode ser obtido trvés d seguite relção: =.q pr IN/ Exemplo: pr obtermos o quito termo fzemos =5, dí: 5 =.q 4 Coseqüêci: Pr obtermos um termo qulquer ( ) prtir de um termo de ordem p devemos usr seguite relção: = p.q p Exemplo: 0 = 7.q 3 ou 0 = 6.q 4, etc...
5 Som Fiit de Termos de um P.G. A som dos primeiros termos de um P.G. é dd pel seguite relção: (q ) S= q Som Ifiit de Termos de um P.G. Covergete Qudo som ifiit coverge, ou sej, P.G. q <, podemos obter o limite d som fzedo S q Produto dos Primeiros Termos de um PG. É ddo pels seguites relções: ( ) IP q ou IP ( ) Exercícios 0. (FUV-83-Modificdo) Clculdo um dos âgulos de um triâgulo retâgulo, sbedo que os mesmos estão em P.G. obtemos:. ( ).90º b. ( 3 ).45º c. ( 5 ).45º d. ( 7 ).90º e. (+ ).45º 0. (FUV-85-Modificdo) Os úmeros x, x, log 0x são, est ordem, os três primeiros termos de um progressão geométric. Clculdo o vlor de x obtemos:. b. c. 5 d. 5 e (FUV-9-Modificdo) Três úmeros distitos formm um P.A. crescete, cuj som é três. Seus qudrdos, mtedo respectiv ordem, formm um P.G.. Qul é rzão d P.A.?. b. c. d. 3 e. 04. Em um progressão ritmétic de termos positivos, os três primeiros termos são,,. O qurto termo dest P.A. é:. b. 3 c. 4 d. 5 e A seqüêci de úmeros reis, b, c, d form, ess ordem, um progressão ritmétic cuj som dos termos é 0; seqüêci de úmeros reis, b, e, f form, ess ordem, um progressão geométric de rzão. A som d+féigul :. 96 b.0 c. 0 d. 3 e. 4 3
6 06. Se som dos termos d progressão geométric dd por 0,3 : 0,03 : 0,003 :... é igul o termo médio de um progressão ritmétic de três termos, etão som dos termos d progressão ritmétic vle. 3 b. 3 c. d. e. 07. Pr todo turl ão ulo, sejm s sequêcis (3, 5, 7, 9,...,,...) (3, 6, 9,,..., b,...) (c,c,c 3,..., c,...) com c = +b. Nesss codições, c 0 é igul. 5 b. 37 c. 0 d. 9 e. 49 Dics 0. Use P.G. de 3 termos (x, xq, xq ) Num triâgulo retâgulo o mior âgulo mede 90º (fç x = 90º, cim, e ote que q<) Fç som dos termos cim igul 80º (som dos âgulos iteros um triâgulo). 0. Num P.G. (,, 3 ): 3 Lembre-se ds codições de existêci pr os vlores de x 03. Use P.A. de três termos ( 3 x r, { x, 3 x r ) 3 Pelo eucido ( ; ; 3 ) é P.G., etão: Se P.A. é crescete, etão r > 0 3 Clcule rzão, fzedo r =, (por exemplo) 04. Ddos três termos cosecutivos de um P.A., o termo do meio é igul à médi ritmétic dos outros dois, ou sej, se (, b, c) é P.A., etão b = c. 05. Num PA qulquer = r, ode r é rzão d PA Num PG qulquer =q,odeqérzão d PG 4
7 06.. A som dos termos de um P.G. ifiit é dd por S, <q< q. Pr três termos em P.A. vle propriedde: o termo do meio émédi ritmétic dos outros dois. 07. A primeir seqüêci dd é um P.A. de rzão esegud seqüêci dd é um P.A. de rzão 3. O termo gerl de um P.A. é ddo pel fórmul = + ( )r. Resoluções 0. Altertiv c. Usdo P.G. de 3 termos: (x, xq, xq ) fremos x = 90º; etão s medids serão (90º, 90ºq, 90ºq ) ode0 < q <,pois o mior âgulo o triâgulo retâgulo mede 90º. Ms: 90º + 90ºq + 90ºq = 80º (Som dos âgulos o triâgulo) 5 5 dí q ou q (ão covém) Logo, os âgulos medirão: (90º; 45º( 5 ), 45º(3 5) 0. Altertiv d. Se (x, x, log 0x) é P.G., etão: log0x x x log0x ( x) x x x log0x x, ms x x poisx > 0(codição de existêci) x log 0x x log 0x 0x x = Altertiv c. Usdo P.A. de três termos (x r, x, x + r) teremos: x r+x+x+r=3(eucido), odex= Logo, P.A. fic ( r,, + r) ms (( r),,( r) ) é P.G. (eucido) dí ( r) (+r) (+r) ( r) 5
8 r 0,ou ( r ) =, logo r,ou r etão r = ou r = 04. Altertiv b. Como(,, ) é um P.A., temos: ( = )+ = + = (*) Elevdo o qudrdo os dois membros, temos: ++= +3 0=0 ' ' ' 5 Como elevmos o qudrdo, temos que fzer verificção dos vlores ecotrdos equção (*). Pr=,temos: = (flso) Pr= 5,temos:+5 = 5 (verddeiro) Como= 5,P.A. fic (6, 5, 4). O qurto termo será Altertiv d. Sej (, b, c, d) um PA de rzão r b =r(i) Sej (, b, e, f) um PG de rzão q= b = b = (II) Substituido II em I, temos =r r= Assim sedo PA poderá ser escrit como (,, 3, 4), cuj som dos termos é igul =0 0 = 0 = A PG fic com primeiro termo = erzão q = epode ser escrit como (,, 44, 88). Assim d+f=44+88=3 b d f 06. Altertiv c. 03, 03, A som dos termos d PG ifiit (0,3 ; 0,03 ; 0,003 ;...) é dd por S q 0, 09, 3 Um PA de três termos com termo médio x e rzão r pode ser escrit como (x r, x, x + r). Sbedo que x = 3, temos PA 3 r, 3, 3 r etão som de seus termos vle 3 r r 3 3 6
9 07. Altertiv c. A sequêci (3, 5, 7, 9,...,...) é um PA de rzão, etão = +( ).r =3+( ). A sequêci (3, 6, 9,,... b,...) é um PA de rzão 3, etão b =b +( ).r b =3+( ).3 Como c = +b c 0 = 0 +b 0 c 0 =[3+(0 ).]+[3+(0 ).3] c 0 = 0 7
MATEMÁTICA FINANCEIRA
VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES
PROGRESSÃO GEOMÉTRICA
Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,
a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:
) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,
MATEMÁTICA PARA CONCURSOS II
MATEMÁTICA PARA CONCURSOS II Módulo III Neste Módulo apresetaremos um dos pricipais assutos tratados em cocursos públicos e um dos mais temíveis por parte dos aluos: Progressão Aritmética e Progressão
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que
Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E
R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R
Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas.
5. SÉRIES NUMÉRICAS Neste capítulo, vamos esteder o coceito de adição, válido para um úmero fiito de parcelas, à uma soma ifiita de parcelas. 5.: Defiição e exemplos: Série geométrica e série de Dirichlet
Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).
POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o
AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:
009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som
EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9
EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é
Matrizes e Vectores. Conceitos
Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,
DESIGUALDADES Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis
Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij
Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,
Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato
Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito [email protected] [email protected] Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,
EXERCÍCIOS BÁSICOS DE MATEMÁTICA
. NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS
B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações
Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x
Vestibular Comentado - UVA/2011.1
estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo
3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x
UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit
9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2
COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De
Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.
Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,
Z = {, 3, 2, 1,0,1,2,3, }
Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv
TEORIA DAS MATRIZES Professor Judson Santos
TEORIA DAS I - DEFINIÇÃO Deomimos mtriz rel do tipo m (lei: m por ) tod tbel formd por m. úmeros reis dispostos em m lihs e colus. Exemplos: é um mtriz rel. 5 - é um mtriz rel. 8 II - MATRIZ QUADRADA.
1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2
Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um
MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =
MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (
Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.
Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8
Chama-se sucessão de números reais, ou sucessão, a uma aplicação de N R (por vezes considera-se Ν 0 = { }
Aáli Matemática II ao lectivo 006/007 III- Séries. Sucessões ( breves revisões) Def.. Chama- sucessão de úmeros reais, ou sucessão, a Ν 0 ). u: N R uma aplicação de N R (por vezes cosidera- Ν 0 = { } Utiliza-
PROVA DE MATEMÁTICA - TURMAS DO
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)
Unidade 2 Geometria: ângulos
Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.
Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det
5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd
0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?
GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu
Unidade 2 Progressão Geométrica
Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus
UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale
TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A.
TRIÂNGULO 1 - ONITO Sejm, não olineres, os pontos,, e utângulo 2º Qunto os ângulos retângulo otusângulo I é utângulo é união dos segmentos, e. m ( = Ldos: m ( = Vérties: m ( = II, e são gudos 2 - LSSIFIÇÃO
Progressão harmônica e o triângulo de Leibniz
Artigo Origil DOI:0.590/79460X466 Ciêci e Ntur, St Mri, v. 37 Ed. Especil PROFMAT, 05, p. 46 438 Revist do Cetro de Ciêcis Nturis e Exts - UFSM ISSN impress: 000-8307 ISSN o-lie: 79-460X Progressão hrmôic
As funções exponencial e logarítmica
As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,
POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes
Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06
PROPRIEDADES DAS POTÊNCIAS
EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS
5n 3. 1 nsen(n + 327) e)
Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado
MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES
MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo
Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em
Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?
erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui
FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).
FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)
Matemática Fascículo 01 Álvaro Zimmermann Aranha
Mateática Fascículo 0 Álvaro Ziera Araha Ídice Fução Expoecial e Logaritos Resuo Teórico... Exercícios...4 Dicas...5 Resoluções...6 Fução Expoecial e Logaritos Resuo Teórico Potêcia Sedo a IR e IN, teos:
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos
Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7
Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).
Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira
Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Profª Rosimr Fchi Pel Profª Vd Domigos Vieir PARTE CONJUNTOS NUMÉRICOS E NUMEROS REAIS Um umero rel e qulquer umero que pode ser
CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3
DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é
PROPRIEDADE E EXERCICIOS RESOLVIDOS.
PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...
MATRIZES E DETERMINANTES
Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
- Operações com vetores:
TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido
Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U
Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,
Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7
Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd
Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais
POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES
Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.
Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de
MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES
MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, = TESTES:
QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).
9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr
Turno Disciplina Carga Horária Licenciatura Plena em
Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :
Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:
Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos
Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos
TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange
TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução
3 ) x = 3 3 pela propriedade (a n ) m = a
Mteátic A Etesivo V. 7 Eercícios 0) A 0) B 0,) pel propriedde 00. ftordo, 00. e ) pel propriedde.. ) ) pel propriedde. +. 0 ) ) pel propriedde ). ultiplicdo equção por 8 8 8 X 9 + ftordo 9 e 7 7 ) + pel
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete
Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.
Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -
Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1
Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems
Exercícios. setor Aula 25
setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7
Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO
Vlor 2,0 omponente urriulr: Professor(): Turno: Dt: Mtemáti PULO EZR Mtutino luno(): Nº do Série: Turm: luno: 9º no Suesso! Pontução EXTR List de Eeríios ONTINUÇÂO List de eeríios do teorem de Tles. Semelhnç
SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:
SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito
um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,
Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos
Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.
Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete
Aplicações da Integral
Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,
Desigualdades (por Iuri de Silvio ITA-T11)
Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução
