PROPRIEDADES DAS POTÊNCIAS
|
|
|
- Geovane Rodrigues de Almada
- 8 Há anos
- Visualizações:
Transcrição
1 EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS Sedo b, e,, obedecids às codições de eistêci, teos: I.. II., 0 III. (.. b 0) Gráfico d fução f( ) 0 Decresce te I ]0, [ IV., b 0 b b. V. POTÊNCIAS COM EXPOENTE RACIONAL * Sedo, e defiios: 0) Gráfico d fução f( ) 0 Crescete I ], [ EQUAÇÕES EXPONENCIAIS São quels que preset icógit os epoetes Algus equções epoeciis pode ser trsfords u iguldde de potêcis de es bse e sere resolvids usdo propriedde: (, 0) 0) Gráfico d fução f( ) 0 Crescete I ]0, [ FUNÇÕES EXPONENCIAIS f : f ( ) * ( 0 e )
2 INEQUAÇÕES EXPONENCIAIS Iequções epoeciis são desigulddes co icógit os epoetes N resolução de iequções epoeciis deveos usr o fto de que fução epoecil é crescete se e decrescete se 0. 0 EXERCÍCIOS PROPOSTOS 0) (FURG-RS) Sej ( ) f, g ( ) e s( ) f ( ) g( ). O vlor de tl que s ( ) é: ) - 0 0) (FATEC-SP) Qulquer qutidde de ss do chubo 0 diiui e fução do tepo devido à desitegrção rdiotiv. Ess vrição pode ser descrit pel fução t epoecil dd por.. Ness seteç, é ss (e grs) o tepo t (e os), 0 é ss iicil e é u costte rel. Sbedo-se que, pós 66 os, te-se pes /8 d ss iicil, o vlor é: ) 8 0 0) (FATEC-SP) A riz rel k d equção 6. 8 é tl que ) k 5 k 0 5 k 5 0 k 0 5 k 0 0) (FEI-RJ) A solução d equção rel 9 0 é: ) 0 log 05) (UFSC) Deterir o vlor de equção ) (FGV-SP) Sej fução f, de e, defiid por f( ) 5. Se f( ) 8, etão ) 8 log log 5 f é 07) (FUVEST-SP) A equção, co rel, ) ão te solução. te u úic solução etre 0 e /. te u úic solução etre - / e 0. te dus soluções, sedo u positiv e outr egtiv. te is de dus soluções. 08) (FUVEST-SP) Sej ( ) f. Se e b são tis que f ( ) f (, pode-se firr que:
3 ) 8 09) (FUVEST-SP) Ddo o siste 9 pode-se dizer que é igul : ) ) (MACK-SP) A so ds rízes d equção é: ) ) (UFSC) O vlor de, que stisfz equção., é: ) (PUC-PR) Resolvedo equção 5. teos que é igul : ) / / ) (PUC-MG) Sedo f( ), epressão ) b b b b b é igul : 9 ) (MACK-SP) Se e 9, etão (0,5) vle: ) log log 9 f ( ) f ( ) ( ). ( ). 8 5) (Mckezi Se, etão e 9 9 são os possíveis vlores reis de t tis que: ) t 7t 6 0 t 7t 6 0 t t 6 0 t t 6 0 t 6t 7 0 6) (UEL-PR) Cosidere s soluções reis de 7... Se, etão difereç etre ior e eor desss rízes é ) 0 7) (UEL-PR) Observe o gráfico: Esse gráfico correspode qul ds fuções de e, seguir relciods? ) log 8) (UEL-PR) U brco prte de u porto A co pssgeiros e pss pelos portos B e C, deido e cd u etde dos pssgeiros presetes o oeto de chegd, e recebedo, e cd u, ovos pssgeiros. Se o brco prte do porto C co 8 pssgeiros e se N represet o úero de pssgeiros que prtir de A, é correto firr que: ) N é últiplo de 7 N é últiplo de N é divisor de 50 N é divisor de 8 N é prio
4 9) (UFMG) Observe figur seguir. Ness figur, está represetdo o gráfico d fução f ( ) b, b 0.Se 0 f() f( ), úic firtiv VERDADEIRA sobre o vlor de b é ) 0 < b < /9 /9 < b < /9 8/9 < b < < b < < b < 9 0) (UEPG-PR) Sobre s fuções ostrds seguir f( ), 8 g( ) e h( ) ssile o que for correto. 0) f() e g() tê s ess rízes 0) g() é crescete pr > 0) h [g (-)] = 6 08) g() > 0 pr < ou > 6) h() é crescete soete pr > ) (UFC) O úero rel que é riz d equção Ñ = 780 é: ) 5 ) (Mckezi No itervlo [-, 8], o úero de soluções iteirs d iequção 7 é: ) 5 6 ) (UFMG) O produto ds rízes d equção ) é ) (UFMG) O vlor de que stisfz equção 6( ) 6 é tl que: ) 5 5) (UFSM-RS) Sbedo que 7, o vlor de é ) ) (UNESP-SP) U cultur de bctéris cresce segudo lei t ( ).0 t, ode Nt () é o úero de bctéris e t hors, t 0, e e são costtes estritete positivs. Se pós hors o úero iicil de bctéris, N(0), é duplicdo, pós 6 hors o úero de bctéris será ) ) (MACK-SP) O ior vlor iteiro pertecete o cojuto solução d iequção 0,5 é: ) ) (ITA-SP) Sej f, g: fuções defiids por f( ). Cosidere s firções: e g ( )
5 I - Os gráficos de f e g ão se itercept. II - As fuções f e g são crescetes. III - f ( ). g( ) f ( ). g( ). Etão: ) Apes firção (I) é fls. Apes firção (III) é fls. Apes s firções (I) e (II) são flss. Apes s firções (II) e (III) são flss. Tods s firções são flss. ) B ) D ) B ) A ) D ) D ) B ) E ) C ) D ) C 9) (ITA-SP) A so ds rízes reis positivs d equção 5. 0, sedo, vle ) 5. 0) (ITA-SP) Sej f e g dus fuções defiids por ( ) se f e g ( ),.A so do vlor íio de f co o vlor íio de g é igul ) ) (ITA-SP) Cosidere equção, vriável rel, co 0. O cojuto de todos os vlores de pr os quis est equção dite solução rel é ) (,0) (0,) (, ) (, ) (,) (0, ) (, ) GABARITO ) E ) D ) B ) B ) 0 ) A ) B ) E ) C ) E ) 0 ) A ) B ) A ) A ) D ) A ) D ) B ) 5. se
6
LOGARÍTMOS 1- DEFINIÇÃO. log2 5
-(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)
LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA
LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores
Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.
Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8
POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes
Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06
Função Logaritmo - Teoria
Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução
FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).
FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido
As funções exponencial e logarítmica
As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,
Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).
POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o
MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES
MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo
3 ) x = 3 3 pela propriedade (a n ) m = a
Mteátic A Etesivo V. 7 Eercícios 0) A 0) B 0,) pel propriedde 00. ftordo, 00. e ) pel propriedde.. ) ) pel propriedde. +. 0 ) ) pel propriedde ). ultiplicdo equção por 8 8 8 X 9 + ftordo 9 e 7 7 ) + pel
AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:
009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som
PROPRIEDADE E EXERCICIOS RESOLVIDOS.
PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...
Professora: Profª Roberta Nara Sodré de Souza
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função
MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =
MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (
Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U
Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete
Professor Mauricio Lutz FUNÇÃO EXPONENCIAL
Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,
o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.
Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão
Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E
R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R
FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.
49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo
a é dita potência do número real a e representa a
IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci
FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL
Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,
1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2
Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um
FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo
57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,
2 - Modelos em Controlo por Computador
Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores
Exercícios de Matemática Binômio de Newton
Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot
a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:
) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,
Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2
Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.
Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1
Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems
05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.
BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),
Z = {, 3, 2, 1,0,1,2,3, }
Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv
DESIGUALDADES Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis
A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto
Unidade 2 Progressão Geométrica
Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus
EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)
d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:
SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:
SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito
Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA
Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete
QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.
006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje
é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9
0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6
POTENCIAÇÃO RADICIAÇÃO
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição. Estos dividido-o e dus prtes pr elhor opreesão. ª PARTE: POTENCIAÇÃO. DEFINIÇÃO DE POTENCIAÇÃO
MÓDULO II POTENCIAÇÃO RADICIAÇÃO
MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO
A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; -
Geometria Analítica e Álgebra Linear
NOTS E U Geoetri lític e Álger ier Cpítulo - Prte Professor: ui Ferdo Nues Geoetri lític e Álger ier ii Ídice Sistes de Equções ieres efiições Geris Iterpretção Geoétric de Sistes de Equções Iterpretção
SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA
SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes
0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?
GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu
EXAME NACIONAL DE SELEÇÃO 2010
EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:
Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.
Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,
3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x
UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit
AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO
COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.
Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0
FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,
LIMITES. Introdução Antes de iniciar os estudos sobre Limites, vamos observar um exemplo prático do nosso cotidiano.
LIMITES O estudo dos ites objetiv coceitur ituitivmete limite, deiir limites lteris, plicr s proprieddes, clculr limites de uções e veriicr cotiuidde de um ução. Itrodução Ates de iicir os estudos sobre
Integrais Duplos. Definição de integral duplo
Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci
9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2
COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De
Fatoração e Produtos Notáveis
Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)
Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire
Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo
PROVA DE MATEMÁTICA - TURMAS DO
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)
Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7
Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).
4º Teste de Avaliação de MATEMÁTICA A 12º ano
º (0 / 4) Nº Nome 4º Teste de Avlição de MATEMÁTICA A º o 4 Fevereiro 04 durção 90 mi. Pro. Josué Bptist Clssiicção:, O Pro.:, Grupo I Os sete ites deste rupo são de escolh múltipl. Em cd um deles, são
